from II - FUNDAMENTAL THEOREMS
Published online by Cambridge University Press: 05 November 2012
1. It is not necessary for the validity of what follows to decide in what manner the set of propositions is determined, which is fundamental to our universe of reference, or to make definite assumptions as to what propositions are included in the group which is specified by the data. When we are investigating an empirical problem, it will be natural to include the whole of our logical apparatus, the whole body, that is to say, of formal truths which are known to us, together with that part of our empirical knowledge which is relevant. But in the following formal developments, which are designed to display the logical rules of probability, we need only assume that our data always include those logical rules, of which the steps of our proofs are instances together with the axioms relating to probability which we shall enunciate.
The object of this and the chapters immediately following is to show that all the usually assumed conclusions in the fundamental logic of inference and probability follow rigorously from a few axioms, in accordance with the fundamental conceptions expounded in Part I. This body of axioms and theorems corresponds, I think, to what logicians have termed the laws of thought, when they have meant by this something narrower than the whole system of formal truth. But it goes beyond what has been usual, in dealing at the same time with the laws of probable, as well as of necessary, inference.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.