3 - Experimental methods of cold collisions
Published online by Cambridge University Press: 17 August 2009
Summary
Atom traps
Light forces
It is well known that a light beam carries momentum and that the scattering of light by an object produces a force. This property of light was first demonstrated by Frish [139] through the observation of a very small transverse deflection (3 × 10–5 rad) in a sodium atomic beam exposed to light from a resonance lamp. With the invention of the laser, it became easier to observe effects of this kind because the strength of the force is greatly enhanced by the use of intense and highly directional light fields, as demonstrated by Ashkin [20, 21] with the manipulation of transparent dielectric spheres suspended in water. The results obtained by Frish and Ashkin raised the possibility of using light forces to control the motion of neutral atoms. Although the understanding of light forces acting on atoms was already established by the end of the 1970s, unambiguous demonstration of atom cooling and trapping was not accomplished before the mid 1980s. In this section we discuss some fundamental aspects of light forces and schemes employed to cool and trap neutral atoms.
The light force exerted on an atom can be of two types: a dissipative, spontaneous force and a conservative, dipole force. The spontaneous force arises from the impulse experienced by an atom when it absorbs or emits a quantum of photon momentum.
- Type
- Chapter
- Information
- Publisher: Cambridge University PressPrint publication year: 2003