Published online by Cambridge University Press: 14 September 2009
Condensed summary
In this chapter, we revisit two recent studies performed at the Geophysical Fluid Dynamics Laboratory (GFDL), with a focus on issues relevant to tropical cyclones and climate change. The first study was a model-based assessment of twentieth-century regional surface temperature trends. The tropical Atlantic Main Development Region (MDR) for hurricane activity was found to have warmed by several tenths of a degree Celsius over the twentieth century. Coupled model historical simulations using current best estimates of radiative forcing suggest that the century-scale warming trend in the MDR may contain a significant contribution from anthropogenic forcing, including increases in atmospheric greenhouse gas concentrations. The results further suggest that the low-frequency variability in the MDR, apart from the trend, may contain substantial contributions from both radiative forcing (natural and anthropogenic) and internally generated climate variability. The second study used the GFDL hurricane model, in an idealized setting, to simulate the impact of a pronounced CO2-induced warming on hurricane intensities and precipitation. A 1.75°C warming increases the intensities of hurricanes in the model by 5.8% in terms of surface wind speeds, 14% in terms of central pressure fall, or about one half category on the Saffir–Simpson Hurricane Scale. A revised storm-core accumulated (six-hour) rainfall measure shows a 21.6% increase under high-CO2 conditions. Our simulated storm intensities are substantially less sensitive to sea surface temperature (SST) changes than recently reported historical observational trends are – a difference we are not able to completely reconcile at this time.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.