Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T19:10:53.972Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  01 July 2021

Fosco Loregian
Affiliation:
Tallinn University of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
(Co)end Calculus , pp. 297 - 304
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altenkirch, T., Chapman, J., and Uustalu, T., Monads need not be endofunctors, International Conference on Foundations of Software Science and Computational Structures, Lecture Notes in Comput. Sci., vol. 6014, Springer, Berlin, 2010, pp. 297–311.Google Scholar
Adams, J.F., Infinite loop spaces, Annals of Mathematics Studies, vol. 90, Princeton University Press, Princeton, N.J., 1978.Google Scholar
Adámek, J., Herrlich, H., and Strecker, G.E., Abstract and concrete categories: the joy of cats, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1990.Google Scholar
Adámek, J. and Rosický, J., Locally presentable and accessible categories, London Mathematical Society Lecture Note Series, vol. 189, Cambridge University Press, Cambridge, 1994.Google Scholar
, How nice are free completions of categories?, Topology and its Applications 273 (2020), 106972.Google Scholar
Adámek, J. and Velebil, J., Analytic functors and weak pullbacks, Theory Appl. Categ. 21 (2008), No. 11, 191209.Google Scholar
Bakke, T.K., Hopf algebras and monoidal categories, Master’s thesis, Universitetet i Tromsø, 2007.Google Scholar
Bergner, J., A model category structure on the category of simplicial categories, Transactions of the American Mathematical Society 359 (2007), no. 5, 20432058.Google Scholar
Bousfield, A.K. and Kan, D.M., Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972.Google Scholar
Berger, C. and Moerdijk, I., On the homotopy theory of enriched categories, Q.J. Math. 64 (2013), no. 3, 805846.CrossRefGoogle Scholar
Borceux, F., Handbook of categorical algebra. 1, Encyclopedia of Mathematics and its Applications, vol. 50, Cambridge University Press, Cambridge, 1994.Google Scholar
, Handbook of categorical algebra. 2, Encyclopedia of Mathematics and its Applications, vol. 51, Cambridge University Press, Cambridge, 1994.Google Scholar
Bozapalides, S., Théorie formelle des bicatégories, Esquisses Mathé-matiques 25, Ehresmann, Bastiani, 1976.Google Scholar
, Some remarks on lax-presheaves, Illinois Journal of Mathematics 24 (1980), no. 4, 676–680.Google Scholar
Bredon, G. E., Sheaf theory, second ed., Graduate Texts in Mathematics, vol. 170, Springer-Verlag, New York, 1997.Google Scholar
Bénabou, J. and Streicher, T., Distributors at work, Lecture notes written by Thomas Streicher, 2000.Google Scholar
Barwick, C. and Schommer-Pries, C., On the unicity of the homotopy theory of higher categories, preprint arXiv:1112.0040, 2011.Google Scholar
Campion, T., Is Stokes’ theorem natural in the sense of category theory?, Mathematics Stack Exchange, https://math.stackexchange.com/q/1229249 (version: 2015-04-10).Google Scholar
Clarke, B., Elkins, D., Gibbons, J., Loregian, F., Milewski, B., Pillmore, E., and Román, M., Profunctor optics: a categorical update, http://events.cs.bham.ac.uk/syco/strings3-syco5/slides/roman.pdf.Google Scholar
Cockett, J.R.B., Koslowski, J., and Seely, R.A.G., Morphisms and modules for poly-bicategories, Theory and Applications of Categories 11 (2003), no. 2, 1574.Google Scholar
Cordier, J.-M. and Porter, T., Shape theory: Categorical methods of approximation, Dover books on mathematics, Ellis Horwood (Chichester, West Sussex, England and New York), 1989.Google Scholar
, Homotopy coherent category theory, Transactions of the American Mathematical Society 349 (1997), no. 1, 1–54.Google Scholar
Crans, S.E., Quillen closed model structures for sheaves, Journal of Pure and Applied Algebra 101 (1995), no. 1, 3557.CrossRefGoogle Scholar
Cruttwell, G.S.H. and Shulman, M., A unified framework for generalized multicategories, Theory and Applications of Categories 24 (2010), no. 21, 580655, arXiv:0907.2460.Google Scholar
Curien, P.L., Operads, clones, and distributive laws, Operads and universal algebra, World Scientific, Singapore, 2012, pp. 2549.Google Scholar
Centazzo, C. and Vitale, E.M., A classification of geometric morphisms and localizations for presheaf categories and algebraic categories, Journal of Algebra 303 (2006), 7796.Google Scholar
Cattani, G.L. and Winskel, G., Presheaf models for concurrency, International Workshop on Computer Science Logic, Springer, 1996, pp. 5875.Google Scholar
Cáccamo, M. and Winskel, G., A higher-order calculus for categories, International Conference on Theorem Proving in Higher Order Logics, Springer, 2001, pp. 136153.Google Scholar
Day, B.J., Note on compact closed categories, J. Austral. Math. Soc. Ser. A 24 (1977), no. 3, 309311.CrossRefGoogle Scholar
, Monoidal functor categories and graphic Fourier transforms, Theory Appl. Categ. 25 (2011), No. 5, 118–141.Google Scholar
Di Liberti, I. and Loregian, F., On the unicity of formal category theories, preprint arXiv:1901.01594 (2019).Google Scholar
Dold, A., Homology of symmetric products and other functors of complexes, Annals of Mathematics 68 (1958), 5480.Google Scholar
Dugger, D. and Spivak, D. I., Mapping spaces in quasi-categories, Algebr. Geom. Topol. 11 (2011), no. 1, 263325.Google Scholar
Dubuc, E.J., Kan extensions in enriched category theory, Lecture Notes in Mathematics, Vol. 145, Springer-Verlag, Berlin-New York, 1970. MR 0280560Google Scholar
Eilenberg, S. and Kelly, G.M., Closed categories, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), Springer, New York, 1966, pp. 421562.Google Scholar
, A generalization of the functorial calculus, J. Algebra 3 (1966), 366–375.CrossRefGoogle Scholar
Elmendorf, A.D., Systems of fixed point sets, Trans. Amer. Math. Soc. 277 (1983), no. 1, 275284.Google Scholar
Ehlers, P.J. and Porter, T., Ordinal subdivision and special pasting in quasicategories, Advances in Mathematics 217 (2008), no. 2, 489518.Google Scholar
Fiore, M., Gambino, N., Hyland, M., and Winskel, G., Relative pseu-domonads, Kleisli bicategories, and substitution monoidal structures, Selecta Mathematica 24 (2018), 27912830.Google Scholar
Gambino, N., Weighted limits in simplicial homotopy theory, J. Pure Appl. Algebra 214 (2010), no. 7, 11931199.Google Scholar
Grothendieck, A., Artin, M., and Verdier, J.L.., Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Lecture Notes in Mathematics, Vol. 269, Springer-Verlag, Berlin-New York, 1972.CrossRefGoogle Scholar
Genovese, F., Quasi-functors as lifts of Fourier-Mukai functors: the uniqueness problem, Ph.D. thesis, Università degli studi di Pavia, 2015.Google Scholar
Getzler, E., Operads revisited, Algebra, Arithmetic, and Geometry, Progr. Math., vol. 269, Birkhäuser Boston, 2009, pp. 675698.Google Scholar
Garner, R. and Franco, I.-L., Commutativity, Journal of Pure and Applied Algebra 220 (2016), no. 5, 17071751.Google Scholar
Gepner, D., Haugseng, R., and Nikolaus, T., Lax colimits and free fibrations in ∞-categories, preprint arXiv:1501.02161 (2015).Google Scholar
Goerss, P.G. and Jardine, J.F., Simplicial homotopy theory, Modern Birkhäuser Classics, vol. 174, Birkhäuser Verlag, Basel, 2009, Reprint of the 1999 edition [MR1711612]. MR 2840650Google Scholar
Gambino, N. and Joyal, A., On operads, bimodules and analytic functors, Mem. Amer. Math. Soc. 249 (2017), no. 1184, v + 110.Google Scholar
Garner, R. and Lack, S., Lex colimits, Journal of Pure and Applied Algebra 216 (2012), no. 6, 13721396.Google Scholar
Gray, J.W., Closed categories, lax limits and homotopy limits, Journal of Pure and Applied Algebra 19 (1980), 127158.Google Scholar
Groth, M., Derivators, pointed derivators and stable derivators, Algebraic & Geometric Topology 13 (2013), no. 1, 313374.Google Scholar
Guitart, R., Relations et carrés exacts, Ann. Sci. Math. Québec 4 (1980), no. 2, 103125.Google Scholar
Hirschhorn, P.S., Model categories and their localizations, vol. 99, Mathematical Surveys and Monographs, no. 99, American Mathematical Society, Providence, RI, 2003.Google Scholar
Hovey, M., Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999.Google Scholar
Hyland, M. and Power, J., The category theoretic understanding of universal algebra: Lawvere theories and monads, Electronic Notes in Theoretical Computer Science 172 (2007), 437458.Google Scholar
Idel, M., Language, Torah, and Hermeneutics in Abraham Abulafia, SUNY Series in Judaica, Hermeneutics, Mysticism and Religion, State University of New York Press, 1989.CrossRefGoogle Scholar
Im, G.B. and Kelly, G.M., A universal property of the convolution monoidal structure, Journal of Pure and Applied Algebra 43 (1986), no. 1, 7588.Google Scholar
Isaacson, S.B., A note on unenriched homotopy coends, Online Preprint: http://www-home.math.uwo.ca/~sisaacso/PDFs/coends.pdf (2009).Google Scholar
Joyal, A., The theory of quasi-categories I,II, in preparation.Google Scholar
, Foncteurs analytiques et espèces de structures, Combina-toire énumérative, Lecture Notes in Math., vol. 1234, Springer Berlin, 1986, pp. 126–159.Google Scholar
, The theory of quasi-categories and its applications, Proceedings of the IMA Workshop “n-Categories: Foundations and Applications”, Citeseer, 2008, Lectures at the CRM (Barcelona). https://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45–2.pdf.Google Scholar
Joyal, A., Street, R., and Verity, D., Traced monoidal categories, Mathematical Proceedings of the Cambridge Philosophical Society 3 (1996), 447468.Google Scholar
Joyal, A. and Tierney, M., Quasi-categories vs Segal spaces, Categories in algebra, geometry and mathematical physics, Contemp. Math., vol. 431, Amer. Math. Soc., Providence, RI, 2007, pp. 277– 326.Google Scholar
Kelly, G.M., Doctrinal adjunction, Category Seminar (Proc. Sem., Sydney, 1972/1973), Lecture Notes in Math., Vol. 420, Springer, Berlin, 1974, pp. 257280.Google Scholar
, A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on, Bulletin of the Australian Mathematical Society 22 (1980), no. 01, 1–83.Google Scholar
, Elementary observations on 2-categorical limits, Bulletin of the Australian Mathematical Society 39 (1989), 301–317.Google Scholar
, Basic concepts of enriched category theory, Repr. Theory Appl. Categ. 64 (2005), no. 10, vi+137, Reprint of the 1982 original [Cambridge Univ. Press, Cambridge; MR0651714]. MR 2177301Google Scholar
, On the operads of J. P. May, Repr. Theory Appl. Categ. 13 (2005), no. 13, 1–13.Google Scholar
Kuznetsov, A. and Lunts, V.A., Categorical resolutions of irrational singularities, International Mathematics Research Notices 2015 (2014), no. 13, 45364625.Google Scholar
Kmett, E., lens library, version 4.16, Hackage https://hackage.haskell.org/package/lens-4.16, 2012–2018.Google Scholar
Krömer, R., Tool and object: a history and philosophy of category theory, Science networks historical studies 32, Birkhäuser, 2007.CrossRefGoogle Scholar
Kelly, G.M. and Street, R., Proceedings Sydney Category Theory Seminar 1972/1973, ch. Review of the elements of 2-categories, pp. 75–103, Springer Berlin Heidelberg, 1974.Google Scholar
Lawvere, F.W., Functorial semantics of algebraic theories, Proceedings of the National Academy of Sciences of the United States of America 50 (1963), no. 5, 869872.CrossRefGoogle ScholarPubMed
, Metric spaces, generalised logic, and closed categories, Ren-diconti del Seminario Matematico e Fisico di Milano, vol. 43, Ti-pografia Fusi, Pavia, 1973.Google Scholar
, Axiomatic cohesion, Theory and Applications of Categories 19 (2007), no. 3, 41–49.Google Scholar
Lehner, M.C., Kan extensions as the most universal of the universal constructions, Master’s thesis, Harvard College, 2014.Google Scholar
Leinster, T., Coend computation, MathOverflow, https://mathoverflow.net/q/20451 (v2010–04-06).Google Scholar
, fc-multicategories, arXiv preprint math/9903004 (1999).Google Scholar
, Higher operads, higher categories, London Mathematical Society Lecture Note Series, vol. 298, Cambridge University Press, Cambridge, 2004.Google Scholar
, Are operads algebraic theories?, Bulletin of the London Mathematical Society 38 (2006), no. 2, 233–238.Google Scholar
, Basic category theory, vol. 143, Cambridge University Press, 2014.Google Scholar
Loregian, F., A Fubini rule for ∞-coends, Preprints of the MPIM (2018), no. 68.Google Scholar
Lack, S. and Rosickỳ, J., Notions of Lawvere theory, Applied Categorical Structures 19 (2011), no. 1, 363391.Google Scholar
Lurie, J., Higher Topos Theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009.Google Scholar
Loday, J.-L. and Vallette, B., Algebraic operads, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 346, Springer, Heidelberg, 2012.CrossRefGoogle Scholar
May, J.P., The geometry of iterated loop spaces, Springer-Verlag, Berlin-New York, 1972, Lectures Notes in Mathematics, Vol. 271.Google Scholar
Mac Lane, S., The Milgram bar construction as a tensor product of functors, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod’s Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio,1970), Lecture Notes in Mathematics, Vol. 168, Springer, Berlin, 1970, pp. 135152.Google Scholar
, Categories for the working mathematician, second ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872Google Scholar
Mac Lane, S. and Moerdijk, I., Sheaves in geometry and logic: A first introduction to topos theory, Universitext, vol. 13, Springer, 1992.Google Scholar
Moerdijk, I., Classifying spaces and classifying topoi, Lecture Notes in Mathematics, vol. 1616, Springer-Verlag, Berlin, 1995.Google Scholar
Moody, D., The “physics” of notations: toward a scientific basis for constructing visual notations in software engineering, IEEE Transactions on software engineering 35 (2009), no. 6, 756779.Google Scholar
Markl, M., Shnider, S., and Stasheff, J., Operads in algebra, topology and physics, Mathematical Surveys and Monographs, vol. 96, American Mathematical Society, Providence, RI, 2002.Google Scholar
Marquis, J.-P. and Zalta, E.N., What is category theory, What is category theory, 2010, pp. 221–255.Google Scholar
nLab authors, Profunctor, http://ncatlab.org/nlab/show/profunctor, March 2021.Google Scholar
Pickering, M., Gibbons, J., and Wu, N., Profunctor optics: Modular data accessors. the art, Science, and Engineering of Programming 1 (2017), no. 2.Google Scholar
Pierce, R.S., Associative algebras, Graduate texts in mathematics, Springer, Berlin, 1982.Google Scholar
Pastro, C. and Street, R., Doubles for monoidal categories, Theory and applications of categories 21 (2008), no. 4, 6175.Google Scholar
Rezk, C., Stuff about quasicategories, Unpublished notes, http://www.math.illinois.edu/rezk/595-fal16/quasicats.pdf (2017).Google Scholar
, Categorical homotopy theory, New Mathematical Monographs, vol. 24, Cambridge University Press, Cambridge, 2014.Google Scholar
, Category theory in context, Courier Dover Publications, 2017.Google Scholar
Riehl, E. and Verity, D., The theory and practice of Reedy categories, Theory Appl. Categ. 29 (2014), 256301.Google Scholar
, The 2-category theory of quasi-categories, Advances in Mathematics 280 (2015), 549–642.Google Scholar
, Fibrations and Yoneda lemma in an ∞-cosmos, Journal of Pure and Applied Algebra 221 (2017), no. 3, 499–564.Google Scholar
, Kan extensions and the calculus of modules for ∞-categories, Algebraic & Geometric Topology 17 (2017), no. 1, 189– 271.Google Scholar
Schäppi, D., The formal theory of Tannaka duality, Astérisque (2013), no. 357.Google Scholar
Segal, G., Categories and cohomology theories, Topology 13 (1974), 293312.Google Scholar
Selinger, P., A survey of graphical languages for monoidal categories, New structures for physics (Coecke, Bob, ed.), vol. 813, Springer, 2010, pp. 289355.Google Scholar
Shulman, M., Homotopy limits and colimits and enriched homotopy theory, preprint arXiv:math/0610194 (2006), Preprint.Google Scholar
, Contravariance through enrichment, Theory Appl. Categ. (2016).Google Scholar
Simmons, H., An introduction to category theory, Cambridge University Press, 2011.Google Scholar
Street, R., The formal theory of monads, J. Pure Appl. Algebra 2 (1972), no. 2, 149168.Google Scholar
, Fibrations and Yoneda lemma in a 2-category, Proceedings Sydney Category Theory Seminar 1972/1973 (Kelly, G.M., ed.), Lecture Notes in Mathematics, vol. 420, Springer, 1974, pp. 104.Google Scholar
, Limits indexed by category-valued 2-functors, Journal of Pure and Applied Algebra 8 (1976), no. 2, 149–181.Google Scholar
, Fibrations in bicategories, Cahiers de topologie et géométrie différentielle catégoriques 21 (1980), no. 2, 111–160.Google Scholar
, Conspectus of variable categories, Journal of Pure and Applied Algebra 21 (1981), no. 3, 307–338.Google Scholar
Strom, J., Modern classical homotopy theory, vol. 127, American Mathematical Society Providence, RI, USA, 2011.Google Scholar
Street, R. and Walters, R., Yoneda structures on 2-categories, J. Algebra 50 (1978), no. 2, 350379.Google Scholar
Szlachányi, K., Skew-monoidal categories and bialgebroids, Advances in Mathematics 231 (2012), no. 3-4, 16941730.Google Scholar
Tambara, D., Distributors on a tensor category, Hokkaido mathematical journal 35 (2006), no. 2, 379425.Google Scholar
Toën, B., Vers une axiomatisation de la théorie des catégories supérieures, K-Theory 34 (2005), no. 3, 233263.Google Scholar
Ulbrich, K.-H., On Hopf algebras and rigid monoidal categories, Israel Journal of Mathematics 72 (1990), no. 1-2, 252256.Google Scholar
Weibel, C.A., An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994.Google Scholar
Wood, R.J., Abstract proarrows I, Cahiers de topologie et géometrie différentielle categoriques 23 (1982), no. 3, 279290.Google Scholar
Yoneda, N., On Ext and exact sequences, J. Fac. Sci. Univ. Tokyo, Sect. I 8 (1960), 507576 (1960).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×