Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T10:13:06.509Z Has data issue: false hasContentIssue false

2 - Dynamic susceptibility contrast MRI: acquisition and analysis techniques

from Section 1 - Techniques

Published online by Cambridge University Press:  05 May 2013

Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Xavier Golay
Affiliation:
National Hospital for Neurology and Neurosurgery, London
Gregory Zaharchuk
Affiliation:
Stanford University Medical Center
Get access

Summary

Introduction

From the early start in history man employed “contrast media” to measure flow: Hero of Alexandria proposed for example in 62 AD the use of debris in combination with a sundial to calculate the velocity of the water in Egyptian rivers. Leonardo da Vinci improved this method by using a pig's bladder attached to a stick with a stone on the other side. Early implementations to measure cerebral blood flow similarly introduced a tracer upstream from the brain, such as nitrous oxide or xenon gas. Even before these early blood flow measurements, functional brain experiments were introduced by monitoring changes in brain volume upon functional activity as an indicator and proof of vasodilatation [1]. It is therefore not surprising that when contrast agents for MRI based on gadolinium chelates were introduced, blood flow measurements were among the first applications. Interestingly, in 1990, for the first time the possibility of localization of neuronal activation was shown using repeated injections of a bolus of contrast agent [2], two years before the BOLD (blood oxygenation level-dependent) effect emerged as the prime tool for functional MRI (fMRI) [3].

Type
Chapter
Information
Clinical Perfusion MRI
Techniques and Applications
, pp. 16 - 37
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sherrington, C, Roy, C.On the regulation of the blood-supply of the brain. J Physiol 1890;11(1–2):85–108.Google Scholar
Belliveau, J, Rosen, B, Kantor, H, et al. Functional cerebral imaging by susceptibility contrast NMR. Magn Reson Med 1990;14:538–46.CrossRefGoogle ScholarPubMed
Ogawa, S, Tank, DW, Menon, R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 1992;89:5951–5.CrossRefGoogle ScholarPubMed
Fahraeus, R, Lindquist, T.The viscosity of the blood in narrow capillary tubes. Am J Physiol 1931;96:562–8.Google Scholar
Zierler, K.Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res. 1962;10:393–407.CrossRefGoogle Scholar
Weinmann, HJ, Brasch, RC, Press, WR, Wesbey, GE.Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR Am J Roentgenol 1984;142:619–24.CrossRefGoogle ScholarPubMed
Runge, VM.Safety of approved MR contrast media for intravenous injection. J Magn Reson Imaging 2000;12(2):205–13.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Grobner, T.Gadolinium–a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?Nephrol Dial Transplant 2006;21(4):1104–8.CrossRefGoogle ScholarPubMed
Administration USFaD. New Warnings for Using Gadolinium-based Contrast Agents in Patients with Kidney Dysfunction. 2010; Available from: .
Wang, Y, Alkasab, TK, Narin, O, et al. Incidence of nephrogenic systemic fibrosis after adoption of restrictive gadolinium-based contrast agent guidelines. Radiology 2011;260(1):105–11.CrossRefGoogle ScholarPubMed
Pintaske, J, Martirosian, P, Graf, H, et al. Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol 2006;41(3):213–21.CrossRefGoogle ScholarPubMed
Porkka, I, Neuder, M, Hunter, G, et al., editors. Arterial input function measurement with MRI. Proc Intl Soc Magn Reson MedSan Francisco, USA, 1991;120.Google Scholar
Akbudak, E, Hsu, R, Li, Y, Conturo, T, editors. Delta R2* or delta phase contrast effects in blood. Proc Intl Soc Magn Reson Med, Sydney, Australia, 1998; 1197.Google Scholar
Conturo, TE, Akbudak, E, Kotys, MS, et al. Arterial input functions for dynamic susceptibility contrast MRI: requirements and signal options. J Magn Reson Imaging 2005;22(6):697–703.CrossRefGoogle ScholarPubMed
van Osch, MJ, Vonken, EJ, Viergever, MA, van der Grond, J, Bakker, CJ.Measuring the arterial input function with gradient echo sequences. Magn Reson Med 2003; 49(6):1067–76.CrossRefGoogle ScholarPubMed
Paganelli, CV, Solomon, AK.The rate of exchange of tritiated water across the human red cell membrane. J Gen Physiol 1957; 41(2):259–77.CrossRefGoogle ScholarPubMed
Manka, C, Traber, F, Gieseke, J, Schild, HH, Kuhl, CK.Three-dimensional dynamic susceptibility-weighted perfusion MR imaging at 3.0 T: feasibility and contrast agent dose. Radiology 2005;234(3):869–77.CrossRefGoogle Scholar
Ellinger, R, Kremser, C, Schocke, MF, et al. The impact of peak saturation of the arterial input function on quantitative evaluation of dynamic susceptibility contrast-enhanced MR studies. J Comput Assist Tomogr 2000;24(6):942–8.CrossRefGoogle ScholarPubMed
Perman, W, Gado, M, Larson, K, Perlmutter, J.Simultaneous MR acquisition of arterial and brain signal-time curves. Magn Reson Med 1992;28:74–83.CrossRefGoogle ScholarPubMed
Vonken, EJ, van Osch, MJ, Bakker, CJ, Viergever, MA.Measurement of cerebral perfusion with dual-echo multi-slice quantitative dynamic susceptibility contrast MRI. J Magn Reson Imaging 1999; 10(2):109–17.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Newbould, RD, Skare, ST, Jochimsen, TH, et al. Perfusion mapping with multiecho multishot parallel imaging EPI. Magn Reson Med 2007; 58(1):70–81.CrossRefGoogle ScholarPubMed
Bleeker, EJ, van Buchem, MA, van Osch, MJ.Optimal location for arterial input function measurements near the middle cerebral artery in first-pass perfusion MRI. J Cereb Blood Flow Metab 2009; 29(4):840–52.CrossRefGoogle ScholarPubMed
Bleeker, EJ, van Buchem, MA, Webb, AG, van Osch, MJ.Phase-based arterial input function measurements for dynamic susceptibility contrast MRI. Magn Reson Med 2010;64(2):358–68.CrossRefGoogle ScholarPubMed
Kjolby, BF, Mikkelsen, IK, Pedersen, M, Ostergaard, L, Kiselev, VG.Analysis of partial volume effects on arterial input functions using gradient echo: a simulation study. Magn Reson Med 2009; 61(6):1300–9.CrossRefGoogle ScholarPubMed
Thornton, RJ, Jones, JY, Wang, ZJ.Correcting the effects of background microcirculation in the measurement of arterial input functions using dynamic susceptibility contrast MRI of the brain. Magn Reson Imaging 2006; 24(5):619–23.CrossRefGoogle Scholar
Reichenbach, JR, Hacklander, T, Harth, T, et al. 1H T1 and T2 measurements of the MR imaging contrast agents Gd-DTPA and Gd-DTPA BMA at 1.5T. Eur Radiol 1997;7(2):264–74.CrossRefGoogle ScholarPubMed
Albert, M, Huang, WE, Lee, J, Patlak, C, Springer, C.Susceptibility changes following bolus injections. Magn Reson Med 1993;29:700–8.CrossRefGoogle ScholarPubMed
Boxerman, J, Hamberg, L, Rosen, B, Weisskoff, R.MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 1995;34:555–66.CrossRefGoogle ScholarPubMed
Kennan, R, Zhong, J, Gore, J.Intravascular susceptibility contrast mechanisms in tissues. Mag Reson Med 1994;31(1):9–21.CrossRefGoogle ScholarPubMed
Buxton, RB.Introduction to Functional Magnetic Resonance Imaging. New York: Cambridge University Press, 2002.CrossRefGoogle Scholar
Kiselev, VG.On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 2001; 46(6):1113–22.CrossRefGoogle ScholarPubMed
Kjølby, BF, Østergaard, L, Kiselev, VG.Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magn Reson Med 2006;56(1):187–97.CrossRefGoogle ScholarPubMed
Yablonskiy, D, Haacke, E.Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 1994;32:749–63.CrossRefGoogle ScholarPubMed
Jensen, JH, Chandra, R.NMR relaxation in tissues with weak magnetic inhomogeneities. Magn Reson Med 2000;44(1):144–56.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
van Osch, MJ, Vonken, EJ, Wu, O, et al. Model of the human vasculature for studying the influence of contrast injection speed on cerebral perfusion MRI. Magn Reson Med 2003; 50(3):614–22.CrossRefGoogle ScholarPubMed
Knutsson, L, Stahlberg, F, Wirestam, R.Aspects on the accuracy of cerebral perfusion parameters obtained by dynamic susceptibility contrast MRI: a simulation study. Magn Reson Imaging 2004; 22(6):789–98.CrossRefGoogle ScholarPubMed
Klarhofer, M, Dilharreguy, B, van Gelderen, P, Moonen, CT.A PRESTO-SENSE sequence with alternating partial-Fourier encoding for rapid susceptibility-weighted 3D MRI time series. Magn Reson Med 2003;50(4):830–8.CrossRefGoogle ScholarPubMed
Ostergaard, L, Weisskoff, RM, Chesler, DA, Glydensted, C, Rosen, BR.High resolution measurement of cerebral blood flow using intravascular tracer passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med 1996;36:715–25.CrossRefGoogle ScholarPubMed
Wu, O, Ostergaard, L, Weisskoff, RM, et al. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 2003;50(1):164–74.CrossRefGoogle ScholarPubMed
Murase, K, Shinohara, M, Yamazaki, Y.Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging. Phys Med Biol 2001;46(12):3147–59.CrossRefGoogle ScholarPubMed
Knutsson, L, Stahlberg, F, Wirestam, R.Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. MAGMA 2010;23(1):1–21.CrossRefGoogle ScholarPubMed
Rempp, KA, Brix, G, Wenz, F, et al. Quantitation of cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994;193:637–41.CrossRefGoogle Scholar
Vonken, EP, Beekman, FJ, Bakker, CJ, Viergever, MA.Maximum likelihood estimation of cerebral blood flow in dynamic susceptibility contrast MRI. Magn Reson Med 1999; 41(2):343–50.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Willats, L, Connelly, A, Calamante, F.Improved deconvolution of perfusion MRI data in the presence of bolus delay and dispersion. Magn Reson Med 2006;56(1):146–56.CrossRefGoogle ScholarPubMed
Andersen, IK, Szymkowiak, A, Rasmussen, CE, et al. Perfusion quantification using Gaussian process deconvolution. Magn Reson Med 2002;48(2):351–61.CrossRefGoogle ScholarPubMed
Dennie, J, Mandeville, JB, Boxerman, JL, et al. NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 1998;40:793–9.CrossRefGoogle ScholarPubMed
Sakaie, KE, Shin, W, Curtin, KR, et al. Method for improving the accuracy of quantitative cerebral perfusion imaging. J Magn Reson Imaging 2005;21(5):512–19.CrossRefGoogle ScholarPubMed
Lin, W, Celik, A, Derdeyn, C, et al. Quantitative measurements of cerebral blood flow in patients with unilateral carotid artery occlusion: a PET and MR study. J Magn Reson Imaging 2001;14(6):659–67.CrossRefGoogle ScholarPubMed
Zaharchuk, G, Straka, M, Marks, MP, et al. Combined arterial spin label and dynamic susceptibility contrast measurement of cerebral blood flow. Magn Reson Med 2010;63(6):1548–56.CrossRefGoogle ScholarPubMed
Bonekamp, D, Degaonkar, M, Barker, PB.Quantitative cerebral blood flow in dynamic susceptibility contrast MRI using total cerebral flow from phase contrast magnetic resonance angiography. Magn Reson Med 2011; 66(1):57–66.CrossRefGoogle ScholarPubMed
Weisskoff, RM, Chesler, D, Boxerman, JL, Rosen, BR.Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit time?Magn Reson Med 1993;29(4):553–8.CrossRefGoogle ScholarPubMed
Perthen, JE, Calamante, F, Gadian, DG, Connelly, A.Is quantification of bolus tracking MRI reliable without deconvolution?Magn Reson Med 2002; 47(1):61–7.CrossRefGoogle ScholarPubMed
Alsop, DC, Wedmid, A, Schlaug, G, editors. Defining a local arterial input function for perfusion quantification with bolus contrast MRI. Proceedings of the International Society for Magnetic Resonance in MedicineHonolulu, Hawai'i, 2002.Google Scholar
Calamante, F, Morup, M, Hansen, LK.Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 2004;52(4):789–97.CrossRefGoogle ScholarPubMed
Vonken, EP, van Osch, MJ, Bakker, CJ, Viergever, MA.Simultaneous quantitative cerebral perfusion and Gd-DTPA extravasation measurement with dual-echo dynamic susceptibility contrast MRI. Magn Reson Med 2000;43(6):820–7.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Pannetier, N, Debacker, C, Mauconduit, F, Christen, T, Barbier, E, editors. Does R2* increase or decrease when contrast agent extravasates?Proceedings of the International Society for Magnetic Resonance in Medicine, Montreal, Canada, 2011; 3916.Google Scholar
Sorensen, AG, Reimer, P.Cerebral MR Perfusion Imaging. Stuttgart New York: Thieme, 2000.Google Scholar
Leite, FP, Tsao, D, Vanduffel, W, et al. Repeated fMRI using iron oxide contrast agent in awake, behaving macaques at 3 Tesla. Neuroimage 2002;16(2):283–94.CrossRefGoogle ScholarPubMed
Qiu, D, Zaharchuk, G, Christen, T, Ni, WW, Moseley, ME.Contrast-enhanced functional blood volume imaging (CE-fBVI): Enhanced sensitivity for brain activation in humans using the ultrasmall superparamagnetic iron oxide agent ferumoxytol. Neuroimage 2012;62(3):1726–31.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×