Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T14:49:09.250Z Has data issue: false hasContentIssue false

11 - Chlorpromazine, Loxapine, Thiothixene, Trifluoperazine

Published online by Cambridge University Press:  19 October 2021

Jonathan M. Meyer
Affiliation:
University of California, San Diego
Stephen M. Stahl
Affiliation:
University of California, Riverside and San Diego
Get access

Summary

As discussed in Chapter 6, first-generation antipsychotics (FGAs) are therapeutically as effective as newer antipsychotics, and their utility derives from low cost and the availability of long-acting injectable (LAI) preparations for certain agents. While there are close to 3 dozen FGAs available worldwide, many have very limited or regional use (e.g. melperone, chlorprothixene, perazine), some are rarely used (thioridazine, pimozide) due to disproportionate effects on the rate-corrected QT interval (QTc) of the EKG, and some are so poorly characterized that plasma level data is virtually nonexistent (molindone).

Type
Chapter
Information
The Clinical Use of Antipsychotic Plasma Levels
Stahl's Handbooks
, pp. 217 - 240
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfredsson, G., Bjerkenstedt, L., Edman, G., et al. (1984). Relationships between drug concentrations in serum and CSF, clinical effects and monoaminergic variables in schizophrenic patients treated with sulpiride or chlorpromazine. Acta Psychiatr Scand Suppl, 311, 4974.Google Scholar
Van Putten, T., May, P. R., and Jenden, D. J. (1981). Does a plasma level of chlorpromazine help? Psychol Med, 11, 729734.Google Scholar
Wode-Helgodt, B. and Alfredsson, G. (1981). Concentrations of chlorpromazine and two of its active metabolites in plasma and cerebrospinal fluid of psychotic patients treated with fixed drug doses. Psychopharmacology (Berl), 73, 5562.Google Scholar
Dahl, S. G. (1986). Plasma level monitoring of antipsychotic drugs: clinical utility. Clin Pharmacokinet, 11, 3661.Google Scholar
Van Putten, T., Marder, S. R., Wirshing, W. C., et al. (1991). Neuroleptic plasma levels. Schizophr Bull, 17, 197216.Google Scholar
Cheung, S. W., Tang, S. W., and Remington, G. (1991). Simultaneous quantitation of loxapine, amoxapine and their 7- and 8-hydroxy metabolites in plasma by high-performance liquid chromatography. J Chromatogr, 564, 213221.Google Scholar
Kapur, S., Zipursky, R. B., Jones, C., et al. (1996). The D2 receptor occupancy profile of loxapine determined using PET. Neuropsychopharmacology, 15, 562566.Google Scholar
Kapur, S., Zipursky, R., Remington, G., et al. (1997). PET evidence that loxapine is an equipotent blocker of 5-HT2 and D2 receptors: implications for the therapeutics of schizophrenia. Am J Psychiatry, 154, 15251529.Google Scholar
Ereshefsky, L., Saklad, S. R., Watanabe, M. D., et al. (1991). Thiothixene pharmacokinetic interactions: a study of hepatic enzyme inducers, clearance inhibitors, and demographic variables. J Clin Psychopharmacol, 11, 296301.Google Scholar
Mavroidis, M. L., Kanter, D. R., Hirschowitz, J., et al. (1984). Clinical relevance of thiothixene plasma levels. J Clin Psychopharmacol, 4, 155157.Google Scholar
Janicak, P. G., Javaid, J. I., Sharma, R. P., et al. (1989). Trifluoperazine plasma levels and clinical response. J Clin Psychopharmacol, 9, 340346.Google Scholar
Otagiri, M., Maruyama, T., Imai, T., et al. (1987). A comparative study of the interaction of warfarin with human alpha 1-acid glycoprotein and human albumin. J Pharm Pharmacol, 39, 416420.Google Scholar
Castaneda-Hernandez, G., Bravo, G., and Godfraind, T. (1991). Chlorpromazine treatment increases circulating digoxin like immunoreactivity in the rat. Proc West Pharmacol Soc, 34, 501503.Google Scholar
Yeung, P. K., Hubbard, J. W., Korchinski, E. D., et al. (1993). Pharmacokinetics of chlorpromazine and key metabolites. Eur J Clin Pharmacol, 45, 563569.Google Scholar
Chetty, M., Miller, R., and Moodley, S. V. (1994). Smoking and body weight influence the clearance of chlorpromazine. Eur J Clin Pharmacol, 46, 523526.Google Scholar
Yoshii, K., Kobayashi, K., Tsumuji, M., et al. (2000). Identification of human cytochrome P450 isoforms involved in the 7-hydroxylation of chlorpromazine by human liver microsomes. Life Sci, 67, 175184.Google Scholar
Sunwoo, Y., Ryu, J., Jung, C., et al. (2004). Disposition of chlorpromazine in Korean healthy subjects with CYP2D6*10B mutation. Clin Pharmacol Ther, 75, P90–P90.Google Scholar
Gardiner, S. J. and Begg, E. J. (2006). Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev, 58, 521590.Google Scholar
Wojcikowski, J., Boksa, J., and Daniel, W. A. (2010). Main contribution of the cytochrome P450 isoenzyme 1A2 (CYP1A2) to N-demethylation and 5-sulfoxidation of the phenothiazine neuroleptic chlorpromazine in human liver: a comparison with other phenothiazines. Biochem Pharmacol, 80, 12521259.Google Scholar
Meyer, J. M. (2018). Pharmacotherapy of psychosis and mania. In Brunton, L. L., Hilal-Dandan, R. and Knollmann, B. C., eds., Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 13th edn. Chicago, IL: McGraw-Hill, pp. 279302.Google Scholar
Raitasuo, V., Lehtovaara, R., and Huttunen, M. O. (1994). Effect of switching carbamazepine to oxcarbazepine on the plasma levels of neuroleptics: a case report. Psychopharmacology (Berl), 116, 115116.Google Scholar
Curry, S. H., Davis, J. M., Janowsky, D. S., et al. (1970). Factors affecting chlorpromazine plasma levels in psychiatric patients. Arch Gen Psychiatry, 22, 209215.Google Scholar
Loga, S., Curry, S., and Lader, M. (1975). Interactions of orphenadrine and phenobarbitone with chlorpromazine: plasma concentrations and effects in man. Br J Clin Pharmacol, 2, 197208.Google Scholar
Galen US Inc. (2019). Adasuve package insert. Souderton, PA 18964.Google Scholar
Alexza Pharmaceuticals Inc. (2011). Adasuve (loxapine) inhalation powder NDA 022549 – Psychopharmacologic Drug Advisory Committee briefing document, 12 December 2011. Food and Drug Administration.Google Scholar
Luo, J. P., Vashishtha, S. C., Hawes, E. M., et al. (2011). In vitro identification of the human cytochrome p450 enzymes involved in the oxidative metabolism of loxapine. Biopharm Drug Dispos, 32, 398407.Google Scholar
Coupet, J. and Rauh, C. E. (1979). 3H-Spiroperidol binding to dopamine receptors in rat striatal membranes: influence of loxapine and its hydroxylated metabolites. Eur J Pharmacol, 55, 215218.Google Scholar
Midha, K. K., Hubbard, J. W., McKay, G., et al. (1993). The role of metabolites in a bioequivalence study I: loxapine, 7-hydroxyloxapine and 8-hydroxyloxapine. Int J Clin Pharmacol Ther Toxicol, 31, 177183.Google Scholar
Wong, Y. C., Wo, S. K., and Zuo, Z. (2012). Investigation of the disposition of loxapine, amoxapine and their hydroxylated metabolites in different brain regions, CSF and plasma of rat by LC-MS/MS. J Pharm Biomed Anal, 58, 8393.Google Scholar
Hobbs, D. C., Welch, W. M., Short, M. J., et al. (1974). Pharmacokinetics of thiothixene in man. Clin Pharmacol Ther, 16, 473478.Google Scholar
Guthrie, S. K., Hariharan, M., Kumar, A. A., et al. (1997). The effect of paroxetine on thiothixene pharmacokinetics. J Clin Pharm Ther, 22, 221226.Google Scholar
Midha, K. K., Korchinski, E. D., Verbeeck, R. K., et al. (1983). Kinetics of oral trifluoperazine disposition in man. Br J Clin Pharmacol, 15, 380382.Google Scholar
Midha, K. K., Hawes, E. M., Hubbard, J. W., et al. (1988). A pharmacokinetic study of trifluoperazine in two ethnic populations. Psychopharmacology (Berl), 95, 333338.Google Scholar
Nicholson, S. D. (1992). Extra pyramidal side effects associated with paroxetine. West Engl Med J, 107, 9091.Google Scholar
McPhie, M. L. and Kirchhof, M. G. (2020). A systematic review of antipsychotic agents for primary delusional infestation. J Dermatolog Treat, 113.Google Scholar
Singh, A. N., Barlas, C., Singh, S., et al. (1996). A neurochemical basis for the antipsychotic activity of loxapine: interactions with dopamine D1, D2, D4 and serotonin 5-HT2 receptor subtypes. J Psychiatry Neurosci, 21, 2935.Google Scholar
Ereshefsky, L. (1999). Pharmacologic and pharmacokinetic considerations in choosing an antipsychotic. J Clin Psychiatry, 60 Suppl 10, 2030.Google Scholar
Spyker, D. A., Riesenberg, R. A., and Cassella, J. V. (2015). Multiple dose pharmacokinetics of inhaled loxapine in subjects on chronic, stable antipsychotic regimens. J Clin Pharmacol, 55, 985994.Google Scholar
Midha, K. K., Hubbard, J. W., McKay, G., et al. (1999). The role of metabolites in a bioequivalence study II: amoxapine, 7-hydroxyamoxapine, and 8-hydroxyamoxapine. Int J Clin Pharmacol Ther, 37, 428438.Google Scholar
Lopez-Munoz, F., Alamo, C., Cuenca, E., et al. (2005). History of the discovery and clinical introduction of chlorpromazine. Ann Clin Psychiatry, 17, 113135.Google Scholar
Baumeister, A. A. (2013). The chlorpromazine enigma. J Hist Neurosci, 22, 1429.Google Scholar
Sakalis, G., Chan, T. L., Gershon, S., et al. (1973). The possible role of metabolites in therapeutic response to chlorpromazine treatment. Psychopharmacologia, 32, 279284.Google Scholar
Dahl, S. G. and Hall, H. (1981). Binding affinity of levomepromazine and two of its major metabolites of central dopamine and alpha-adrenergic receptors in the rat. Psychopharmacology (Berl), 74, 101104.Google Scholar
Schoretsanitis, G., Kane, J. M., Correll, C. U., et al. (2020). Blood levels to optimize antipsychotic treatment in clinical practice: a joint consensus statement of the American Society of Clinical Psychopharmacology (ASCP) and the Therapeutic Drug Monitoring (TDM) Task Force of the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP). J Clin Psychiatry, 81, https://doi:.org/10.4088/JCP.4019cs13169.Google Scholar
Rivera-Calimlim, L. (1982). Problems in therapeutic blood monitoring of chlorpromazine. Ther Drug Monit, 4, 4149.Google Scholar
May, P. R. and Van Putten, T. (1978). Plasma levels of chlorpromazine in schizophrenia: a critical review of the literature. Arch Gen Psychiatry, 35, 10811087.Google Scholar
Curry, S. H. (1968). The determination and possible significance of plasma levels of chlorpromazine in psychiatric patients. Agressologie, 9, 115121.Google Scholar
Curry, S. H. and Marshall, J. H. (1968). Plasma levels of chlorpromazine and some of its relatively non-polar metabolites in psychiatric patients. Life Sci, 7, 917.Google Scholar
Sakalis, G., Curry, S. H., Mould, G. P., et al. (1972). Physiologic and clinical effects of chlorpromazine and their relationship to plasma level. Clin Pharmacol Ther, 13, 931946.Google Scholar
Wode-Helgodt, B., Borg, S., Fyrö, B., et al. (1978). Clinical effects and drug concentrations in plasma and cerebrospinal fluid in psychotic patients treated with fixed doses of chlorpromazine. Acta Psychiatr Scand, 58, 149173.Google Scholar
Rivera-Calimlim, L. and Hershey, L. (1984). Neuroleptic concentrations and clinical response. Annu Rev Pharmacol Toxicol, 24, 361386.Google Scholar
Curry, S. H. (1985). The strategy and value of neuroleptic drug monitoring. J Clin Psychopharmacol, 5, 263271.Google Scholar
Leucht, S., Samara, M., Heres, S., et al. (2016). Dose equivalents for antipsychotic drugs: the DDD method. Schizophr Bull, 42 Suppl 1, S9094.Google Scholar
Ang, M. S., Abdul Rashid, N. A., Lam, M., et al. (2017). The impact of medication anticholinergic burden on cognitive performance in people with schizophrenia. J Clin Psychopharmacol, 37, 651656.Google Scholar
Eum, S., Hill, S. K., Rubin, L. H., et al. (2017). Cognitive burden of anticholinergic medications in psychotic disorders. Schizophr Res, 190, 129135.Google Scholar
Kapur, S., Zipursky, R., Jones, C., et al. (2000). Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry, 157, 514520.Google Scholar
Kusumi, I., Takahashi, Y., Suzuki, K., et al. (2000). Differential effects of subchronic treatments with atypical antipsychotic drugs on dopamine D2 and serotonin 5-HT2A receptors in the rat brain. J Neural Transm (Vienna), 107, 295302.Google Scholar
Barth, V. N., Chernet, E., Martin, L. J., et al. (2006). Comparison of rat dopamine D2 receptor occupancy for a series of antipsychotic drugs measured using radiolabeled or nonlabeled raclopride tracer. Life Sci, 78, 30073012.Google Scholar
Midha, K. K., Hubbard, J. W., Marder, S. R., et al. (1994). Impact of clinical pharmacokinetics on neuroleptic therapy in patients with schizophrenia. J Psychiatry Neurosci, 19, 254264.Google Scholar
Meltzer, H. Y., Matsubara, S., and Lee, J. C. (1989). The ratios of serotonin2 and dopamine2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacol Bull, 25, 390392.Google Scholar
Leysen, J. E., Janssen, P. M., Schotte, A., et al. (1993). Interaction of antipsychotic drugs with neurotransmitter receptor sites in vitro and in vivo in relation to pharmacological and clinical effects: role of 5HT2 receptors. Psychopharmacology (Berl), 112, S4054.Google Scholar
Chakrabarti, A., Bagnall, A., Chue, P., et al. (2007). Loxapine for schizophrenia. Cochrane Database Syst Rev, 2007, CD001943.Google Scholar
Popovic, D., Nuss, P., and Vieta, E. (2015). Revisiting loxapine: a systematic review. Ann Gen Psychiatry, 14, 15.Google Scholar
Ferreri, F., Drapier, D., Baloche, E., et al. (2018). The in vitro actions of loxapine on dopaminergic and serotonergic receptors. Time to consider atypical classification of this antipsychotic drug? Int J Neuropsychopharmacol, 21, 355360.Google Scholar
Sa, D. S., Kapur, S., and Lang, A. E. (2001). Amoxapine shows an antipsychotic effect but worsens motor function in patients with Parkinson’s disease and psychosis. Clin Neuropharmacol, 24, 242244.Google Scholar
Apiquian, R., Fresan, A., Ulloa, R. E., et al. (2005). Amoxapine as an atypical antipsychotic: a comparative study vs risperidone. Neuropsychopharmacology, 30, 22362244.Google Scholar
Kapur, S., Cho, R., Jones, C., et al. (1999). Is amoxapine an atypical antipsychotic? Positron-emission tomography investigation of its dopamine2 and serotonin2 occupancy. Biol Psychiatry, 45, 12171220.Google Scholar
Sunderland, T., Orsulak, P. J., and Cohen, B. M. (1983). Amoxapine and neuroleptic side effects: a case report. Am J Psychiatry, 140, 12331235.Google Scholar
Gaffney, G. R. and Tune, L. E. (1985). Serum neuroleptic levels and extrapyramidal side effects in patients treated with amoxapine. J Clin Psychiatry, 46, 428429.Google Scholar
Buckley, N. A. and McManus, P. R. (1998). Can the fatal toxicity of antidepressant drugs be predicted with pharmacological and toxicological data? Drug Saf, 18, 369381.Google Scholar
Uno, J., Obara, K., Suzuki, H., et al. (2017). Inhibitory effects of antidepressants on acetylcholine-induced contractions in isolated guinea pig urinary bladder smooth muscle. Pharmacology, 99, 8998.Google Scholar
Simpson, G. M., Cooper, T. B., Lee, J. H., et al. (1978). Clinical and plasma level characteristics of intramuscular and oral loxapine. Psychopharmacology (Berl), 56, 225232.Google Scholar
Clark, M. L., Paredes, A., Costiloe, J. P., et al. (1977). Evaluation of two dose levels of loxapine succinate in chronic schizophrenia. Dis Nerv Syst, 38, 710.Google Scholar
Actavis Pharma Inc. (2016). Loxapine package insert. Parsippany, NJ 07054.Google Scholar
Bergling, R., Mjorndal, T., Oreland, L., et al. (1975). Plasma levels and clinical effects of thioridazine and thiothixene. J Clin Pharmacol, 15, 178186.Google Scholar
Reifler, B. V., Ward, N., Davis, C. M., et al. (1981). Thiothixene plasma levels and clinical response in acute schizophrenia. J Clin Psychiatry, 42, 207211.Google Scholar
Yesavage, J. A., Becker, J., Werner, P. D., et al. (1982). Serum level monitoring of thiothixene in schizophrenia: acute single-dose levels at fixed doses. Am J Psychiatry, 139, 174178.Google Scholar
Yesavage, J. A., Holman, C. A., Cohn, R., et al. (1983). Correlation of initial thiothixene serum levels and clinical response: comparison of fluorometric, gas chromatographic, and RBC assays. Arch Gen Psychiatry, 40, 301304.Google Scholar
Hollister, L. E., Lombrozo, L., and Huang, C. C. (1987). Plasma concentrations of thiothixene and clinical response in treatment-resistant schizophrenics. Int Clin Psychopharmacol, 2, 7782.Google Scholar
Davis, C. M. and Harrington, C. A. (1988). Quantitation of thiothixene in plasma by high-performance thin-layer chromatography and fluorometric detection. Ther Drug Monit, 10, 215223.Google Scholar
Dilger, C., Salama, Z., and Jaeger, H. (1988). Improved high-performance liquid chromatographic method for the determination of tiotixene in human serum. Arzneimittelforschung, 38, 15221525.Google Scholar
Huang, C. C., Gerhardstein, R. P., Kim, D. Y., et al. (1987). Treatment-resistant schizophrenia: controlled study of moderate- and high-dose thiothixene. Int Clin Psychopharmacol, 2, 6975.Google Scholar
Simpson, G. M. and Kunz-Bartholini, E. (1968). Relationship of individual tolerance, behavior and phenothiazine produced extrapyramidal system disturbance. Dis Nerv System, 29, 269274.Google Scholar
Midha, K. K., Hubbard, J. W., Cooper, J. K., et al. (1981). Radioimmunoassay for trifluoperazine in human plasma. Br J Clin Pharmacol, 12, 189193.Google Scholar
Samara, M. T., Leucht, C., Leeflang, M. M., et al. (2015). Early improvement as a predictor of later response to antipsychotics in schizophrenia: a diagnostic test review. Am J Psychiatry, 172, 617629.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×