Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T13:34:46.970Z Has data issue: false hasContentIssue false

Chapter 15 - Brain Imaging in Mood Disorders: Pathophysiological Significance and Clinical Perspectives

Published online by Cambridge University Press:  16 May 2024

Allan Young
Affiliation:
Institute of Psychiatry, King's College London
Marsal Sanches
Affiliation:
Baylor College of Medicine, Texas
Jair C. Soares
Affiliation:
McGovern Medical School, The University of Texas
Mario Juruena
Affiliation:
King's College London
Get access

Summary

This chapter focuses on how recent advances in neuroimaging methods have increased our understanding of a key treatment for bipolar disorder, lithium. Structural magnetic resonance imaging (sMRI) studies suggest that lithium normalises both global and regional reductions in grey matter volume associated with bipolar disorder, while diffusion-weighted imaging (dMRI) studies have shed light on lithium’s potential to rectify abnormalities in white matter integrity. We describe the advent of direct imaging of lithium distribution in the brain using multinuclear MRI techniques (7Li-MRI) which is the first report of noninvasive imaging of a psychoactive drug in its target organ. The spatially heterogenous distribution of the 7Li-MR signal may suggest that lithium directly influences brain structure and function based on lithium tissue concentrations and initial work combining 7Li-MRI and dMRI support this hypothesis. Future directions of research are discussed, including harnessing the potential of multi-modal imaging and longitudinal study designs to develop combined biomarkers or biosignatures of response to treatment. Using lithium as an example, technological and scientific advances in brain imaging can facilitate treatment development and a personalised medicine approach in bipolar disorder.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramovic, L., Boks, M. P., Vreeker, A., et al. White matter disruptions in patients with bipolar disorder. Eur Neuropsychopharmacol. 2018;28(6):743–51.CrossRefGoogle ScholarPubMed
Bartzokis, G. Neuroglialpharmacology: myelination as a shared mechanism of action of psychotropic treatments. Neuropharmacology. 2012;62:2137–53.CrossRefGoogle ScholarPubMed
Bearden, C. E., Soares, J. C., Klunder, A. D., et al. Three-dimensional mapping of hippocampal anatomy in adolescents with early-onset bipolar disorder. Biol Psychiatry. 2007;61:184S.Google Scholar
Bearden, C. E., Thompson, P. M., Dutton, R. A., et al. Three-dimensional mapping of hippocampal anatomy in unmedicated and lithium-treated patients with bipolar disorder. Neuropsychopharmacology. 2008;33:1229–38.CrossRefGoogle ScholarPubMed
Benedetti, F., Absinta, M., Rocca, M. A., et al. Tract‐specific white matter structural disruption in patients with bipolar disorder. Bipolar Disord. 2011;13(4):414–24.CrossRefGoogle ScholarPubMed
Berk, M., Dandash, O., Daglas, R., et al. Neuroprotection after a first episode of mania: a randomized controlled maintenance trial comparing the effects of lithium and quetiapine on grey and white matter volume. Transl Psychiatry. 2017;7(1):e1011.CrossRefGoogle Scholar
Beyer, J. L., Kuchibbatla, M., Payne, M. E., et al. Hippocampal volume measurement in older adults with bipolar disorder. Am J Geriat Psychiatry. 2004;12, 613–20.Google ScholarPubMed
Boretius, S., Escher, A., Dallenga, T., et al. Assessment of lesion pathology in a new animal model of MS by multiparametric MRI and DTI. Neuroimage. 2012;59(3):2678–88.CrossRefGoogle Scholar
Chen, B., Wang, J. F., hill, B. C, Young, L. T. Lithium and valproate differentially regulate brain regional expression of phosphorylated CREB and c-Fos. Mol Brain Res. 1999;70:4553.CrossRefGoogle ScholarPubMed
Chen, X. H., Wen, W., Malhi, G. S., Ivanovski, B, Sachdev, P. S. Regional gray matter changes in bipolar disorder: a voxel-based morphometric study. Aust N Z J Psychiatry. 2007;41:327–36.CrossRefGoogle ScholarPubMed
Ching, C. R. K., Hibar, D. P., Gurholt, T. P., et al. What we learn about bipolar disorder from large-scale neuroimaging: findings and future directions from the ENIGMA Bipolar Disorder Working Group. Hum Brain Mapp. 2022;43:5682.CrossRefGoogle ScholarPubMed
Cipriani, A., Pretty, H., Hawton, K, Geddes, J. R. Lithium in the prevention of suicidal behavior and all-cause mortality in patients with mood disorders: a systematic review of randomized trials. Am J Psychiatry. 2005;162:1805–19.CrossRefGoogle ScholarPubMed
Cousins, D. A., Aribisala, B., Ferrier, I. N, Blamire, A. M. Lithium, gray matter, and magnetic resonance imaging signal. Biol Psychiatry. 2013;73:652–7.CrossRefGoogle ScholarPubMed
De Sousa, R. Van de, T. Bilt, M. Diniz, T., B. S., et al. Lithium increases plasma brain-derived neurotrophic factor in acute bipolar mania: a preliminary 4-week study. Neursci Lett. 2011;494:54–6.CrossRefGoogle Scholar
Diniz, B. S., Machado-Vieira, R., Forlenza, O. V. Lithium and neuroprotection: translational evidence and implications for the treatment of neuropsychiatric disorders. Neuropsychiatr Dis Treat. 2013;9:493500.CrossRefGoogle ScholarPubMed
Drevets, W. C., Savitz, J., Trimble, M. The subgenual anterior cingulate cortex in mood disorders. CNS Spectr. 2008;13:663–81.CrossRefGoogle ScholarPubMed
Ekman, C. J., Lind, J., Ryden, E., Ingvar, M., Landen, M. Manic episodes are associated with grey matter volume reduction – a voxel-based morphometry brain analysis. Acta Psychiatr Scand. 2010;122:507–15.CrossRefGoogle ScholarPubMed
Emsell, L., Leemans, A., Langan, C., et al. Limbic and callosal white matter changes in euthymic bipolar I disorder: an advanced diffusion magnetic resonance imaging tractography study. Biol Psychiatry. 2013;73(2):194201.CrossRefGoogle ScholarPubMed
Espanhol, J.C.L, Vieria-Coehlo, M.A. Effects of lithium use on the white matter of patients with bipolar disorder – a systematic review. Nord J Psychiatry. 2022;76:111.CrossRefGoogle ScholarPubMed
Fabricand, B. P., Goldberg, S. G. Proton relaxation times in 7LiCl and 6LiCl solutions. Mol Phys. 1967;13:323–30.CrossRefGoogle Scholar
Favre, P., Pauling, M., Stout, J., et al. Widespread white matter microstructural abnormalities in bipolar disorder: evidence from mega- and meta-analyses across 3033 individuals. Neuropsychopharmacology. 2019;44:2285–93.Google ScholarPubMed
Foland, L. C., Altshuler, L. L., Sugar, C. A., et al. Increased volume of the amygdala and hippocampus in bipolar patients treated with lithium. Neuroreport. 2008;19, 221224.CrossRefGoogle ScholarPubMed
Forester, B., Berlow, Y. A., Finn, C. T., et al. Brain lithium, N-acetyl aspartate (NAA) and myo-inositol (m-Ino) levels in older adults with bipolar disorder treated with lithium: a lithium-7 and proton magnetic resonance spectroscopy study Bipolar Disord. 2008;10:691700.CrossRefGoogle Scholar
Forlenza, O. V., Radanovic, M., Talib, L. L., Gattaz, W. F. Clinical and biological effects of long-term lithium treatment in older adults with amnestic mild cognitive impairment: randomised clinical trial. Br J Psychiatry. 2019;215:668–74.CrossRefGoogle ScholarPubMed
Freland, L., Beaulieu, J.-M. Inhibition of GSK3 by lithium, from single molecules to signaling networks. Front Mol Neurosci. 2012;5.CrossRefGoogle ScholarPubMed
Germana, C., Kempton, M. J., Sarnicola, A., et al. The effects of lithium and anticonvulsants on brain structure in bipolar disorder. Acta Psychiatr Scand. 2010;122:481–7.CrossRefGoogle ScholarPubMed
Gildengers, A. G., Butters, M. A., Aizenstein, H. J., et al. Longer lithium exposure is associated with better white matter integrity in older adults with bipolar disorder. Bipolar Disord. 2015;17(3):248–56.CrossRefGoogle ScholarPubMed
Gonzalez, R. G., Guimaraes, A. R., Sachs, G. S., et al. Measurement of human brain lithium in-vivo by MR spectroscopy. AJNR Am J Neuroradiol. 1993;14:1027–37.Google ScholarPubMed
Gyulai, L., Wicklund, S. W., Greenstein, R., et al. Measurement of tissue lithium concentration by lithium magnetic-resonance spectroscopy in patients with bipolar disorder. Biol Psychiatry. 1991;29:1161–70.CrossRefGoogle Scholar
Haarman, B. C. M., Riemersma–van der Lek, R. Burger, F., H., et al. Diffusion tensor imaging in euthymic bipolar disorder – a tract-based spatial statistics study. J Affect Disord. 2016;203:281–91.CrossRefGoogle ScholarPubMed
Hafeman, D. M., Chang, K. D., Garrett, A. S., Sanders, E. M., Phillips, M. L. Effects of medication on neuroimaging findings in bipolar disorder: an updated review. Bipolar Disord. 2012;14:375410.CrossRefGoogle ScholarPubMed
Hajek, T., Kopecek, M., Hoeschl, C., Alda, M. Smaller hippocampal volumes in patients with bipolar disorder are masked by exposure to lithium: a meta-analysis. J Psychiatry Neurosci. 2012;37:333–43.CrossRefGoogle ScholarPubMed
Hallahan, B., Newell, J., Soares, J. C., et al. Structural magnetic resonance imaging in bipolar disorder: an international collaborative megaanalysis of individual adult patient data. Biol Psychiatry. 2011;69:326–35.CrossRefGoogle ScholarPubMed
Hashimoto, R., Takei, N., Shimazu, K., et al. Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology. 2002;43:1173–9.CrossRefGoogle ScholarPubMed
Haukvik, U. K., Gurholt, T. P., Nerland, S., et al. In vivo hippocampal subfield volumes in bipolar disorder – a mega-analysis from the Enhancing Neuro Imaging Genetics through Meta-Analysis Bipolar Disorder Working Group. Hum Brain Mapp. 2022;43:385–98.CrossRefGoogle ScholarPubMed
Hibar, D. P., Westlye, L. T., Van Erp, T. G. M., et al. Subcortical volumetric abnormalities in bipolar disorder. Mol Psychiatry. 2016;21:1710–16.CrossRefGoogle ScholarPubMed
Hibar, D. P., Westlye, L. T., Doan, N. T., et al. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry. 2018;23:932–42.CrossRefGoogle ScholarPubMed
Javadapour, A., Malhi, G. S., Ivanovski, B., et al. Increased anterior cingulate cortex volume in bipolar I disorder. Aust N Z J Psychiatry. 2007;41:910–16.CrossRefGoogle ScholarPubMed
Javadapour, A., Malhi, G. S., Ivanovski, B., et al. Hippocampal volumes in. adults with bipolar disorder. J Neuropsychiatry Clin Neurosci. 2010;22:5562.CrossRefGoogle ScholarPubMed
Kafantaris, V., Spritzer, L., Doshi, V., et al. Changes in white matter microstructure predict lithium response in adolescents with bipolar disorder. Bipolar Disord. 2017;19(7):587–94.CrossRefGoogle Scholar
Kato, T., Takahashi, S., Inubushi, T. Brain lithium concentration by Li-7-magnetic and H-1-magnetic resonance spectroscopy in bipolar disorder. Psychiatry Res. 1992;45:5363.CrossRefGoogle Scholar
Kato, T., Takahashi, S., Shioiri, T., Inubushi, T. Alterations in brain phosphorus-metabolism in bipolar disorder detected by in vivo P-31 and Li-7 magnetic-resonance spectroscopy. J Affect Disord. 1993;27:53–9.CrossRefGoogle Scholar
Kato, T., Inubushi, T., Takahashi, S. Relationship of lithium concentrations in the brain measured by Li-7 magnetic-resonance spectroscopy to treatment response in mania. J ClinPsychopharmacol. 1994;14:330–5.Google Scholar
Kato, T., Fujii, K., Shioiri, T., Inubushi, T., Takahashi, S. Lithium side effects in relation to brain lithium concentration measure by lithium-7 magnetic resonance spectroscopy. Prog Neuropsychopharmacol Biol Psychiatry. 1996;20:8797.CrossRefGoogle ScholarPubMed
Kato, T., Fujii, K., Kamiya, A., Kato, N. White matter hyperintensity detected by magnetic resonance imaging and lithium response in bipolar disorder: a preliminary observation. Psychiatry Clin Neuroscis. 2000;54(1):117–20.Google ScholarPubMed
Kempton, M. J., Geddes, J. R., Ettinger, U., et al. Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder. Arch Gen Psychiatry. 2008.;65:1017–32.CrossRefGoogle ScholarPubMed
Komoroski, R. A., Newton, J. E. O., Walker, E., et al. In vivo NMR-Spectroscopy of Li-7 in Humans. Magn Reson Med. 1990;15:347–56.CrossRefGoogle Scholar
Komoroski, R. A., Newton, J. E. O., Sprigg, J. R., et al. In vivo 7Li nuclear magnetic resonance study of lithium pharmacokinetics and chemical shift imaging in psychiatric patients. Psychiatry Res. 1993;50:6776.CrossRefGoogle ScholarPubMed
Komoroski, R.A. Applications of (7)L NMR in biomedicine. Magn Reson Imaging. 2000;18:103–16.CrossRefGoogle Scholar
Komoroski, R. A., Pearce, J. M. Localized Li-7 MR spectroscopy and spin relaxation in rat brain in vivo. Magn Reson Med. 2004;52:164–8.CrossRefGoogle Scholar
Komoroski, R. A. Biomedical applications of Li-7 NMR. NMR Biomed. 2005;18:6773.CrossRefGoogle Scholar
Kushnir, T., Itzchak, Y., Valevski, A., et al. Relaxation-times and concentrations of Li-7 in the brain of patients receiving lithium-therapy. NMR Biomed. 1993;6:3942.CrossRefGoogle Scholar
Lee, J. H., Adler, C., Norris, M., et al. 4-T 7Li 3D MR spectroscopy imaging in the brains of bipolar disorder subjects. Magn Reson Med. 2012;68:363–8.CrossRefGoogle ScholarPubMed
Lewitzka, U., Severus, E., Bauer, R., et al. The suicide prevention effect of lithium: more than 20 years of evidence-a narrative review. Int J Bipolar Disord. 2015;3.CrossRefGoogle ScholarPubMed
Lochhead, R. A., Parsey, R. V., Oquendo, M. A., Mann, J. J. Regional brain gray matter volume differences in patients with bipolar disorder as assessed by optimized voxel-based morphometry. Biol Psychiatry. 2004;55:1154–62.CrossRefGoogle ScholarPubMed
Lucini-Paioni, S., Squarcina, L., Cousins, D., Brambilla, P. Lithium effects on Hippocampus volumes in patients with bipolar disorder. J Affect Disord. 2021;295:521–6.Google Scholar
Lyoo, I. K., Kim, M. J., Stoll, A. L., et al. Frontal lobe gray matter density decreases in bipolar I disorder. Biol Psychiatry. 2004;55:648–51.CrossRefGoogle ScholarPubMed
Lyoo, I. K., Sung, Y. H., Dager, S. R., et al. Regional cerebral cortical thinning in bipolar disorder. Bipolar Disord. 2006;8:6574.CrossRefGoogle ScholarPubMed
Lyoo, I. K., Dager, S. R., Kim, J. E., et al. Lithium-induced gray matter volume increase as a neural correlate of treatment response in bipolar disorder: a longitudinal brain imaging study. Neuropsychopharmacology. 2010;35:1743–50.CrossRefGoogle ScholarPubMed
Machado-Vieira, R., Manji, H. K., Zarate, C. A. The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord. 2009;11:92109.CrossRefGoogle ScholarPubMed
Macritchie, K. A., Lloyd, A. J., Bastin, M. E., et al. White matter microstructural abnormalities in euthymic bipolar disorder. Br J Psychiatry. 2010;196(1):52–8.CrossRefGoogle ScholarPubMed
Manji, H. K., Moore, G. J., Chen, G. Lithium up-regulates the cytoprotective protein bcl-2 in the CNS in vivo: a role for neurotrophic and neuroprotective effects in manic depressive illness. J Clin Psychiatry. 2000;61:8296.Google ScholarPubMed
Marlinge, E., Bellivier, F., Houenou, J. White matter alterations in bipolar disorder: potential for drug discovery and development. Bipolar Disord. 2014;16(2):97112.CrossRefGoogle ScholarPubMed
McDonald, C., Zanelli, J., Rabe-Hesketh, S., et al. Meta-analysis of magnetic resonance imaging brain morphometry studies in bipolar disorder. Biol Psychiatry. 2004;56:411–17.CrossRefGoogle ScholarPubMed
McIntosh, A. M., Maniega, S. M., Lymer, G. K. S., et al. 2008. White matter tractography in bipolar disorder and schizophrenia. Biol Psychiatry. 2008;64(12):1088–92.CrossRefGoogle Scholar
Monkul, E. S., Matsuo, K., Nicoletti, M. A., et al. Prefrontal gray matter increases in healthy individuals after lithium treatment: a voxel-based morphometry study. Neursci Lett. 2007;429:711.CrossRefGoogle ScholarPubMed
Moore, C. M., Demopulos, C. M., Henry, M. E., et al. Brain-to-serum lithium ratio and age: an in vivo magnetic resonance spectroscopy study. Am J Psychiatry. 2002;159:1240–2.CrossRefGoogle ScholarPubMed
Moore, G. J., Bebchuk, J. M., Wilds, I. B., et al. Lithium-induced increase in human brain grey matter. Lancet. 2000;356:1241–2.CrossRefGoogle ScholarPubMed
Moore, G. J., Cortese, B. M., Glitz, D. A., et al. A longitudinal study of the effects of lithium treatment on prefrontal and subgenual prefrontal gray matter volume in treatment-responsive bipolar disorder patients. J Clin Psychiatry. 2009;70:699705.CrossRefGoogle ScholarPubMed
Moorhead, T. W., McKirdy, J., Sussmann, J. E., et al. Progressive gray matter loss in patients with bipolar disorder. Biol Psychiatry. 2007;62: 894900.CrossRefGoogle ScholarPubMed
Necus, J., Sinha, N., Smith, F. E., et al. White matter microstructural properties in bipolar disorder in relationship to the spatial distribution of lithium in the brain. J Affect Disord. 2019;253:224–31.CrossRefGoogle Scholar
Perico, C. D., Duran, F. L. S., Zanetti, M. V., et al. A population-based morphometric MRI study in patients with first-episode psychotic bipolar disorder: comparison with geographically matched healthy controls and major depressive disorder subjects. Bipolar Disord. 2011;13:2840.CrossRefGoogle Scholar
Phatak, P., Shaldivin, A., King, L. S., Shapiro, P., Regenold, W. T. Lithium and inositol: effects on brain water homeostasis in the rat. Psychopharmacology. 2006;186:41–7.CrossRefGoogle ScholarPubMed
Phillips, M. L., Travis, M. J., Fagiolini, A., Kupfer, D. J. Medication effects in neuroimaging studies of bipolar disorder. Am J Psychiatry. 2008;165:313–20.CrossRefGoogle ScholarPubMed
Plenge, P., Stensgaard, A., Jensen, H. V., et al. 24-hour lithium concentration in human brain studied by Li-7 magnetic resonance spectroscopy. Biol Psychiatry. 1994;36:511–16.CrossRefGoogle Scholar
Post, R. M. The new news about lithium: an underutilized treatment in the United States. Neuropsychopharmacology. 2018;43:1174–9.CrossRefGoogle ScholarPubMed
Quiroz, J. A., Machado-Vieira, R., Zarate, C. A. Jr, Manji, H. K. Novel insights into lithium’s mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology. 2010;62:5060.CrossRefGoogle ScholarPubMed
Rangel-Guerra, R. A., Perezpayan, H., Minkoff, L., Todd, L. E. Nuclear magnetic-resonance in bipolar affective-disorders. Am J Neuroradiol. 1983;4:229–31.Google ScholarPubMed
Regenold, W. T., D’agostino, C. A., Ramesh, N., et al. Diffusion‐weighted magnetic resonance imaging of white matter in bipolar disorder: a pilot study. Bipolar Disord. 2006;8(2):188–95.CrossRefGoogle ScholarPubMed
Renshaw, P. F., Wicklund, S. In vivo measurement of lithium in humans by nuclear magnetic resonance spectroscopy. Biol Psychiatry. 1988;23:465–75.CrossRefGoogle ScholarPubMed
Rybakowski, J., Permoda-Osip, A., Suwalska, A. The absence of cognitive deficits in prophylactic lithium responders. Int J Neuropsychopharmacol. 2010;13:132.Google Scholar
Sachs, G. S., Renshaw, P. F., Lafer, B., et al. Variability of brain lithium levels during maintenance treatment – a magnetic resonance spectroscopy study. Biol Psychiatry. 1995;38:422–8.CrossRefGoogle ScholarPubMed
Sassi, R. B., Brambilla, P., Hatch, J. P., et al. Reduced left anterior cingulate volumes in untreated bipolar patients. Biol Psychiatry. 2004;56:467–75.CrossRefGoogle ScholarPubMed
Sassi, R. B., Brambilla, P., Nicoletti, M., et al. Lithium influences the volume of the cingulate cortex in bipolar mood disorder patients. Biol Psychiatry. 2002;51:84S.Google Scholar
Savitz, J., Nugent, A. C., Bogers, W., et al. Amygdala volume in depressed patients with bipolar disorder assessed using high resolution 3T MRI: the impact of medication. Neuroimage. 2010;49:2966–76.CrossRefGoogle ScholarPubMed
Severus, E., Bauer, M., Geddes, J. Efficacy and effectiveness of lithium in the long-term treatment of bipolar disorder: an update 2018. Pharmacopsychiatry. 2018;51:173–6.Google ScholarPubMed
Smith, F. E., Thelwall, P. E., Necus, J., et al. 3D 7Li magnetic resonance imaging of brain lithium distribution in bipolar disorder. Mol Psychiatry. 2018;23:2184–91.CrossRefGoogle ScholarPubMed
Soares, J. C., Boada, F., Keshavan, M.A. Brain lithium measurements with Li-7 magnetic resonance spectroscopy (MRS): a literature review. Eur Neuropsychopharmacol. 2000;10:151–8.CrossRefGoogle Scholar
Soares, J. C., Boada, F., Spencer, S., et al. Brain lithium concentrations in bipolar disorder patients: preliminary 7Li magnetic resonance studies at 3 T. Biol Psychiatry. 2001;49:437–43.CrossRefGoogle ScholarPubMed
Song, S. K., Sun, S. W., Ramsbottom, M. J., et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage. 2002;17(3):1429–36.CrossRefGoogle ScholarPubMed
Stout, J., Hozer, F., Coste, A., et al. Accumulation of lithium in the hippocampus of patients with bipolar disorder: a Lithium-7 magnetic resonance imaging study at 7 Tesla. Biol Psychiatry. 2020;88(5):426–33.CrossRefGoogle ScholarPubMed
Usher, J., Menzel, P., Schneider-Axmann, T., et al. Increased right amygdala volume in lithium-treated patients with bipolar I disorder. Acta Psychiatr Scand. 2010;121:119–24.CrossRefGoogle ScholarPubMed
Van Erp, T. G. Thompson, M., Kieseppa, P. M., T., et al. Hippocampal morphology in lithium and non-lithium-treated bipolar I disorder patients, non-bipolar co-twins, and control twins. Hum Brain Mapp. 2012;33:501–10.CrossRefGoogle ScholarPubMed
Velosa, J., Delgado, A., Finger, E., et al. Risk of dementia in bipolar disorder and the interplay of lithium: a systematic review and meta-analyses. Acta Psychiatr Scand. 2020;141:510–21.CrossRefGoogle ScholarPubMed
Wang, F., Jackowski, M., Kalmar, J. H., et al. Abnormal anterior cingulum integrity in bipolar disorder determined through diffusion tensor imaging. Br J Psychiatry. 2008;193(2):126–9.CrossRefGoogle ScholarPubMed
Wang, F., Kalmar, J.H., He, Y., et al. Functional and structural connectivity between the perigenual anterior cingulate and amygdala in bipolar disorder. Biol Psychiatry. 2009;66:515–21.CrossRefGoogle ScholarPubMed
Wang, F., Kalmar, J. H., Womer, F. Y., et al. Olfactocentric paralimbic cortex morphology in adolescents with bipolar disorder. Brain. 2011;134(7):2005–12.CrossRefGoogle ScholarPubMed
Wessa, M., Houenou, J., Leboyer, M., et al. Microstructural white matter changes in euthymic bipolar patients: a whole‐brain diffusion tensor imaging study. Bipolar Disord. 2009;11(5):504–14.CrossRefGoogle ScholarPubMed
Yucel, K., McKinnon, M. C., Taylor, V. H., et al. Bilateral hippocampal volume increases after long-term lithium treatment in patients with bipolar disorder: a longitudinal MRI study. Psychopharmacology. 2007;195:357–67.Google Scholar
Yucel, K., Taylor, V. H., McKinnon, M. C., et al. Bilateral hippocampal volume increase in patients with bipolar disorder and short-term lithium treatment. Neuropsychopharmacology. 2008;33:361–7.CrossRefGoogle ScholarPubMed
Zung, S., Souza-Duran, F. L., Soeiro-de-Souza, M. G., et al. The influence of lithium on hippocampal volume in elderly bipolar patients: a study using voxel-based morphometry. Transl Psychiatry. 2016;6:e846.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×