4 - Inelastic exoergic collisions in MOTs
Published online by Cambridge University Press: 17 August 2009
Summary
An exoergic collision converts internal atomic energy to kinetic energy of the colliding species. When there is only one species in the trap (the usual case) this kinetic energy is equally divided between the two partners. If the net gain in kinetic energy exceeds the trapping potential or the ability of the trap to recapture, the atoms escape; and the exoergic collision leads to trap loss.
Of the several trapping possibilities described in Chapter 3, by far the most popular choice for collision studies has been the magneto-optical trap (MOT). A MOT uses spatially dependent resonant scattering to cool and confine atoms. If these atoms also absorb the trapping light at the initial stage of a binary collision and approach each other on an excited molecular potential, then during the time of approach the colliding partners can undergo a fine-structure-changing collision (FCC) or relax to the ground state by spontaneously emitting a photon. In either case electronic energy of the quasimolecule converts to nuclear kinetic energy. If both atoms are in their electronic ground states from the beginning to the end of the collision, only elastic and hyperfine changing collisions (HCC) can take place. Elastic collisions (identical scattering entrance and exit states) are not exoergic but figure importantly in the production of Bose–Einstein condensates (BEC). At the very lowest energies only s-waves contribute to the elastic scattering, and in this regime the collisional interaction is characterized by the scattering length.
- Type
- Chapter
- Information
- Publisher: Cambridge University PressPrint publication year: 2003