Book contents
- Frontmatter
- Contents
- Participants
- Preface
- The orbital motion and impact circumstances of Comet Shoemaker-Levy 9
- Observational constraints on the composition and nature of Comet D/Shoemaker-Levy 9
- Tidal breakup of the nucleus of Comet Shoemaker–Levy 9
- Earth-based observations of impact phenomena
- HST imaging of Jupiter shortly after each impact: Plumes & fresh sites
- Galileo observations of the impacts
- Models of fragment penetration and fireball evolution
- Entry and fireball models vs. observations: What have we learned?
- Dynamics and chemistry of SL9 plumes
- Chemistry induced by the impacts: Observations
- SL9 impact chemistry: Long-term photochemical evolution
- Particulate matter in Jupiter's atmosphere from the impacts of Comet P/Shoemaker-Levy 9
- Jupiter's post-impact atmospheric thermal response
- Growth and dispersion of the Shoemaker-Levy 9 impact features from HST imaging
- Waves from the Shoemaker-Levy 9 impacts
- Jovian magnetospheric and auroral effects of the SL9 impacts
Earth-based observations of impact phenomena
Published online by Cambridge University Press: 12 September 2009
- Frontmatter
- Contents
- Participants
- Preface
- The orbital motion and impact circumstances of Comet Shoemaker-Levy 9
- Observational constraints on the composition and nature of Comet D/Shoemaker-Levy 9
- Tidal breakup of the nucleus of Comet Shoemaker–Levy 9
- Earth-based observations of impact phenomena
- HST imaging of Jupiter shortly after each impact: Plumes & fresh sites
- Galileo observations of the impacts
- Models of fragment penetration and fireball evolution
- Entry and fireball models vs. observations: What have we learned?
- Dynamics and chemistry of SL9 plumes
- Chemistry induced by the impacts: Observations
- SL9 impact chemistry: Long-term photochemical evolution
- Particulate matter in Jupiter's atmosphere from the impacts of Comet P/Shoemaker-Levy 9
- Jupiter's post-impact atmospheric thermal response
- Growth and dispersion of the Shoemaker-Levy 9 impact features from HST imaging
- Waves from the Shoemaker-Levy 9 impacts
- Jovian magnetospheric and auroral effects of the SL9 impacts
Summary
Earth-based observations at near- and mid-infrared wavelengths were obtained for at least 15 of the SL9 impacts, ranging from the spectacular G, K and L events to the barely-detected N and V impacts. Although there were a few exceptions, most of the IR lightcurves fit a common pattern of one or two relatively faint precursor flashes, followed several minutes later by the main infrared event as the explosively-ejected plume crashed down onto the jovian atmosphere. Correlations with the impact times recorded by the Galileo spacecraft and plumes imaged by the Hubble Space Telescope lead to an interpretation of the twin precursors in terms of (i) the entry of the bolide into the upper atmosphere, and (ii) the re-appearance of the rising fireball above Jupiter's limb. Positive correlations are observed between the peak IR flux observed during the splashback phase and both pre-impact size estimates for the individual SL9 fragments and the scale of the resulting ejecta deposits. None of the fragments observed to have moved off the main train of the comet by May 1994 produced a significant impact signature. Earth-based fireball temperature estimates are on the order of 750 K, 30–60 sec after impact. For the larger impacts, the unexpectedly protracted fireball emission at 2.3 μm remains unexplained. A wide range of temperatures has been inferred for the splashback phase, where shocks are expected to have heated the re-entering plume material at least briefly to several thousand K, and further modelling is required to reconcile these data.
- Type
- Chapter
- Information
- The Collision of Comet Shoemaker-Levy 9 and JupiterIAU Colloquium 156, pp. 81 - 110Publisher: Cambridge University PressPrint publication year: 1996
- 6
- Cited by