Book contents
- Frontmatter
- Contents
- Preface
- 1 Construction of Drinfeld modular varieties
- 2 Drinfeld A-modules with finite characteristic
- 3 The Lefschetz numbers of Hecke operators
- 4 The fundamental lemma
- 5 Very cuspidal Euler–Poincaré functions
- 6 The Lefschetz numbers as sums of global elliptic orbital integrals
- 7 Unramified principal series representations
- 8 Euler–Poincaré functions as pseudocoefficients of the Steinberg representation
- Appendices
- References
- Index
5 - Very cuspidal Euler–Poincaré functions
Published online by Cambridge University Press: 03 May 2010
- Frontmatter
- Contents
- Preface
- 1 Construction of Drinfeld modular varieties
- 2 Drinfeld A-modules with finite characteristic
- 3 The Lefschetz numbers of Hecke operators
- 4 The fundamental lemma
- 5 Very cuspidal Euler–Poincaré functions
- 6 The Lefschetz numbers as sums of global elliptic orbital integrals
- 7 Unramified principal series representations
- 8 Euler–Poincaré functions as pseudocoefficients of the Steinberg representation
- Appendices
- References
- Index
Summary
![Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'](https://static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Abook%3A9780511666162/resource/name/firstPage-9780511666162c5_p129-157_CBO.jpg)
- Type
- Chapter
- Information
- Cohomology of Drinfeld Modular Varieties , pp. 129 - 157Publisher: Cambridge University PressPrint publication year: 1995