Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T10:16:49.952Z Has data issue: false hasContentIssue false

8 - MR perfusion imaging in neurovascular disease

from Section 2 - Clinical applications

Published online by Cambridge University Press:  05 May 2013

Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Xavier Golay
Affiliation:
National Hospital for Neurology and Neurosurgery, London
Gregory Zaharchuk
Affiliation:
Stanford University Medical Center
Get access

Summary

Introduction: Clinical background: what are the diagnostic issues?

A wide variety of vascular diseases can affect the central nervous system. These include acute ischemic stroke, the third most common cause of death in the developed world. The key diagnostic question for acute stroke patients is to determine whether they will benefit from therapies aimed at vessel recanalization and tissue reperfusion [1]. Intravenous (IV) tissue plasminogen activator (tPA) is the only US Food and Drug Administration (FDA)-approved treatment for acute stroke, but must be administered within the 3–4.5-hr time period. However, most stroke victims miss this window or do not have a clearly defined time of onset. In this large group of patients, the presence of a significant mismatch between the volume of under-perfused but not yet infarcted tissue identified by MR imaging may identify patients who may still benefit from tPA [2, 3]. This so-called “diffusion-perfusion mismatch” approach is the dominant paradigm for stroke imaging. Of paramount importance for acute stroke triage is a short MR protocol and near-immediate post-processing such that information regarding large vessel status, ischemic damage, and tissue perfusion is available within minutes [4].

Type
Chapter
Information
Clinical Perfusion MRI
Techniques and Applications
, pp. 127 - 163
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Powers, WJ.Imaging preventable infarction in patients with acute ischemic stroke. AJNR Am J Neuroradiol 2008;29(10):1823–5.CrossRefGoogle ScholarPubMed
Davis, SM, Donnan, GA, Parsons, MW, et al. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol 2008;7(4):299–309.CrossRefGoogle ScholarPubMed
Albers, GW, Thijs, VN, Wechsler, L, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 2006;60(5):508–17.CrossRefGoogle ScholarPubMed
Straka, M, Albers, GW, Bammer, R.Real-time diffusion-perfusion mismatch analysis in acute stroke. J Magn Reson Imaging 2010;32(5):1024–37.CrossRefGoogle ScholarPubMed
del Zoppo, G.Microvascular changes during cerebral ischemia and reperfusion. Cerebrovasc Brain Metab Rev 1994;6:47–96.Google ScholarPubMed
Powers, WJ.Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol 1991;29(3):231–40.CrossRefGoogle ScholarPubMed
Zaharchuk, G, Bogdanov, AA, Marota, JJ, et al. Continuous assessment of perfusion by tagging including volume and water extraction (CAPTIVE): a steady-state contrast agent technique for measuring blood flow, relative blood volume fraction, and the water extraction fraction. Magn Reson Med 1998;40(5):666–78.CrossRefGoogle ScholarPubMed
Astrup, J, Siesjö, BK, Symon, L.Thresholds in cerebral ischemia – the ischemic penumbra. Stroke 1981;12(6):723–5.CrossRefGoogle ScholarPubMed
Jones, TH, Morawetz, RB, Crowell, RM, et al. Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg 1981;54:773–82.CrossRefGoogle ScholarPubMed
Campbell, BC, Purushotham, A, Christensen, S, Desmond, PM, Nagakane, Y, Parsons, MW, et al. The infarct core is well represented by the acute diffusion lesion: sustained reversal is infrequent. J Cereb Blood Flow Metab 2012;32:50–6.CrossRefGoogle ScholarPubMed
Siewert, B, Schlaug, G, Edelman, RR, Warach, S.Comparison of EPISTAR and T2*-weighted gadolinium-enhanced perfusion imaging in patients with acute cerebral ischemia. Neurology 1997;48(3):673–9.CrossRefGoogle ScholarPubMed
Chalela, JA, Alsop, DC, Gonzalez-Atavales, JB, et al. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke. 2000 Mar;31(3):680–7.CrossRefGoogle ScholarPubMed
Sakaie, KE, Shin, W, Curtin, KR, et al. Method for improving the accuracy of quantitative cerebral perfusion imaging. J Magn Reson Imaging 2005;21(5):512–19.CrossRefGoogle ScholarPubMed
Zaharchuk, G, Straka, M, Marks, MP, et al. Combined arterial spin label and dynamic susceptibility contrast measurement of cerebral blood flow. Magn Reson Med 2010;63(6):1548–56.CrossRefGoogle ScholarPubMed
Zaro-Weber, O, Moeller-Hartmann, W, Heiss, WD, Sobesky, J.The performance of MRI-based cerebral blood flow measurements in acute and subacute stroke compared with 15O-water positron emission tomography: identification of penumbral flow. Stroke 2009;40(7):2413–21.CrossRefGoogle ScholarPubMed
Sorensen, AG, Copen, WA, Ostergaard, L, et al. Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Radiology 1999;210(2):519–27.CrossRefGoogle ScholarPubMed
Hacke, W, Furlan, AJ, Al-Rawi, Y, et al. Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol 2009;8(2):141–50.CrossRefGoogle ScholarPubMed
Hendrikse, J, Petersen, ET, van Laar, PJ, Golay, X.Cerebral border zones between distal end branches of intracranial arteries: MR imaging. Radiology 2008;246(2):572–80.CrossRefGoogle ScholarPubMed
Olivot, JM, Mlynash, M, Zaharchuk, G, et al. Perfusion MRI (Tmax and MTT) correlation with xenon CT cerebral blood flow in stroke patients. Neurology 2009;72(13):1140–5.CrossRefGoogle ScholarPubMed
Zaro-Weber, O, Moeller-Hartmann, W, Heiss, WD, Sobesky, J.Maps of time to maximum and time to peak for mismatch definition in clinical stroke studies validated with positron emission tomography. Stroke 2010;41(12):2817–21.CrossRefGoogle ScholarPubMed
Zaro-Weber, O, Moeller-Hartmann, W, Heiss, WD, Sobesky, J.MRI perfusion maps in acute stroke validated with 15O-water positron emission tomography. Stroke 2010;41(3):443–9.CrossRefGoogle ScholarPubMed
Christensen, S, Mouridsen, K, Wu, O, et al. Comparison of 10 perfusion MRI parameters in 97 sub-6-hour stroke patients using voxel-based receiver operating characteristics analysis. Stroke 2009;40(6):2055–61.CrossRefGoogle ScholarPubMed
Wu, O, Koroshetz, WJ, Ostergaard, L, et al. Predicting tissue outcome in acute human cerebral ischemia using combined diffusion- and perfusion-weighted MR imaging. Stroke 2001;32(4):933–42.CrossRefGoogle ScholarPubMed
Gottrup, C, Thomsen, K, Locht, P, et al. Applying instance-based techniques to prediction of final outcome in acute stroke. Artif Intell Med 2005;33(3):223–36.CrossRefGoogle ScholarPubMed
Galinovic, I, Brunecker, P, Ostwaldt, AC, et al. Fully automated postprocessing carries a risk of substantial overestimation of perfusion deficits in acute stroke magnetic resonance imaging. Cerebrovasc Dis 2011;31(4):408–13.CrossRefGoogle ScholarPubMed
Zaharchuk, G, El Mogy, IS, Fischbein, NJ, Albers, GW.Comparison of arterial spin labeling and bolus perfusion-weighted imaging for detecting mismatch in acute stroke. Stroke 2012;43(7):1843–8.CrossRefGoogle ScholarPubMed
Bokkers, RP, Hernandez, DA, Merino, JG, et al. Whole-brain arterial spin labeling perfusion MRI in patients with acute stroke. Stroke 2012;43(5):1290–4.CrossRefGoogle ScholarPubMed
Wang, D, Alger, J, Qian, J, et al. The value of arterial spin-labeled perfusion imaging in acute ischemic stroke – comparison with dynamic susceptibility contrast enhanced MRI. Stroke 2012;43(4):1018–24.CrossRefGoogle ScholarPubMed
Hernandez, DA, Bokkers, RP, Mirasol, RV, et al. Pseudocontinuous arterial spin labeling quantifies relative cerebral blood flow in acute stroke. Stroke 2012;43(3):753–8.CrossRefGoogle ScholarPubMed
Lansberg, M, Straka, M, Kemp, S, et al. Magnetic resonance imaging profile and response to endovascular reperfusion: results of the DEFUSE-2 prospective cohort study. Lancet Neurol 2012;11 :860–7.CrossRefGoogle Scholar
Kakuda, W, Lansberg, MG, Thijs, VN, et al. Optimal definition for PWI/DWI mismatch in acute ischemic stroke patients. J Cereb Blood Flow Metab 2008;28(5):887–91.CrossRefGoogle ScholarPubMed
Mlynash, M, Lansberg, MG, De Silva, DA, et al. Refining the definition of the malignant profile: insights from the DEFUSE-EPITHET pooled data set. Stroke 2011;42(5):1270–5.CrossRefGoogle ScholarPubMed
Lansberg, MG, Lee, J, Christensen, S, et al. RAPID automated patient selection for reperfusion therapy: a pooled analysis of the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET) and the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) Study. Stroke 2011;42(6):1608–14.CrossRefGoogle ScholarPubMed
Copen, WA, Rezai Gharai, L, Barak, ER, et al. Existence of the diffusion-perfusion mismatch within 24 hours after onset of acute stroke: dependence on proximal arterial occlusion. Radiology 2009;250(3):878–86.CrossRefGoogle ScholarPubMed
Gonzalez, RG, Hakimelahi, R, Schaefer, PW, et al. Stability of large diffusion/perfusion mismatch in anterior circulation strokes for 4 or more hours. BMC Neurol 2010;10:13.CrossRefGoogle ScholarPubMed
Lansberg, MG, Thijs, VN, Bammer, R, et al. The MRA-DWI mismatch identifies patients with stroke who are likely to benefit from reperfusion. Stroke 2008;39(9):2491–6.CrossRefGoogle ScholarPubMed
Paciaroni, M, Medeiros, E, Bogousslavsky, J.Desmoteplase. Expert Opin Biol Ther 2009;9(6):773–8.CrossRefGoogle ScholarPubMed
Menezes, NM, Ay, H, Wang Zhu, M, et al. The real estate factor: quantifying the impact of infarct location on stroke severity. Stroke 2007;38(1):194–7.CrossRefGoogle ScholarPubMed
Kosior, RK, Lauzon, ML, Steffenhagen, N, et al. Atlas-based topographical scoring for magnetic resonance imaging of acute stroke. Stroke 2010;41(3):455–60.CrossRefGoogle ScholarPubMed
Smith, WS, Sung, G, Saver, J, et al. Mechanical thrombectomy for acute ischemic stroke: final results of the Multi MERCI trial. Stroke 2008;39(4):1205–12.CrossRefGoogle ScholarPubMed
Smith, WS, Sung, G, Starkman, S, et al. Safety and efficacy of mechanical embolectomy in acute ischemic stroke: results of the MERCI trial. Stroke 2005;36(7):1432–8.CrossRefGoogle ScholarPubMed
Grunwald, IQ, Walter, S, Papanagiotou, P, et al. Revascularization in acute ischaemic stroke using the penumbra system: the first single center experience. Eur J Neurol 2009;16(11):1210–16.CrossRefGoogle ScholarPubMed
Soares, BP, Chien, JD, Wintermark, M.MR and CT monitoring of recanalization, reperfusion, and penumbra salvage: everything that recanalizes does not necessarily reperfuse!Stroke 2009;40(3 Suppl):S24–7.CrossRefGoogle Scholar
Boxerman, JL, Hamberg, LM, Rosen, BR, Weisskoff, RM.MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 1995;34:555–66.CrossRefGoogle ScholarPubMed
Speck, O, Chang, L, DeSilva, NM, Ernst, T.Perfusion MRI of the human brain with dynamic susceptibility contrast: gradient-echo versus spin-echo techniques. J Magn Reson Imaging 2000;12(3):381–7.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Donahue, KM, Krouwer, HG, Rand, SD, et al. Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med 2000;43(6):845–53.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Vonken, EJ, van Osch, MJ, Bakker, CJ, Viergever, MA.Measurement of cerebral perfusion with dual-echo multi-slice quantitative dynamic susceptibility contrast MRI. J Magn Reson Imaging 1999;10(2):109–17.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Kim, JJ, Fischbein, NJ, Lu, Y, Pham, D, Dillon, WP.Regional angiographic grading system for collateral flow: correlation with cerebral infarction in patients with middle cerebral artery occlusion. Stroke 2004;35(6):1340–4.CrossRefGoogle ScholarPubMed
Christoforidis, GA, Mohammad, Y, Kehagias, D, Avutu, B, Slivka, AP.Angiographic assessment of pial collaterals as a prognostic indicator following intra-arterial thrombolysis for acute ischemic stroke. AJNR Am J Neuroradiol 2005;26(7):1789–97.Google ScholarPubMed
Higashida, RT, Furlan, AJ, Roberts, H, et al. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke 2003;34(8):e109–37.CrossRefGoogle ScholarPubMed
Kucinski, T, Koch, C, Eckert, B, et al. Collateral circulation is an independent radiological predictor of outcome after thrombolysis in acute ischaemic stroke. Neuroradiology 2003;45(1):11–18.CrossRefGoogle ScholarPubMed
Bang, OY, Saver, JL, Buck, BH, et al. Impact of collateral flow on tissue fate in acute ischaemic stroke. J Neurol Neurosurg Psychiatry 2008;79(6):625–9.CrossRefGoogle ScholarPubMed
Calamante, F, Ganesan, V, Kirkham, FJ, et al. MR perfusion imaging in Moyamoya Syndrome: potential implications for clinical evaluation of occlusive cerebrovascular disease. Stroke 2001;32(12):2810–16.CrossRefGoogle ScholarPubMed
Christensen, S, Calamante, F, Hjort, N, et al. Inferring origin of vascular supply from tracer arrival timing patterns using bolus tracking MRI. J Magn Reson Imaging 2008;27(6):1371–81.CrossRefGoogle ScholarPubMed
Eldeniz, C, Lee, Y, Smith, JK, et al., editors. Determination of collateral supply patterns using conventional dynamic susceptibility contrast perfusion imaging. Proc Intl Soc Magn Reson Med, Montreal, Canada, 2011;1977.
Chng, SM, Petersen, ET, Zimine, I, et al. Territorial arterial spin labeling in the assessment of collateral circulation: comparison with digital subtraction angiography. Stroke 2008;39(12):3248–54.CrossRefGoogle ScholarPubMed
Zaharchuk, G, Do, HM, Marks, MP, et al. Arterial spin-labeling MRI can identify the presence and intensity of collateral perfusion in patients with moyamoya disease. Stroke 2011;42(9):2485–91.CrossRefGoogle ScholarPubMed
An, H, Lin, W.Quantitative measurements of cerebral blood oxygen saturation using magnetic resonance imaging. J Cereb Blood Flow Metab 2000;20(8):1225–36.CrossRefGoogle ScholarPubMed
He, X, Yablonskiy, DA.Quantitative BOLD: mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: default state. Magn Reson Med 2007;57(1):115–26.CrossRefGoogle ScholarPubMed
Wardlaw, JM, von Heijne, A.Increased oxygen extraction demonstrated on gradient echo (T2*) imaging in a patient with acute ischaemic stroke. Cerebrovasc Dis 2006;22(5–6):456–8.CrossRefGoogle Scholar
Siemonsen, S, Fitting, T, Thomalla, G, et al. T2′ imaging predicts infarct growth beyond the acute diffusion-weighted imaging lesion in acute stroke. Radiology 2008;248(3):979–86.CrossRefGoogle ScholarPubMed
Ostergaard, L, Sorensen, AG, Chesler, DA, et al. Combined diffusion-weighted and perfusion-weighted flow heterogeneity magnetic resonance imaging in acute stroke. Stroke 2000;31(5):1097–103.CrossRefGoogle ScholarPubMed
Perkio, J, Soinne, L, Ostergaard, L, et al. Abnormal intravoxel cerebral blood flow heterogeneity in human ischemic stroke determined by dynamic susceptibility contrast magnetic resonance imaging. Stroke 2005;36(1):44–9.CrossRefGoogle ScholarPubMed
Kassner, A, Roberts, T, Taylor, K, Silver, F, Mikulis, D.Prediction of hemorrhage in acute ischemic stroke using permeability MR imaging. AJNR Am J Neuroradiol 2005;26(9):2213–17.Google ScholarPubMed
Bang, OY, Buck, BH, Saver, JL, et al. Prediction of hemorrhagic transformation after recanalization therapy using T2*-permeability magnetic resonance imaging. Ann Neurol 2007;62(2):170–6.CrossRefGoogle ScholarPubMed
Kassner, A, Mandell, DM, Mikulis, DJ.Measuring permeability in acute ischemic stroke. Neuroimaging Clin N Am 2011;21(2):315–25, x–xi.CrossRefGoogle ScholarPubMed
Johnston, SC, Rothwell, PM, Nguyen-Huynh, MN, et al. Validation and refinement of scores to predict very early stroke risk after transient ischaemic attack. Lancet 2007;369(9558):283–92.CrossRefGoogle ScholarPubMed
Rothwell, PM, Giles, MF, Chandratheva, A, et al. Effect of urgent treatment of transient ischaemic attack and minor stroke on early recurrent stroke (EXPRESS study): a prospective population-based sequential comparison. Lancet 2007;370(9596):1432–42.CrossRefGoogle ScholarPubMed
Ay, H, Arsava, EM, Johnston, SC, et al. Clinical- and imaging-based prediction of stroke risk after transient ischemic attack: the CIP model. Stroke 2009;40(1):181–6.CrossRefGoogle ScholarPubMed
Josephson, SA, Sidney, S, Pham, TN, Bernstein, AL, Johnston, SC.Higher ABCD2 score predicts patients most likely to have true transient ischemic attack. Stroke 2008;39(11):3096–8.CrossRefGoogle ScholarPubMed
Bisschops, RH, Kappelle, LJ, Mali, WP, van der Grond, J.Hemodynamic and metabolic changes in transient ischemic attack patients: a magnetic resonance angiography and (1)H-magnetic resonance spectroscopy study performed within 3 days of onset of a transient ischemic attack. Stroke 2002;33(1):110–15.CrossRefGoogle ScholarPubMed
Krol, AL, Coutts, SB, Simon, JE, et al. Perfusion MRI abnormalities in speech or motor transient ischemic attack patients. Stroke 2005;36(11):2487–9.CrossRefGoogle ScholarPubMed
Restrepo, L, Jacobs, MA, Barker, PB, Wityk, RJ.Assessment of transient ischemic attack with diffusion- and perfusion-weighted imaging. AJNR Am J Neuroradiol 2004;25(10):1645–52.Google ScholarPubMed
Coutts, SB, Eliasziw, M, Hill, MD, et al. An improved scoring system for identifying patients at high early risk of stroke and functional impairment after an acute transient ischemic attack or minor stroke. Int J Stroke 2008;3(1):3–10.CrossRefGoogle ScholarPubMed
Mlynash, M, Olivot, JM, Tong, DC, et al. Yield of combined perfusion and diffusion MR imaging in hemispheric TIA. Neurology 2009;72(13):1127–33.CrossRefGoogle ScholarPubMed
Zaharchuk, G.Arterial spin label imaging of acute ischemic stroke and transient ischemic attack. Neuroimaging Clin N Am 2011;21(2):285–301, x.CrossRefGoogle ScholarPubMed
Zaharchuk, G, Olivot, J-M, Fischbein, NJ, et al. Arterial spin label imaging findings in transient ischemic attack patients: comparison with diffusion- and bolus perfusion-weighted imaging. Cerebrovasc Dis 2012;34(3):221–8.CrossRefGoogle ScholarPubMed
Olivot, JM, Albers, GW.Diffusion-perfusion MRI for triaging transient ischemic attack and acute cerebrovascular syndromes. Curr Opin Neurol 2011;24(1):44–9.CrossRefGoogle ScholarPubMed
Macintosh, BJ, Lindsay, AC, Kylintireas, I, et al. Multiple inflow pulsed arterial spin-labeling reveals delays in the arterial arrival time in minor stroke and transient ischemic attack. AJNR Am J Neuroradiol 2010;31(10):1892–4.CrossRefGoogle ScholarPubMed
Zaharchuk, G, Bammer, R, Straka, M, et al. Arterial spin-label imaging in patients with normal bolus perfusion-weighted MR imaging findings: pilot identification of the borderzone sign. Radiology 2009;252(3):797–807.CrossRefGoogle ScholarPubMed
Failure of extracranial-intracranial arterial bypass to reduce the risk of ischemic stroke. Results of an international randomized trial. The EC/IC Bypass Study Group. N Engl J Med 1985;313(19):1191–200.
Grubb, RL, Powers, WJ, Derdeyn, CP, Adams, HP, Clarke, WR.The Carotid Occlusion Surgery Study. Neurosurg Focus 2003;14(3):e9.CrossRefGoogle ScholarPubMed
Spetzler, R, Martin, N.A proposed grading system for arteriovenous malformations. J Neurosurg 1986;65:476–83.CrossRefGoogle ScholarPubMed
Wolf, RL, Wang, J, Detre, JA, Zager, EL, Hurst, RW.Arteriovenous shunt visualization in arteriovenous malformations with arterial spin-labeling MR imaging. AJNR Am J Neuroradiol 2008;29(4):681–7.CrossRefGoogle ScholarPubMed
Pollock, JM, Whitlow, CT, Simonds, J, et al. Response of arteriovenous malformations to gamma knife therapy evaluated with pulsed arterial spin-labeling MRI perfusion. AJR Am J Roentgenol 2011;196(1):15–22.CrossRefGoogle ScholarPubMed
Le, TT, Fischbein, NJ, Andre, JB, et al. Identification of venous signal on arterial spin labeling improves diagnosis of dural arteriovenous fistulas and small arteriovenous malformations. AJNR Am J Neuroradiol 2012;33(1):61–8.CrossRefGoogle ScholarPubMed
Wijnhoud, AD, Franckena, M, van der Lugt, A, Koudstaal, PJ, Dippel, ED.Inadequate acoustical temporal bone window in patients with a transient ischemic attack or minor stroke: role of skull thickness and bone density. Ultrasound Med Biol 2008;34(6):923–9.CrossRefGoogle ScholarPubMed
Rordorf, G, Koroshetz, WJ, Copen, WA, et al. Diffusion- and perfusion-weighted imaging in vasospasm after subarachnoid hemorrhage. Stroke 1999;30(3):599–605.CrossRefGoogle ScholarPubMed
Hertel, F, Walter, C, Bettag, M, Morsdorf, M.Perfusion-weighted magnetic resonance imaging in patients with vasospasm: a useful new tool in the management of patients with subarachnoid hemorrhage. Neurosurgery 2005;56(1):28–35; discussion 35.CrossRefGoogle ScholarPubMed
Vatter, H, Guresir, E, Berkefeld, J, et al. Perfusion-diffusion mismatch in MRI to indicate endovascular treatment of cerebral vasospasm after subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 2011;82(8):876–83.CrossRefGoogle ScholarPubMed
Ogasawara, K, Ogawa, A.[JET study (Japanese EC-IC Bypass Trial)]. Nihon Rinsho 2006;64 Suppl 7:524–7.Google Scholar
Laux, BE, Raichle, ME.The effect of acetazolamide on cerebral blood flow and oxygen utilization in the rhesus monkey. J Clin Invest 1978;62(3):585–92.CrossRefGoogle ScholarPubMed
Vorstrup, S, Henriksen, L, Paulson, OB.Effect of acetazolamide on cerebral blood flow and cerebral metabolic rate for oxygen. J Clin Invest 1984;74(5):1634–9.CrossRefGoogle ScholarPubMed
Mukherjee, P, Kang, HC, Videen, TO, et al. Measurement of cerebral blood flow in chronic carotid occlusive disease: comparison of dynamic susceptibility contrast perfusion MR imaging with positron emission tomography. AJNR Am J Neuroradiol 2003;24(5):862–71.Google ScholarPubMed
Wu, WC, Wong, EC.Intravascular effect in velocity-selective arterial spin labeling: the choice of inflow time and cutoff velocity. Neuroimage 2006;32(1):122–8.CrossRefGoogle ScholarPubMed
Qiu, D, Straka, M, Zun, Z, et al. CBF measurements using multidelay pseudocontinuous and velocity-selective arterial spin labeling in patients with long arterial transit delays: Comparison with xenon CT CBF. J Magn Reson Imaging 2012;36(1):110–19.CrossRefGoogle ScholarPubMed
Yen, Y-F, Field, AS, Martin, EM, et al. Test-retest reproducibility of quantitative CBF measurements using FAIR perfusion MRI and acetazolamide challenge. Magn Reson Med 2002;47:921–8.CrossRefGoogle ScholarPubMed
Detre, JA, Samuels, OB, Alsop, DC, et al. Noninvasive magnetic resonance imaging evaluation of cerebral blood flow with acetazolamide challenge in patients with cerebrovascular stenosis. J Magn Reson Imaging 1999;10(5):870–5.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Mandell, DM, Han, JS, Poublanc, J, et al. Quantitative measurement of cerebrovascular reactivity by blood oxygen level-dependent MR imaging in patients with intracranial stenosis: preoperative cerebrovascular reactivity predicts the effect of extracranial-intracranial bypass surgery. AJNR Am J Neuroradiol 2011;32(4):721–7.CrossRefGoogle ScholarPubMed
Mikulis, DJ, Krolczyk, G, Desal, H, et al. Preoperative and postoperative mapping of cerebrovascular reactivity in moyamoya disease by using blood oxygen level-dependent magnetic resonance imaging. J Neurosurg 2005;103(2):347–55.CrossRefGoogle ScholarPubMed
Wintermark, M, Reichhart, M, Thiran, JP, et al. Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol 2002;51(4):417–32.CrossRefGoogle ScholarPubMed
Schaefer, PW, Barak, ER, Kamalian, S, et al. Quantitative assessment of core/penumbra mismatch in acute stroke: CT and MR perfusion imaging are strongly correlated when sufficient brain volume is imaged. Stroke 2008;39(11):2986–92.CrossRefGoogle Scholar
Schellinger, PD, Thomalla, G, Fiehler, J, et al. MRI-based and CT-based thrombolytic therapy in acute stroke within and beyond established time windows: an analysis of 1210 patients. Stroke 2007;38(10):2640–5.CrossRefGoogle ScholarPubMed
Wintermark, M, Sesay, M, Barbier, E, et al. Comparative overview of brain perfusion imaging techniques. Stroke 2005;36(9):e83–99.CrossRefGoogle ScholarPubMed
Petersen, ET, Mouridsen, K, Golay, X.The QUASAR reproducibility study, Part II: Results from a multi-center Arterial Spin Labeling test-retest study. Neuroimage 2010;49(1):104–13.CrossRefGoogle ScholarPubMed
Rowley, HA.The four Ps of acute stroke imaging: parenchyma, pipes, perfusion, and penumbra. AJNR Am J Neuroradiol 2001;22(4):599–601.Google ScholarPubMed
Kidwell, CS, Chalela, JA, Saver, JL, et al. Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA 2004;292(15):1823–30.CrossRefGoogle ScholarPubMed
Fiehler, J, Albers, GW, Boulanger, JM, et al. Bleeding risk analysis in stroke imaging before thromboLysis (BRASIL): pooled analysis of T2*-weighted magnetic resonance imaging data from 570 patients. Stroke 2007;38(10):2738–44.CrossRefGoogle ScholarPubMed
Hendrikse, J, Petersen, ET, Chèze, A, et al. Relationship between cerebral perfusion teritories and location of cerebral infarcts. Stroke 2009;40(5):1617–22.CrossRefGoogle Scholar
Hendrikse, J, Petersen, ET, Chng, SM, Venketasubramanian, N, Golay, X.Distribution of cerebral blood flow in the nucleus caudatus, nucleus lentiformis, and thalamus: a study of territorial arterial spin-labeling MR imaging. Radiology 2010;254(3):867–75.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×