Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T10:02:08.206Z Has data issue: false hasContentIssue false

3 - Arterial spin labeling-MRI: acquisition and analysis techniques

from Section 1 - Techniques

Published online by Cambridge University Press:  05 May 2013

Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Xavier Golay
Affiliation:
National Hospital for Neurology and Neurosurgery, London
Gregory Zaharchuk
Affiliation:
Stanford University Medical Center
Get access

Summary

Introduction

Among the various existing MRI methods for measuring cerebral blood flow (CBF), arterial spin labeling (ASL) occupies a special position, as much for its plethora of different techniques and MRI sequences, as for the fact that each of these methods is completely non-invasive, and therefore does not require injection of any exogenous contrast agent or tracer. Indeed, as suggested in the name of the technique, the measurement of perfusion is obtained by non-invasive labeling of arterial blood water spins (i.e., inversion or saturation) proximal to the tissue of interest. These labeled spins are then imaged at a later time point after exchange with the tissue magnetization [1]. As such, ASL can be repeated over a time period of a few seconds or minutes, and has a wide range of applications in the brain, from basic neuroscience to applied clinical neurology, as well as for the assessment of organ homeostasis anywhere in the body. A comprehensive description of the applications of ASL is given in later chapters of this book; this chapter will focus on the technique itself. While applications of ASL in the body are still an emerging topic, its application in neurology and neuroscience is now well established, and most of this introductory chapter will therefore refer to the brain, unless otherwise stated [2].

Type
Chapter
Information
Clinical Perfusion MRI
Techniques and Applications
, pp. 38 - 57
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Williams, DS, Detre, JA, Leigh, JS, Koretsky, AP.Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 1992;89(1):212–16.CrossRefGoogle ScholarPubMed
Golay, X, Hendrikse, J, Lim, TC.Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 2004;15(1):10–27.CrossRefGoogle ScholarPubMed
Kim, SG, Tsekos, NV.Perfusion imaging by a flow-sensitive alternating inversion recovery (FAIR) technique: application to functional brain imaging. Magn Reson Med 1997;37(3):425–35.CrossRefGoogle ScholarPubMed
Hoge, RD, Atkinson, J, Gill, B, et al. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci U S A 1999;96(16):9403–8.CrossRefGoogle ScholarPubMed
Chalela, JA, Alsop, DC, Gonzalez-Atavales, JB, et al. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 2000;31(3):680–7.CrossRefGoogle ScholarPubMed
Chng, SM, Petersen, ET, Zimine, I, et al. Territorial arterial spin labeling in the assessment of collateral circulation: comparison with digital subtraction angiography. Stroke 2008;39(12):3248–54.CrossRefGoogle ScholarPubMed
Gunther, M, Oshio, K, Feinberg, DA.Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med 2005;54(2):491–8.CrossRefGoogle ScholarPubMed
Petersen, ET, Lim, T, Golay, X.Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med 2006;55(2):219–32.CrossRefGoogle ScholarPubMed
Alsop, DC, Detre, JA, Grossman, M.Assessment of cerebral blood flow in Alzheimer's disease by spin-labeled magnetic resonance imaging. Ann Neurol 2000;47(1):93–100.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Johnson, NA, Jahng, GH, Weiner, MW, et al. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 2005;234(3):851–9.CrossRefGoogle ScholarPubMed
Schuff, N, Matsumoto, S, Kmiecik, J, et al. Cerebral blood flow in ischemic vascular dementia and Alzheimer's disease, measured by arterial spin-labeling magnetic resonance imaging. Alzheimers Dement 2009;5(6):454–62.CrossRefGoogle ScholarPubMed
Roberts, DA, Detre, JA, Bolinger, L, et al. Renal perfusion in humans: MR imaging with spin tagging of arterial water. Radiology 1995;196(1):281–6.CrossRefGoogle ScholarPubMed
Hirshberg, B, Qiu, M, Cali, AM, et al. Pancreatic perfusion of healthy individuals and type 1 diabetic patients as assessed by magnetic resonance perfusion imaging. Diabetologia 2009;52(8):1561–5.CrossRefGoogle ScholarPubMed
Lawrence, KS, Frank, JA, McLaughlin, AC.Effect of restricted water exchange on cerebral blood flow values calculated with arterial spin tagging: a theoretical investigation. Magn Reson Med 2000;44(3):440–9.3.0.CO;2-6>CrossRefGoogle Scholar
Zhou, J, Wilson, DA, Ulatowski, JA, Traystman, RJ, van Zijl, PC.Two-compartment exchange model for perfusion quantification using arterial spin tagging. J Cereb Blood Flow Metab 2001;21(4):440–55.CrossRefGoogle ScholarPubMed
Parkes, LM.Quantification of cerebral perfusion using arterial spin labeling: two-compartment models. J Magn Reson Imaging 2005;22(6):732–6.CrossRefGoogle ScholarPubMed
Wells, JA, Lythgoe, MF, Choy, M, et al. Characterizing the origin of the arterial spin labelling signal in MRI using a multiecho acquisition approach. J Cereb Blood Flow Metab 2009;29(11):1836–45.CrossRefGoogle ScholarPubMed
Zaharchuk, G, Bogdanov, AA, Marota, JJ, et al. Continuous assessment of perfusion by tagging including volume and water extraction (CAPTIVE): a steady-state contrast agent technique for measuring blood flow, relative blood volume fraction, and the water extraction fraction. Magn Reson Med 1998;40(5):666–78.CrossRefGoogle ScholarPubMed
Carr, JP, Buckley, DL, Tessier, J, Parker, GJ.What levels of precision are achievable for quantification of perfusion and capillary permeability surface area product using ASL?Magn Reson Med 2007;58(2):281–9.CrossRefGoogle ScholarPubMed
Brookes, MJ, Morris, PG, Gowland, PA, Francis, ST. Noninvasive measurement of arterial cerebral blood volume using Look-Locker EPI and arterial spin labeling. Magn Reson Med 2007;58(1):41–54.CrossRefGoogle ScholarPubMed
Meier, P, Zierler, KL.On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 1954;6(12):731–44.CrossRefGoogle ScholarPubMed
Kety, SS, Schmidt, CF.The determination of cerebral blood flow in man by use of nitrous oxide in low concentrations. Am J Physiol 1945;143:53–66.Google Scholar
Kety, SS, Schmidt, CF.The nitrous oxide method for the determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 1948;27:467–83.CrossRefGoogle ScholarPubMed
Eichling, JO, Raichle, ME, Grubb, RL, Ter-Pogossian, MM.Evidence of the limitations of water as a freely diffusible tracer in brain of the rhesus monkey. Circ Res 1974;35(3):358–64.CrossRefGoogle ScholarPubMed
Buxton, RB, Frank, LR, Wong, EC, et al. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 1998;40(3):383–96.CrossRefGoogle ScholarPubMed
van Gelderen, P, de Zwart, JA, Duyn, JH.Pitfalls of MRI measurement of white matter perfusion based on arterial spin labeling. Magn Reson Med 2008;59(4):788–95.CrossRefGoogle Scholar
Dixon, WT, Du, LN, Faul, DD, Gado, M, Rossnick, S.Projection angiograms of blood labeled by adiabatic fast passage. Magn Reson Med 1986;3(3):454–62.CrossRefGoogle ScholarPubMed
Maccotta, L, Detre, JA, Alsop, DC.The efficiency of adiabatic inversion for perfusion imaging by arterial spin labeling. NMR Biomed 1997;10(4–5):216–21.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Trampel, R, Jochimsen, TH, Mildner, T, Norris, DG, Moller, HE.Efficiency of flow-driven adiabatic spin inversion under realistic experimental conditions: a computer simulation. Magn Reson Med 2004;51(6):1187–93.CrossRefGoogle ScholarPubMed
O'Gorman, RL, Summers, PE, Zelaya, FO, et al. In vivo estimation of the flow-driven adiabatic inversion efficiency for continuous arterial spin labeling: a method using phase contrast magnetic resonance angiography. Magn Reson Med 2006;55(6):1291–7.CrossRefGoogle ScholarPubMed
McLaughlin, AC, Ye, FQ, Pekar, JJ, Santha, AK, Frank, JA.Effect of magnetization transfer on the measurement of cerebral blood flow using steady-state arterial spin tagging approaches: a theoretical investigation. Magn Reson Med 1997;37(4):501–10.CrossRefGoogle ScholarPubMed
Wolff, SD, Balaban, RS.Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 1989;10(1):135–44.CrossRefGoogle ScholarPubMed
Zhang, W, Silva, AC, Williams, DS, Koretsky, AP.NMR measurement of perfusion using arterial spin labeling without saturation of macromolecular spins. Magn Reson Med 1995;33(3):370–6.CrossRefGoogle ScholarPubMed
Alsop, DC, Detre, JA.Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology 1998;208(2):410–16.CrossRefGoogle ScholarPubMed
Dai, W, Garcia, D, de Bazelaire, C, Alsop, DC.Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 2008;60(6):1488–97.CrossRefGoogle ScholarPubMed
Wu, WC, Fernandez-Seara, M, Detre, JA, Wehrli, FW, Wang, J.A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med 2007;58(5):1020–7.CrossRefGoogle ScholarPubMed
Kim, SG.Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995;34(3):293–301.CrossRefGoogle ScholarPubMed
Kwong, KK, Chesler, DA, Weisskoff, RM, et al. MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med 1995;34(6):878–87.CrossRefGoogle ScholarPubMed
Schwarzbauer, C, Morrissey, SP, Haase, A.Quantitative magnetic resonance imaging of perfusion using magnetic labeling of water proton spins within the detection slice. Magn Reson Med 1996;35(4):540–6.CrossRefGoogle ScholarPubMed
Edelman, RR, Siewert, B, Darby, DG, et al. Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 1994;192(2):513–20.CrossRefGoogle ScholarPubMed
Edelman, RR, Chen, Q.EPISTAR MRI: multislice mapping of cerebral blood flow. Magn Reson Med 1998;40(6):800–5.CrossRefGoogle ScholarPubMed
Golay, X, Petersen, ET, Hui, F.Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med 2005;53(1):15–21.CrossRefGoogle ScholarPubMed
Petersen, ET, Zimine, I, Ho, YC, Golay, X.Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 2006;79(944):688–701.CrossRefGoogle ScholarPubMed
Hendrikse, J, Petersen, ET, van Laar, PJ, Golay, X.Cerebral border zones between distal end branches of intracranial arteries: MR imaging. Radiology 2008;246(2):572–80.Google ScholarPubMed
Petersen, ET, Mouridsen, K, Golay, X.The QUASAR reproducibility study, Part II: Results from a multi-center arterial spin labeling test-retest study. Neuroimage 2010;49(1):104–13.CrossRefGoogle ScholarPubMed
Wong, EC, Buxton, RB, Frank, LR.A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Magn Reson Med 1998;40(3):348–55.CrossRefGoogle ScholarPubMed
Wong, EC, Buxton, RB, Frank, LR.Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 1998;39(5):702–8.CrossRefGoogle Scholar
Luh, WM, Wong, EC, Bandettini, PA, Hyde, JS.QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 1999;41(6):1246–54.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Wintermark, M, Sesay, M, Barbier, E, et al. Comparative overview of brain perfusion imaging techniques. Stroke 2005;36(9):2032–3.CrossRefGoogle ScholarPubMed
Xie, J, Gallichan, D, Gunn, RN, Jezzard, P.Optimal design of pulsed arterial spin labeling MRI experiments. Magn Reson Med 2008;59(4):826–34.CrossRefGoogle ScholarPubMed
Günther, M, Bock, M, Schad, LR.Arterial spin labeling in combination with a look-locker sampling strategy: inflow turbo-sampling EPI-FAIR (ITS-FAIR). Magn Reson Med 2001;46(5):974–84.CrossRefGoogle Scholar
Golay, X, Stuber, M, Pruessmann, KP, Meier, D, Boesiger, P.Transfer insensitive labeling technique (TILT): application to multislice functional perfusion imaging. J Magn Reson Imaging 1999;9(3):454–61.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Hendrikse, J, Lu, H, van der Grond, J, Van Zijl, PC, Golay, X.Measurements of cerebral perfusion and arterial hemodynamics during visual stimulation using TURBO-TILT. Magn Reson Med 2003;50(2):429–33.CrossRefGoogle ScholarPubMed
Alsop, DC, Detre, JA.Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 1996;16(6):1236–49.CrossRefGoogle ScholarPubMed
Duhamel, G, de Bazelaire, C, Alsop, DC.Evaluation of systematic quantification errors in velocity-selective arterial spin labeling of the brain. Magn Reson Med 2003;50(1):145–53.CrossRefGoogle Scholar
Wong, EC, Cronin, M, Wu, WC, et al. Velocity-selective arterial spin labeling. Magn Reson Med 2006;55(6):1334–41.CrossRefGoogle ScholarPubMed
Schepers, J, Van Osch, MJ, Nicolay, K.Effect of vascular crushing on FAIR perfusion kinetics, using a BIR-4 pulse in a magnetization prepared FLASH sequence. Magn Reson Med 2003;50(3):608–13.CrossRefGoogle Scholar
Zaharchuk, G, Ledden, PJ, Kwong, KK, et al. Multislice perfusion and perfusion teritory imaging in humans with separate label and image coils. Magn Reson Med 1999;41(6):1093–8.3.0.CO;2-0>CrossRefGoogle Scholar
Hendrikse, J, van der Grond, J, Lu, H, van Zijl, PC, Golay, X.Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke 2004;35(4):882–7.CrossRefGoogle ScholarPubMed
Davies, NP, Jezzard, P.Selective arterial spin labeling (SASL): perfusion territory mapping of selected feeding arteries tagged using two-dimensional radiofrequency pulses. Magn Reson Med 2003;49(6):1133–42.CrossRefGoogle ScholarPubMed
Wong, EC.Vessel-encoded arterial spin-labeling using pseudocontinuous tagging. Magn Reson Med 2007;58(6):1086–91.CrossRefGoogle ScholarPubMed
Talagala, SL, Ye, FQ, Ledden, PJ, Chesnick, S.Whole-brain 3D perfusion MRI at 3.OT using CASL with a separate labeling coil. Magn Reson Med 2004;52(1):131–40.CrossRefGoogle Scholar
Werner, R, Norris, DG, Alfke, K, Mehdorn, HM, Jansen, O.Continuous artery-selective spin labeling (CASSL). Magn Reson Med 2005;53(5):1006–12.CrossRefGoogle Scholar
Günther, M.Efficient visualization of vascular territories in the human brain by cycled arterial spin labeling MRI. Magn Reson Med 2006;56(3):671–5.CrossRefGoogle ScholarPubMed
Zimine, I, Petersen, ET, Golay, X.Dual vessel arterial spin labeling scheme for regional perfusion imaging. Magn Reson Med 2006;56(5):1140–4.CrossRefGoogle ScholarPubMed
Ye, FQ, Frank, JA, Weinberger, DR, McLaughlin, AC.Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med 2000;44(1):92–100.3.0.CO;2-M>CrossRefGoogle Scholar
Fernandez-Seara, MA, Wang, Z, Wang, J, et al. Continuous arterial spin labeling perfusion measurements using single shot 3D GRASE at 3 T. Magn Reson Med 2005; 54(5):1241–7.CrossRefGoogle ScholarPubMed
Wang, Z, Aguirre, GK, Rao, H, et al. Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx. Magn Reson Imaging 2008;26(2):261–9.CrossRefGoogle ScholarPubMed
Yang, Y, Frank, JA, Hou, L, et al. Multislice imaging of quantitative cerebral perfusion with pulsed arterial spin labeling. Magn Reson Med 1998;39(5):825–32.CrossRefGoogle ScholarPubMed
Chen, Q, Siewert, B, Bly, BM, Warach, S, Edelman, RR.STAR-HASTE: perfusion imaging without magnetic susceptibility artifact. Magn Reson Med 1997;38(3):404–8.CrossRefGoogle ScholarPubMed
Crelier, GR, Hoge, RD, Munger, P, Pike, GB.Perfusion-based functional magnetic resonance imaging with single-shot RARE and GRASE acquisitions. Magn Reson Med 1999;41(1):132–6.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Lu, H, Donahue, MJ, van Zijl, PC.Detrimental effects of BOLD signal in arterial spin labeling fMRI at high field strength. Magn Reson Med 2006;56(3):546–52.CrossRefGoogle ScholarPubMed
Boss, A, Martirosian, P, Klose, U, et al. FAIR-TrueFISP imaging of cerebral perfusion in areas of high magnetic susceptibility differences at 1.5 and 3 Tesla. J Magn Reson Imaging 2007;25(5):924–31.CrossRefGoogle ScholarPubMed
Boss, A, Martirosian, P, Claussen, CD, Schick, F.Quantitative ASLmuscle perfusion imaging using a FAIR-TrueFISP technique at 3.0 T. NMR Biomed 2006;19(1):125–32.CrossRefGoogle ScholarPubMed
Scheffler, K, Lehnhardt, S.Principles and applications of balanced SSFP techniques. Eur Radiol 2003;13(11):2409–18.CrossRefGoogle ScholarPubMed
Oshio, K, Feinberg, DA.GRASE (Gradient- and spin-echo) imaging: a novel fast MRI technique. Magn Reson Med 1991;20(2):344–9.CrossRefGoogle ScholarPubMed
Cutajar, M, Thomas, DL, Banks, T, et al. Repeatability of renal arterial spin labelling MRI in healthy subjects. MAGMA 2012;25(2):145–53.CrossRefGoogle ScholarPubMed
Oguz, KK, Golay, X, Pizzini, FB, et al. Sickle cell disease: continuous arterial spin-labeling perfusion MR imaging in children. Radiology 2003;227(2):567–74.CrossRefGoogle ScholarPubMed
Taki, Y, Hashizume, H, Sassa, Y, et al. Correlation between gray matter density-adjusted brain perfusion and age using brain MR images of 202 healthy children. Hum Brain Mapp 2011;32(11):1973–85.CrossRefGoogle ScholarPubMed
Schuff, N, Zhu, XP.Imaging of mild cognitive impairment and early dementia. Br J Radiol 2007;80 Spec No 2:S109–14.CrossRefGoogle ScholarPubMed
Tan, H, Maldjian, JA, Pollock, JM, et al. A fast, effective filtering method for improving clinical pulsed arterial spin labeling MRI. J Magn Reson Imaging 2009;29(5):1134–9.CrossRefGoogle ScholarPubMed
Zhilkin, P, Alexander, ME.Affine registration: a comparison of several programs. Magn Reson Imaging 2004;22(1):55–66.CrossRefGoogle ScholarPubMed
Wells, JA, Thomas, DL, King, MD, et al. Reduction of errors in ASL cerebral perfusion and arterial transit time maps using image de-noising. Magn Reson Med 2010;64(3):715–24.CrossRefGoogle ScholarPubMed
Asllani, I, Borogovac, A, Brown, TR.Regression algorithm correcting for partial volume effects in arterial spin labeling MRI. Magn Reson Med 2008;60(6):1362–71.CrossRefGoogle ScholarPubMed
Petr, J, Ferre, JC, Gauvrit, JY, Barillot, C.Denoising arterial spin labeling MRI using tissue partial volume. In: Dawant, BM, Haynor, DR, editors, Proceedings of SPIE Medical Imaging 2010: Imaging Processing, San Diego, USA, 2010;7623:76230L–76230L-9.CrossRefGoogle Scholar
Qin, Q, Strouse, JJ, van Zijl, PC.Fast measurement of blood T1 in the human jugular vein at 3 Tesla. Magn Reson Med 2011;65(5):1297–304.CrossRefGoogle ScholarPubMed
Varela, M, Hajnal, JV, Petersen, ET, et al. A method for rapid in vivo measurement of blood T1. NMR Biomed 2011;24(1):80–8.CrossRefGoogle ScholarPubMed
Lu, H, Clingman, C, Golay, X, van Zijl, PC.Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med 2004;52(3):679–82.CrossRefGoogle ScholarPubMed
Stanisz, GJ, Odrobina, EE, Pun, J, et al. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 2005;54(3):507–12.CrossRefGoogle ScholarPubMed
Guenther, M, editor. Analytical parameter estimation in arterial spin labeling time series by fourier transformation. Proc Intl Soc Magn Reson Med, Miami, USA, 2005;1136.
Chappell, MA, MacIntosh, BJ, Donahue, MJ, et al. Separation of macrovascular signal in multi-inversion time arterial spin labelling MRI. Magn Reson Med 2010;63(5):1357–65.CrossRefGoogle ScholarPubMed
Ye, FQ, Mattay, VS, Jezzard, P, et al. Correction for vascular artifacts in cerebral blood flow values measured by using arterial spin tagging techniques. Magn Reson Med 1997;37(2):226–35.CrossRefGoogle ScholarPubMed
Wang, J, Alsop, DC, Song, HK, et al. Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn Reson Med 2003;50(3):599–607.CrossRefGoogle Scholar
Yongbi, MN, Branch, CA, Helpern, JA.Perfusion imaging using FOCI RF pulses. Magn Reson Med 1998;40(6):938–43.CrossRefGoogle ScholarPubMed
Warnking, JM, Pike, GB.Reducing contamination while closing the gap: BASSI RF pulses in PASL. Magn Reson Med 2006;55(4):865–73.CrossRefGoogle ScholarPubMed
Golay, X, Guenther, M.Arterial spin labelling: final steps to make it a clinical reality. MAGMA 2012;25(2):79–82.CrossRefGoogle ScholarPubMed
Wong, EC, Buxton, RB, Frank, LR.Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 1997;10(4–5):237–49.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Lu, H, Nagae-Poetscher, LM, Golay, X, et al. Routine clinical brain MRI sequences for use at 3.0 Tesla. J Magn Reson Imaging 2005;22(1):13–22.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×