Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T23:55:00.178Z Has data issue: false hasContentIssue false

Earth-based observations of impact phenomena

Published online by Cambridge University Press:  12 September 2009

Philip D. Nicholson
Affiliation:
Department of Astronomy, Cornell University, Ithaca, NY, 14853, USA
Keith S. Noll
Affiliation:
Space Telescope Science Institute, Baltimore
Harold A. Weaver
Affiliation:
Applied Research Corporation, Landover, Maryland
Paul D. Feldman
Affiliation:
The Johns Hopkins University
Get access

Summary

Earth-based observations at near- and mid-infrared wavelengths were obtained for at least 15 of the SL9 impacts, ranging from the spectacular G, K and L events to the barely-detected N and V impacts. Although there were a few exceptions, most of the IR lightcurves fit a common pattern of one or two relatively faint precursor flashes, followed several minutes later by the main infrared event as the explosively-ejected plume crashed down onto the jovian atmosphere. Correlations with the impact times recorded by the Galileo spacecraft and plumes imaged by the Hubble Space Telescope lead to an interpretation of the twin precursors in terms of (i) the entry of the bolide into the upper atmosphere, and (ii) the re-appearance of the rising fireball above Jupiter's limb. Positive correlations are observed between the peak IR flux observed during the splashback phase and both pre-impact size estimates for the individual SL9 fragments and the scale of the resulting ejecta deposits. None of the fragments observed to have moved off the main train of the comet by May 1994 produced a significant impact signature. Earth-based fireball temperature estimates are on the order of 750 K, 30–60 sec after impact. For the larger impacts, the unexpectedly protracted fireball emission at 2.3 μm remains unexplained. A wide range of temperatures has been inferred for the splashback phase, where shocks are expected to have heated the re-entering plume material at least briefly to several thousand K, and further modelling is required to reconcile these data.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×