Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T11:53:31.473Z Has data issue: false hasContentIssue false

Chapter 1 - Mood Disorders in the Twenty-First Century

Published online by Cambridge University Press:  16 May 2024

Allan Young
Affiliation:
Institute of Psychiatry, King's College London
Marsal Sanches
Affiliation:
Baylor College of Medicine, Texas
Jair C. Soares
Affiliation:
McGovern Medical School, The University of Texas
Mario Juruena
Affiliation:
King's College London
Get access

Summary

Mood disorders are among the most prevalent and potentially severe mental disorders. These conditions are associated with important psychological morbidity and functional impact, as well as elevated rates of suicide. While the past several decades have produced valuable contributions to the understanding of the pathophysiology of mood disorders, currently available treatments at times fail to produce full remission and restore patient’s premorbid level of function. Nevertheless, promising new agents and novel therapeutic targets are currently under investigation. The twenty-first century is looking at an individualized approach for the management of mood disorders, with the proper integration of evidence-based, effective biological and psychosocial therapeutic modalities.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bromet, E., Andrade, L. H., Hwang, I., et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med. 2011;9:90. https://doi.org/10.1186/1741-7015-9-90.CrossRefGoogle ScholarPubMed
Merikangas, K. R., Jin, R., He, J.-P., et al. Prevalence and correlates of bipolar spectrum disorder in the World Mental Health Survey Initiative. Arch Gen Psychiatry. 2011;68:241. https://doi.org/10.1001/archgenpsychiatry.2011.12.CrossRefGoogle ScholarPubMed
Gaynes, B.. Assessing the risk factors for difficult-to-treat depression and treatment-resistant depression. J Clin Psychiatry. 2016;77(Suppl 1):48. https://doi.org/10.4088/JCP.14077su1c.01.CrossRefGoogle ScholarPubMed
Wells, K. B.. The functioning and well-being of depressed patients. Results from the Medical Outcomes Study. JAMA. 1989;262:914–19. https://doi.org/10.1001/jama.262.7.914.Google ScholarPubMed
Danese, A., Moffitt, T. E., Harrington, H., et al. Adverse childhood experiences and adult risk factors for age-related disease: depression, inflammation, and clustering of metabolic risk markers. Arch Pediatr Adolesc Med. 2009;163: 1135–43. https://doi.org/10.1001/archpediatrics.2009.214.CrossRefGoogle ScholarPubMed
Cleare, A., Pariante, C. M., Young, A. H., et al.; Members of the Consensus Meeting. Evidence-based guidelines for treating depressive disorders with antidepressants: a revision of the 2008 British Association for Psychopharmacology guidelines. J Psychopharmacol. 2015;29:459525. https://doi.org/10.1177/0269881115581093.CrossRefGoogle Scholar
Fava, M.. Diagnosis and definition of treatment-resistant depression. Biol Psychiatry. 2003;53:649–59. https://doi.org/10.1016/s0006-3223(03)00231-2.CrossRefGoogle ScholarPubMed
Souery, D., Oswald, P., Massat, I., et al.; Group for the Study of Resistant Depression. Clinical factors associated with treatment resistance in major depressive disorder: results from a European multicenter study. J Psychiatry. 2007;68:1062–70. https://doi.org/10.4088/jcp.v68n0713.Google ScholarPubMed
Rush, A. J., Trivedi, M. H., Wisniewski, S. R., et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR* D report. Am J Psychiatry. 2006;163:1905–17.CrossRefGoogle ScholarPubMed
Young, A. H., Juruena, M. F.. The neurobiology of bipolar disorder. Curr Top Behav Neurosci. 2021;48:120. https://doi.org/10.1007/7854_2020_179.Google ScholarPubMed
Dube, S. R., Anda, R. F., Felitti, V. J., et al. Childhood abuse, household dysfunction, and the risk of attempted suicide throughout the life span: findings from the Adverse Childhood Experiences Study. JAMA. 2001;286:3089–96. https://doi.org/10.1001/jama.286.24.3089.CrossRefGoogle ScholarPubMed
Kendler, K. S., Sheth, K., Gardner, C. O., Prescott, C. A.. Childhood parental loss and risk for first-onset of major depression and alcohol dependence: the time-decay of risk and sex differences. Psychol Med. 2002;32;1187–94. https://doi.org/10.1017/s0033291702006219.CrossRefGoogle ScholarPubMed
Belmaker, R. H., Agam, G., Major depressive disorder. N Engl J Med. 2008;358:5568. https://doi.org/10.1056/NEJMra073096.CrossRefGoogle ScholarPubMed
Jiang, H., Ling, Z., Zhang, Y., et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186–94. https://doi.org/10.1016/j.bbi.2015.03.016.CrossRefGoogle ScholarPubMed
Nikolova, V. L., Smith, M. R. B., Hall, L. J., et al. Perturbations in gut microbiota composition in psychiatric disorders: a review and meta-analysis. JAMA Psychiatry. 2021;78:1343–54. https://doi.org/10.1001/jamapsychiatry.2021.2573.CrossRefGoogle ScholarPubMed
Navarro-Mateu, F., Tormo, M. J., Salmerón, D., et al. Prevalence of mental disorders in the south-east of Spain, one of the European regions most affected by the economic crisis: the cross-sectional PEGASUS-Murcia Project. PloS One. 2015;10:e0137293. https://doi.org/10.1371/journal.pone.0137293.CrossRefGoogle ScholarPubMed
Post, R. M.. Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. Am J Psychiatry. 1992;149:9991010. https://doi.org/10.1176/ajp.149.8.999.Google ScholarPubMed
Gold, P. W.. The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry. 2015;20:3247. https://doi.org/10.1038/mp.2014.163.CrossRefGoogle ScholarPubMed
Brown, E. S., Varghese, F. P., McEwen, B. S.. Association of depression with medical illness: does cortisol play a role? Biol Psychiatry. 2004;55:19. https://doi.org/10.1016/s0006-3223(03)00473-6.CrossRefGoogle ScholarPubMed
Cryan, J. F., Dinan, T. G.. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13:701712. https://doi.org/10.1038/nrn3346.CrossRefGoogle ScholarPubMed
Yatsunenko, T., Rey, F. E., Manary, M. J., et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7. https://doi.org/10.1038/nature11053.CrossRefGoogle ScholarPubMed
Yarandi, S. S., Peterson, D. A., Treisman, G. J., Moran, T. H., Pasricha, P. J.. Modulatory effects of gut microbiota on the central nervous system: how gut could play a role in neuropsychiatric health and diseases. J Neurogastroenterol Motil. 2016;22:201–12. https://doi.org/10.5056/jnm15146.CrossRefGoogle ScholarPubMed
Clarke, G., Grenham, S., Scully, P., et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013;18:666–73. https://doi.org/10.1038/mp.2012.77.CrossRefGoogle Scholar
Neufeld, K.-A., Foster, J. A.. Effects of gut microbiota on the brain: implications for psychiatry. J Psychiatry Neurosci. 2009;34:230–1.Google ScholarPubMed
Kupfer, D. J.. Long-term treatment of depression. J Psychiatry. 1991;52(Suppl):2834.Google ScholarPubMed
Fava, G. A., Park, S. K., Sonino, N.. Treatment of recurrent depression. Expert Rev Neurother. 2006;6:1735–40. https://doi.org/10.1586/14737175.6.11.1735.CrossRefGoogle ScholarPubMed
Quraishi, S., Frangou, S.. Neuropsychology of bipolar disorder: a review. J Affect Disord. 2002;72:209–26. https://doi.org/10.1016/s0165-0327(02)00091-5.CrossRefGoogle ScholarPubMed
Ay-Woan, P., Sarah, C. P., Lyinn, C., Tsyr-Jang, C., Ping-Chuan, H.. Quality of life in depression: predictive models. Qual Life Res. 2006;15:3948. https://doi.org/10.1007/s11136-005-0381-x.CrossRefGoogle ScholarPubMed
Nock, M. K., Hwang, I., Sampson, N. A., Kessler, R. C.. Mental disorders, comorbidity and suicidal behavior: results from the National Comorbidity Survey Replication. Mol Psychiatry. 2010;15:868–76. https://doi.org/10.1038/mp.2009.29.CrossRefGoogle ScholarPubMed
Juruena, M. F., Jelen, L. A., Young, A. H., Cleare, A. J.. New pharmacological interventions in bipolar disorder. Curr Top Behav Neurosci. 2021;48:303–24. https://doi.org/10.1007/7854_2020_181.Google ScholarPubMed
Judd, L. L., Akiskal, H. S.. Depressive episodes and symptoms dominate the longitudinal course of bipolar disorder. Curr Psychiatry Rep. 2003;5:417–18. https://doi.org/10.1007/s11920-003-0077-2.CrossRefGoogle ScholarPubMed
Angst, J., Azorin, J.-M., Bowden, C. L., et al.; BRIDGE Study Group. Prevalence and characteristics of undiagnosed bipolar disorders in patients with a major depressive episode: the BRIDGE study. Arch Gen Psychiatry. 2011;68:791–8. https://doi.org/10.1001/archgenpsychiatry.2011.87.CrossRefGoogle Scholar
Post, R. M.. The Kindling/Sensitization Model and early life stress. Curr Top Behav Neurosci. 2021;48:255–75. https://doi.org/10.1007/7854_2020_172.Google ScholarPubMed
Barichello, T., Giridharan, V. V., Bhatti, G., et al. Inflammation as a mechanism of bipolar disorder neuroprogression. Curr Top Behav Neurosci. 2021;48:215–37. https://doi.org/10.1007/7854_2020_173.Google ScholarPubMed
Fountoulakis, K. N., Vieta, E.. Treatment of bipolar disorder: a systematic review of available data and clinical perspectives. Int J Neuropsychopharmacol. 2008;11:9991029. https://doi.org/10.1017/S1461145708009231.CrossRefGoogle Scholar
Sanches, M., Bauer, I. E., Galvez, J. F., Zunta-Soares, G. B., Soares, J. C.. The management of cognitive impairment in bipolar disorder: current status and perspectives. Am J Ther. 2015;22:477–86. https://doi.org/10.1097/MJT.0000000000000120.CrossRefGoogle Scholar
Rayner, G., Jackson, G., Wilson, S.. Cognition-related brain networks underpin the symptoms of unipolar depression: evidence from a systematic review. Neurosci Biobehav Rev. 2016;61:5365. https://doi.org/10.1016/j.neubiorev.2015.09.022.CrossRefGoogle ScholarPubMed
Savitz, J., Drevets, W. C.. Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neurosci Biobehav Rev. 2009;33:699771. https://doi.org/10.1016/j.neubiorev.2009.01.004.CrossRefGoogle ScholarPubMed
Nestler, E. J., Barrot, M., DiLeone, R. J., et al. Neurobiology of depression. Neuron. 2002;34:1325. https://doi.org/10.1016/s0896-6273(02)00653-0.CrossRefGoogle ScholarPubMed
Richardson, M. P., Strange, B. A., Dolan, R. J.. Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nat Neurosci. 2004;7:278–85. https://doi.org/10.1038/nn1190.CrossRefGoogle ScholarPubMed
Mayberg, H. S.. Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci. 1997;9:471–81. https://doi.org/10.1176/jnp.9.3.471.Google ScholarPubMed
Mayberg, H. S.. Targeted electrode-based modulation of neural circuits for depression. J Clin Invest. 2009;119:717–25. https://doi.org/10.1172/JCI38454.CrossRefGoogle ScholarPubMed
Afifi, A. K., Bergman, R. A.. Functional Neuroanatomy: Text and Atlas. International ed. New York: McGraw-Hill, Health Professions Division, 1998.Google Scholar
Vogel, S., Fernández, G., Joëls, M., Schwabe, L.. Cognitive adaptation under stress: a case for the mineralocorticoid receptor. Trends Cogn Sci. 2016;20:192203. https://doi.org/10.1016/j.tics.2015.12.003.CrossRefGoogle Scholar
Beblo, T., Sinnamon, G., Baune, B. T.. Specifying the neuropsychology of affective disorders: clinical, demographic and neurobiological factors. Neuropsychol Rev. 2011;21:337–59. https://doi.org/10.1007/s11065-011-9171-0.CrossRefGoogle Scholar
Taylor, J. V. Tavares, W. C. Drevets, B. J. Sahakian, . Cognition in mania and depression. Psychol Med. 2003;33:959–67. https://doi.org/10.1017/s0033291703008432.Google Scholar
Loman, M. M., Wiik, K. L., Frenn, K. A., Pollak, S. D., Gunnar, M. R.. Postinstitutionalized children’s development: growth, cognitive, and language outcomes. J Dev Behav Pediatr. 2009;30:426–34. https://doi.org/10.1097/DBP.0b013e3181b1fd08.CrossRefGoogle ScholarPubMed
Rutter, M., O’Connor, T. G., English and Romanian Adoptees (ERA) Study Team. Are there biological programming effects for psychological development? Findings from a study of Romanian adoptees. Dev Psychol. 2004;40:8194. https://doi.org/10.1037/0012-1649.40.1.81.CrossRefGoogle ScholarPubMed
Pollak, S. D., Nelson, C. A., Schlaak, M. F., et al. Neurodevelopmental effects of early deprivation in postinstitutionalized children. Child Dev. 2010;81:224–36. https://doi.org/10.1111/j.1467-8624.2009.01391.x.CrossRefGoogle ScholarPubMed
Colvert, E., Rutter, M., Kreppner, J., et al. Do theory of mind and executive function deficits underlie the adverse outcomes associated with profound early deprivation?: findings from the English and Romanian adoptees study. J Abnorm Child Psychol. 2008;36:1057–68. https://doi.org/10.1007/s10802-008-9232-x.CrossRefGoogle ScholarPubMed
Young, A. H., Gallagher, P., Watson, S., et al. Improvements in neurocognitive function and mood following adjunctive treatment with mifepristone (RU-486) in bipolar disorder. Neuropsychopharmacology. 2004;29:1538–45. https://doi.org/10.1038/sj.npp.1300471.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Hooper, S. R., Woolley, D. P., Shenk, C. E.. Demographic, maltreatment, and neurobiological correlates of PTSD symptoms in children and adolescents. J Pediatr Psychol. 2010;35:570–7. https://doi.org/10.1093/jpepsy/jsp116.CrossRefGoogle ScholarPubMed
Anda, R. F., Felitti, V. J., Bremner, J. D., et al. The enduring effects of abuse and related adverse experiences in childhood. A convergence of evidence from neurobiology and epidemiology. Eur Arch Psychiatry Clin Neurosci. 2006;256:174–86. https://doi.org/10.1007/s00406-005-0624-4.CrossRefGoogle ScholarPubMed
Navalta, C. P., Polcari, A., Webster, D. M., Boghossian, A., Teicher, M. H.. Effects of childhood sexual abuse on neuropsychological and cognitive function in college women. J Neuropsychiatry Clin Neurosci. 2006;18:4553. https://doi.org/10.1176/jnp.18.1.45.CrossRefGoogle ScholarPubMed
Pechtel, P., Pizzagalli, D. A.. Effects of early life stress on cognitive and affective function: an integrated review of human literature. Psychopharmacology. 2011;214:5570. https://doi.org/10.1007/s00213-010-2009-2.CrossRefGoogle ScholarPubMed
Kaymak, S., Demir, B., Sentürk, S., et al. Hippocampus, glucocorticoids and neurocognitive functions in patients with first-episode major depressive disorders. Eur Arch Psychiatry Clin Neurosci. 2010;260:217–23. https://doi.org/10.1007/s00406-009-0045-x.CrossRefGoogle ScholarPubMed
Neu, P., Bajbouj, M., Schilling, A., et al. Cognitive function over the treatment course of depression in middle-aged patients: correlation with brain MRI signal hyperintensities. J Psychiatr Res. 2005;39:129–35. https://doi.org/10.1016/j.jpsychires.2004.06.004.CrossRefGoogle ScholarPubMed
Reppermund, S., Ising, M., Lucae, S., Zihl, J.. Cognitive impairment in unipolar depression is persistent and non-specific: further evidence for the final common pathway disorder hypothesis. Psychol Med. 2009;39:603–14. https://doi.org/10.1017/S003329170800411X.CrossRefGoogle ScholarPubMed
Grassi-Oliveira, R., de Azevedo Gomes, C. F., Stein, L. M.. False recognition in women with a history of childhood emotional neglect and diagnose of recurrent major depression. Conscious Cogn. 2011;20:1127–34. https://doi.org/10.1016/j.concog.2011.03.005.CrossRefGoogle ScholarPubMed
Cagney, D. N., Sul, J., Huang, R. Y., et al. The FDA NIH Biomarkers, EndpointS, and other Tools (BEST) resource in neuro-oncology. Neuro Oncol. 2018;20:1162–72. https://doi.org/10.1093/neuonc/nox242.CrossRefGoogle ScholarPubMed
Califf, R. M.. Biomarker definitions and their applications. Exp Biol Med (Maywood). 2018;243:213–21. https://doi.org/10.1177/1535370217750088.CrossRefGoogle ScholarPubMed
Watson, S., Gallagher, P., Ritchie, J. C., Ferrier, I. N., Young, A. H.. Hypothalamic-pituitary-adrenal axis function in patients with bipolar disorder. Br J Psychiatry. 2004;184:496502. https://doi.org/10.1192/bjp.184.6.496.CrossRefGoogle ScholarPubMed
Juruena, M. F., Agustini, B., Cleare, A. J., Young, A. H.. A translational approach to clinical practice via stress-responsive glucocorticoid receptor signaling. Stem Cell Investig. 2017;4:13. https://doi.org/10.21037/sci.2017.02.01.CrossRefGoogle ScholarPubMed
Geddes, J. R., Miklowitz, D. J.. Treatment of bipolar disorder. Lancet. 2013;381:1672–82. https://doi.org/10.1016/S0140-6736(13)60857-0.CrossRefGoogle ScholarPubMed
Andreazza, A. C., Kauer-Sant’anna, M., Frey, B. N., et al. Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord. 2008;111:135–44. https://doi.org/10.1016/j.jad.2008.04.013.CrossRefGoogle ScholarPubMed
Berk, M., Plein, H., Belsham, B.. The specificity of platelet glutamate receptor supersensitivity in psychotic disorders. Life Sci. 2000;66:2427–32. https://doi.org/10.1016/s0024-3205(00)80002-8.CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Taylor, M. J.. A developmental framework of brain and cognition from infancy to old age. Brain Topogr. 2011;24:183–6. https://doi.org/10.1007/s10548-011-0197-7.CrossRefGoogle ScholarPubMed
Andersen, S. L.. Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev. 2003;27:318. https://doi.org/10.1016/s0149-7634(03)00005-8.CrossRefGoogle ScholarPubMed
Sanches, M., Keshavan, M. S., Brambilla, P., Soares, J. C.. Neurodevelopmental basis of bipolar disorder: a critical appraisal. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1617–27. https://doi.org/10.1016/j.pnpbp.2008.04.017.CrossRefGoogle ScholarPubMed
Teicher, M. H., Andersen, S. L., Polcari, A., Anderson, C. M., Navalta, C. P.. Developmental neurobiology of childhood stress and trauma. Psychiatr Clin North Am. 2002;25:397426, vii–viii. https://doi.org/10.1016/s0193-953x(01)00003-x.CrossRefGoogle ScholarPubMed
Lupien, S. J., McEwen, B. S., Gunnar, M. R., Heim, C.. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci. 2009;10:434–45. https://doi.org/10.1038/nrn2639.CrossRefGoogle ScholarPubMed
Weich, S., Nazareth, I., Morgan, L., King, M.. Treatment of depression in primary care. Socio-economic status, clinical need and receipt of treatment. Br J Psychiatry. 2007;191:164–9. https://doi.org/10.1192/bjp.bp.106.032219.CrossRefGoogle ScholarPubMed
Al-Harbi, K. S.. Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Prefer Adherence. 2012;6:369–88. https://doi.org/10.2147/PPA.S29716.Google ScholarPubMed
van Westrhenen, R., Aitchison, K. J., Ingelman-Sundberg, M., Jukić, M. M.. Pharmacogenomics of antidepressant and antipsychotic treatment: how far have we got and where are we going? Front Psychiatry. 2020;11:94. https://doi.org/10.3389/fpsyt.2020.00094.CrossRefGoogle ScholarPubMed
Gitlin, M. J., Swendsen, J., Heller, T. L., Hammen, C.. Relapse and impairment in bipolar disorder. Am J Psychiatry. 1995;152:1635–40. https://doi.org/10.1176/ajp.152.11.1635.Google ScholarPubMed
Lieberman, J. A., Stroup, T. S., McEvoy, J. P., et al.; Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. 2005;353:1209–23. https://doi.org/10.1056/NEJMoa051688.CrossRefGoogle ScholarPubMed
Thase, M. E.. STEP-BD and bipolar depression: what have we learned? Curr Psychiatry Rep. 2007;9:497503. https://doi.org/10.1007/s11920-007-0068-9.CrossRefGoogle ScholarPubMed
McAllister, R. H.-Williams, C. Arango, P. Blier, , et al. The identification, assessment and management of difficult-to-treat depression: an international consensus statement. J Affect Disord. 2020;267:264–82. https://doi.org/10.1016/j.jad.2020.02.023.Google Scholar
Buley, N., Copland, E., Hodge, S., Chaplin, R.. A further decrease in the rates of administration of electroconvulsive therapy in England. J ECT. 2017;33:198202. https://doi.org/10.1097/YCT.0000000000000374.CrossRefGoogle ScholarPubMed
Haq, A. U., Sitzmann, A. F., Goldman, M. L., Maixner, D. F., Mickey, B. J.. Response of depression to electroconvulsive therapy: a meta-analysis of clinical predictors. J Psychiatry. 2015;76:1374–84. https://doi.org/10.4088/JCP.14r09528.Google ScholarPubMed
Ghaziuddin, N., Walter, G., editors. Electroconvulsive Therapy in Children and Adolescents. New York: Oxford University Press, 2014.Google Scholar
Chen, J.-J., Zhao, L.-B., Liu, Y.-Y., Fan, S.-H., Xie, P.. Comparative efficacy and acceptability of electroconvulsive therapy versus repetitive transcranial magnetic stimulation for major depression: a systematic review and multiple-treatments meta-analysis. Behav Brain Res. 2017;320:30–6. https://doi.org/10.1016/j.bbr.2016.11.028.CrossRefGoogle ScholarPubMed
McIntyre, R. S., Rosenblat, J. D., Nemeroff, C. B., et al. Synthesizing the evidence for ketamine and esketamine in treatment-resistant depression: an international expert opinion on the available evidence and implementation. Am J Psychiatry. 2021;178:383–99. https://doi.org/10.1176/appi.ajp.2020.20081251.CrossRefGoogle ScholarPubMed
Morris, C., Perris, A., Klein, J., Mahoney, P.. Anaesthesia in haemodynamically compromised emergency patients: does ketamine represent the best choice of induction agent? Anaesthesia. 2009;64:532–9. https://doi.org/10.1111/j.1365-2044.2008.05835.x.CrossRefGoogle ScholarPubMed
Wilkinson, S. T., Ballard, E. D., Bloch, M. H., et al. The effect of a single dose of intravenous ketamine on suicidal ideation: a systematic review and individual participant data meta-analysis. Am J Psychiatry. 2018;175:150–8. https://doi.org/10.1176/appi.ajp.2017.17040472.CrossRefGoogle ScholarPubMed
Diazgranados, N., Ibrahim, L., Brutsche, N. E., et al. A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry. 2010;67:793802. https://doi.org/10.1001/archgenpsychiatry.2010.90.CrossRefGoogle ScholarPubMed
Duman, R. S., Aghajanian, G. K.. Synaptic dysfunction in depression: potential therapeutic targets. Science. 2012;338:6872. https://doi.org/10.1126/science.1222939.CrossRefGoogle ScholarPubMed
Kadriu, B., Musazzi, L., Henter, I. D., et al. Glutamatergic neurotransmission: pathway to developing novel rapid-acting antidepressant treatments. Int J Neuropsychopharmacol. 2019;22:119–35. https://doi.org/10.1093/ijnp/pyy094.CrossRefGoogle ScholarPubMed
Smith, T. L., Nemeroff, C. B.. Pharmacogenomic testing and antidepressant response: problems and promises. Braz J Psychiatry. 2020;42:116–17. https://doi.org/10.1590/1516-4446-2019-0799.CrossRefGoogle Scholar
Tornio, A., Backman, J. T.. Cytochrome P450 in pharmacogenetics: an update. Adv Pharmacol. 2018;833:32. https://doi.org/10.1016/bs.apha.2018.04.007.Google Scholar
Veldic, M., Ahmed, A. T., Blacker, C. J., et al. Cytochrome P450 2C19 poor metabolizer phenotype in treatment resistant depression: treatment and diagnostic implications. Front Pharmacol. 2019;10:83. https://doi.org/10.3389/fphar.2019.00083.CrossRefGoogle ScholarPubMed
Han, C., Wang, S.-M., Bahk, W.-M., et al. A pharmacogenomic-based antidepressant treatment for patients with major depressive disorder: results from an 8-week, randomized, single-blinded clinical trial. Clin Psychopharmacol Neurosci. 2018;16:469–80. https://doi.org/10.9758/cpn.2018.16.4.469.CrossRefGoogle ScholarPubMed
Corponi, F., Fabbri, C., Serretti, A.. Pharmacogenetics and depression: a critical perspective. Psychiatry Investig. 2019;16:645–53. https://doi.org/10.30773/pi.2019.06.16.CrossRefGoogle ScholarPubMed
Greden, J. F., Parikh, S. V., Rothschild, A. J., et al. Impact of pharmacogenomics on clinical outcomes in major depressive disorder in the GUIDED trial: a large, patient- and rater-blinded, randomized, controlled study. J Psychiatr Res. 2019;111:5967. https://doi.org/10.1016/j.jpsychires.2019.01.003.CrossRefGoogle Scholar
Winner, J. G., Carhart, J. M., Altar, C. A., et al. Combinatorial pharmacogenomic guidance for psychiatric medications reduces overall pharmacy costs in a 1 year prospective evaluation. Curr Med Res Opin. 2015;31:1633–43. https://doi.org/10.1185/03007995.2015.1063483.CrossRefGoogle Scholar
Hewett, M., Oliver, D. E., Rubin, D. L., et al. PharmGKB: the pharmacogenetics knowledge base. Nucleic Acids Res. 2002;30:163–5. https://doi.org/10.1093/nar/30.1.163.CrossRefGoogle ScholarPubMed
Relling, M. V., Klein, T. E., Gammal, R. S., et al. The Clinical Pharmacogenetics Implementation Consortium: 10 years later. Clin Pharmacol Ther. 2020;107:171–5. https://doi.org/10.1002/cpt.1651.CrossRefGoogle ScholarPubMed
Thorn, C. F., Klein, T. E., Altman, R. B.. PharmGKB: the pharmacogenetics and pharmacogenomics knowledge base. Methods Mol Biol. 2005;311:179–91. https://doi.org/10.1385/1-59259-957-5:179.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×