Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T10:06:04.591Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  07 September 2011

John Turner
Affiliation:
British Antarctic Survey, Cambridge
Gareth J. Marshall
Affiliation:
British Antarctic Survey, Cambridge
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdalati, W., Krabill, W., Frederick, E., et al. (2001). Outlet glacier and margin elevation changes: near-coastal thinning of the Greenland ice sheet. J. Geophys. Res., 106, 33 729–41.CrossRefGoogle Scholar
Abram, N. J., Mulvaney, R., Wolff, E. W. and Mudelsee, M. (2007). Ice core records as sea ice proxies: an evaluation from the Weddell Sea region of Antarctica. J. Geophys. Res., 112, D15101, doi:10.1029/2006JD008139.CrossRefGoogle Scholar
,ACIA (2005). Arctic Climate Impact Assessment – Scientific Report, Cambridge, UK: Cambridge University Press.Google Scholar
Adhémar, J. A. (1842). Revolutions de la mer, Paris: privately published.Google Scholar
Adler, R. F., Huffman, G. J., Chang, A., et al. (2003). The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydromet., 4, 1147–67.2.0.CO;2>CrossRefGoogle Scholar
Agassiz, L. (1840). Etudes sur les glaciers, Neuchâtel, Switzerland: privately published.Google Scholar
Ahn, J. and Brook, E. J. (2008). Atmospheric CO2 and climate on millennial time scales during the last glacial period. Science, 322, 83–5.CrossRefGoogle ScholarPubMed
Ahn, J., Wahlen, M., Deck, B. L., et al. (2004). A record of atmospheric CO2 during the last 40,000 years from the Siple Dome, Antarctica ice core. J. Geophys. Res., 109, D13305, doi:10.1029/2003JD064415.CrossRefGoogle Scholar
Alexanderson, H., Hjort, C., Möller, P., Antonov, O., and Pavlov, M. (2001). The North Taymyr ice-marginal zone, Arctic Siberia: a preliminary overview and dating. Global Planet. Change, 31, 427–45.CrossRefGoogle Scholar
Alexeev, V. A. (2003). Sensitivity to CO2 doubling of an atmospheric GCM coupled to an oceanic mixed layer: a linear analysis. Clim. Dyn., 20, 775–87.CrossRefGoogle Scholar
Alexeev, V. A., Langen, P. L. and Bates, J. R. (2005). Polar amplification of surface warming on an aquaplanet in ‘ghost forcing’ experiments without sea ice feedbacks. Clim. Dyn., 24, 655–66.CrossRefGoogle Scholar
Allen, C. S., Pike, J., Pudsey, C. J. and Leventer, A. (2005). Submillennial variations in ocean conditions during deglaciation based on diatom assemblages from the southwest Atlantic. Paleoceanography, 20, PA2012, doi:10.1029/2004PA001055.CrossRefGoogle Scholar
Alley, R. B., Meese, D. A., Shuman, C. A., et al. (1993). Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature, 362, 527–9.CrossRefGoogle Scholar
Alley, R. B., Mayewski, P. A., Sowers, T., et al. (1997). Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology, 25, 483–6.2.3.CO;2>CrossRefGoogle Scholar
Ambaum, M. H. P., Hoskins, B. J. and Stephenson, D. B. (2001). Arctic Oscillation or North Atlantic Oscillation? J. Clim., 14, 3495–507.2.0.CO;2>CrossRefGoogle Scholar
Andersen, K. K., Azuma, N., Barnola, J. M., et al. (2004). High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147–51.CrossRefGoogle ScholarPubMed
Anderson, J. B., Shipp, S. S., Lowe, A. L., Wellner, J. S., and Mosola, A. B. (2001a). The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: a review. Quat. Sci. Rev., 21, 49–70.CrossRefGoogle Scholar
Anderson, L., Abbott, M. B. and Finney, B. P. (2001b). Holocene climate inferred from oxygen isotope ratios in lake sediments, central Brooks Range, Alaska. Quat. Res., 55, 313–21.CrossRefGoogle Scholar
Anderson, T. L., Charlson, R. J., Schwartz, S. E., et al. (2003). Climate forcing by aerosols: a hazy picture. Science, 300, 1103–4.CrossRefGoogle Scholar
Andrews, J. T., Helgadottir, G., Geirsdottir, A. and Jennings, A. E. (2001). Multicentury-scale records of carbonate (hydrographic?) variability on the northern Iceland margin over the last 5000 years. Quat. Res., 56, 199–206.CrossRefGoogle Scholar
Angell, J. K. (1997). Estimated impact of Agung, El Chichon and Pinatubo volcanic eruptions on global and regional total ozone after adjustment for the QBO. Geophys. Res. Lett., 24, 647–50.CrossRefGoogle Scholar
Aoki, S. (2002). Coherent sea level response to the Antarctic Oscillation. Geophys. Res. Lett., 29, 1950, doi:10.1029/2002GL015733.CrossRefGoogle Scholar
Aoki, S., Bindoff, N. L. and Church, J. (2005). Interdecadal water mass changes in the Southern Ocean between 30°E and 160°E. Geophys. Res. Lett., 32, L07607, doi:10.1029/2004GL022220.CrossRefGoogle Scholar
Arbic, B. K., MacAyeal, D. R., Mitrovica, J. X., and Milne, G. A. (2004). Ocean tides and Heinrich events. Nature, 432, 460.CrossRefGoogle ScholarPubMed
Arblaster, J. and Meehl, G. A. (2006). Contributions of external forcings to Southern Annular Mode trends. J. Clim., 19, 2896–905.CrossRefGoogle Scholar
Arguez, A., Waple, A. M. and Sanchez-Lugo, A. M. (2007). State of the climate in 2006. Bull. Amer. Meteorol. Soc., 88, 933–5.CrossRefGoogle Scholar
Armstrong, R. L. and Brodzik, M. J. (2001). Recent northern hemisphere snow extent: a comparison of data derived from visible and microwave satellite sensors. Geophys. Res. Lett., 28, 3673–6.CrossRefGoogle Scholar
Arnell, N. W. (1999). Climate change and global water resources. Global Environ. Change, 9, S31–S49.CrossRefGoogle Scholar
Arrhenius, S. (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philos. Mag., 41, 237–76.CrossRefGoogle Scholar
Arzel, O., Fichefet, T. and Goosse, H. (2006). Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs. Ocean Model., 12, 401–15.CrossRefGoogle Scholar
Azumaya, T. and Ohtani, K. (1995). Effect of winter meteorological conditions on the formation of the cold bottom water in the eastern Bering Sea shelf. J. Oceanogr., 51, 665–80.CrossRefGoogle Scholar
Baldwin, M. P. (2001). Annular modes in global daily surface pressure. Geophys. Res. Lett., 28, 4115–18.CrossRefGoogle Scholar
Baldwin, M. P. and Dunkerton, T. J. (2001). Stratospheric harbingers of anomalous weather regimes. Science, 294, 581–4.CrossRefGoogle ScholarPubMed
Ballantyne, J. and Long, D. G. (2002). A multidecadal study of the number of Antarctic icebergs using scatterometer data. In Geoscience and Remote Sensing Symposium 2002. IGARSS '02, Washington, DC: IEEE International, pp. 3029–31.CrossRefGoogle Scholar
Bals-Elsholz, T. M., Atallah, E. H., Bosart, L. F., et al. (2001). The wintertime Southern Hemisphere split jet: structure, variability, and evolution. J. Clim., 14, 4191–215.2.0.CO;2>CrossRefGoogle Scholar
Barbante, C., Turetta, C., Gambaro, A., Capodaglio, G. and Scarponi, G. (1998). Sources and origins of aerosols reaching Antarctica as revealed by lead concentration profiles in shallow snow. Ann. Glaciol., 27, 674–8.CrossRefGoogle Scholar
Barber, D. C., Dyke, A., Hillaire-Marcel, C., et al. (1999). Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature, 400, 344–8.CrossRefGoogle Scholar
Barker, S. P., Diz, M. J., Vautravers, J., et al. (2009). Interhemispheric Atlantic seesaw response during the last glaciations. Nature, 457, 1097–103.CrossRefGoogle Scholar
Bard, E., Raidbeck, G., Yiou, F. and Jouzel, J. (2000). Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus, 52B, 985–92.CrossRefGoogle Scholar
Barnola, J. M., Pimienta, P., Raynaud, D. and Korotkevich, Y. S. (1991). CO2 climate relationship as deduced from the Vostok ice core: a re-examination based on new measurements and on a re-evaluation of the air dating. Tellus, 43B, 83–91.CrossRefGoogle Scholar
Baroni, C. and Orombelli, G. (1994). Abandoned penguin rookeries as Holocene paleoclimatic indicators in Antarctica. Geology, 22, 23–6.2.3.CO;2>CrossRefGoogle Scholar
Barrows, T. T., Lehman, S. J., Fifield, L. K., and Deckker, P. (2007). Absence of cooling in New Zealand and the adjacent ocean during the Younger Dryas chronozone. Science, 318, 86–8.CrossRefGoogle ScholarPubMed
Barsch, D. and Mäusbacher, R. (1986). New data on the relief development of the South Shetland Islands, Antarctica. Interdiscipl Sci. Rev., 11, 211–18.CrossRefGoogle Scholar
Batifol, F., Boutron, C. and Deangelis, M. (1989). Changes in copper, zinc and cadmium concentration in Antarctic ice during the past 40,000 years. Nature, 337, 544–6.CrossRefGoogle Scholar
Bauch, H. A., Erlenkeuser, H., Spielhagen, R. F., et al. (2001). A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30,000 years. Quat. Sci. Rev., 20, 659–78.CrossRefGoogle Scholar
Baumann, K.-H., Lackschweitz, S., Mangerud, J., et al. (1995). Reflection of Scandinavian Ice Sheet fluctuations in Norwegian Sea sediments during the past 150,000 years. Quat. Res., 43, 185–97.CrossRefGoogle Scholar
Beckley, B. D., Lemoine, F. G., Luthcke, S. B., Ray, R. D. and Zelensky, N. P. (2007). A reassessment of global and regional mean sea level trends from TOPEX and Jason-1 altimetry based on revised reference frame and orbits. Geophys. Res. Lett., 34, L14608, doi:10.1029/2007GL030002.CrossRefGoogle Scholar
Becquey, S. and Gersonde, R. (2002). Past hydrographic and climatic changes in the Subantarctic zone of the South Atlantic: the Pleistocene record from ODP Site 1090. Palaeogeogr. Palaeoclimatol. Palaeoecol., 182, 221–39.CrossRefGoogle Scholar
Beer, J., Mende, W., Stellmacher, R. and White, O. R. (1996). Intercomparisons of proxies for past solar variability. In Climatic Variations and Forcing Mechanisms of the Last 2000 Years, ed. Jones, P. D., Bradley, R. S., and Jouzel, J., Berlin: Springer, pp. 501–18.CrossRefGoogle Scholar
Beilman, D. and Robinson, S. D. (2003). Peatland permafrost thaw and landform type along a climatic gradient. In Proceedings of the 8th International Conference on Permafrost, Zurich, Switzerland, 21–25 July 2003, Lisse, Netherlands: A.A. Balkema Publishers, pp. 61–5.Google Scholar
Bellucci, A. and Richards, K. J. (2006). Effects of NAO variability on the North Atlantic Ocean circulation. Geophys. Res. Lett., 33, L02612, doi:10.1029/2005GL024890.CrossRefGoogle Scholar
Beltrami, H. and Taylor, A. E. (1995). Records of climatic change in the Canadian Arctic: towards calibrating oxygen isotope data with geothermal data. Global Planet. Change, 11, 127–38.CrossRefGoogle Scholar
Bengtsson, L., Semenov, V. A. and Johannessen, O. M. (2004). The early twentieth-century warming in the Arctic: a possible mechanism. J. Clim., 17, 4045–57.2.0.CO;2>CrossRefGoogle Scholar
Bentley, M. J. (1999). Volume of Antarctic ice at the Last Glacial Maximum, and its impact on global sea level change. Quat. Sci. Rev., 18, 1569–95.CrossRefGoogle Scholar
Bentley, M. J., Hodgson, D. A., Sugden, D. E., et al. (2005). Early Holocene retreat of the George VI Ice Shelf, Antarctic Peninsula. Geology, 33, 173–6.CrossRefGoogle Scholar
Bentley, M. J., Fogwill, C. J., Kubik, P. W. and Sugden, D. E., (2006). Geomorphological evidence and cosmogenic 10Be/26Al exposure ages for the Last Glacial Maximum and deglaciation of the Antarctic Peninsula Ice Sheet. Geol. Soc Amer. Bull., 118, 1149–59.CrossRefGoogle Scholar
Bentley, M. J., Hodgson, D. A., Smith, J. A., et al. (2009). Mechanisms of Holocene palaeoenvironmental change in the Antarctic Peninsula region. Holocene, 19, 51–69.CrossRefGoogle Scholar
Berger, A. (2001). The role of CO2, sea-level and vegetation during the Milankovitch-forced glacial-interglacial cycles. In Geosphere-Biosphere Interactions and Climate, ed. Bengtsson, L. and Hammer, C. U., New York: Cambridge University Press, pp. 119–46.CrossRefGoogle Scholar
Berger, A., Li, X. S., and Loutre, M. F., (1999). Modelling northern hemisphere ice volume over the past 3 Ma. Quat. Sci. Rev., 18, 1–11.CrossRefGoogle Scholar
Berger, W. H. and Wefer, G. (2003). On the dynamics of the ice ages: Stage-11 Paradox, Mid-Brunhes Climate Shift, and 100-ky cycle. In Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question., ed. Droxler, A. W., Poore, R. Z. and Burckle, L. H., Washington DC: AGU, pp. 41–59.CrossRefGoogle Scholar
Berger, W. H., Yasuda, M. K., Bickert, T., Wefer, G. and Takayama, T. (1994). Quaternary time scale for the Ontong Java Plateau: Milankovitch template for ocean drilling program. Geology, 22, 463–7.2.3.CO;2>CrossRefGoogle Scholar
Berresheim, H. (1987). Biogenic sulfur emissions from the subantarctic and Antarctic oceans. J. Geophys. Res., 92, 13 245–62.CrossRefGoogle Scholar
Bi, D., Budd, W. F., Hirst, A. C. and Wu, X. (2001). Collapse and reorganisation of the Southern Ocean overturning under global warming in a coupled model. Geophys. Res. Lett., 28, 3927–30.CrossRefGoogle Scholar
Bianchi, C. and Gersonde, R. (2002). The Southern Ocean surface between Marine Isotope Stages 6 and 5d: shape and timing of climate changes. Palaeogeogr. Palaeoclimatol. Palaeoecol., 187, 151–77.CrossRefGoogle Scholar
Bigg, E. K. and Leck, C. (2001). Properties of the aerosol over the central Arctic Ocean. J. Geophys. Res., 106, 32 101–9.CrossRefGoogle Scholar
Bindoff, N., Willebrand, J., Artale, V., et al. (2007). Observations: oceanic climate change and sea level. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Solomon, S., Qin, D. and Manning, M., Cambridge, UK: Cambridge University Press, pp. 385–432.Google Scholar
Bintanja, R. and Wal, R. S. W. (2008). North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature, 454, 869–72.CrossRefGoogle ScholarPubMed
Birks, C. J. A. and Koc, N. (2002). A high-resolution diatom record of late-Quaternary sea-surface temperatures and oceanographic conditions from the eastern Norwegian Sea. Boreas, 31, 323–44.CrossRefGoogle Scholar
Birks, H. H. and Birks, H. J. B. (2003). Reconstructing Holocene climates from pollen and plant macrofossils. In Global Change in the Holocene, ed. Mackay, A., Battarbee, R., Birks, J., and Oldfield, F., London: Arnold, pp. 342–357.Google Scholar
Bitz, C. M. and Roe, G. H. (2004). A mechanism for the high rate of sea ice thinning in the Arctic Ocean. J. Clim., 17, 3623–32.2.0.CO;2>CrossRefGoogle Scholar
Björck, S., Håkansson, H., Zale, R., Karlén, W. and Jönsson, B. L. (1991). A late Holocene lake sediment sequence from Livingston Island, South Shetland Islands, with palaeoclimatic implications. Antarct. Sci., 3, 61–72.CrossRefGoogle Scholar
Björck, S., Håkansson, H., Olsson, S., Barnekow, L. and Janssens, J. (1993). Paleoclimatic studies in South Shetland Islands, Antarctica, based on numerous stratigraphic variables in lake sediments. J. Paleolimnol., 8, 233–72.CrossRefGoogle Scholar
Björck, S., Olsson, S., Ellisevans, C., et al. (1996). Late Holocene palaeoclimatic records from lake sediments on James Ross Island, Antarctica. Palaeogeog. Palaeoclimatol. Palaeoecol., 121, 195–220.CrossRefGoogle Scholar
Blanchon, P. and Shaw, J. (1995). Reef drowning during the last deglaciation: evidence for catastrophic sea-level rise and ice-sheet collapse. Geology, 23, 4–8.2.3.CO;2>CrossRefGoogle Scholar
Blunier, T. and Brook, E. J. (2001). Timing of millenial-scale climate change in Antarctica and Greenland during the last glacial period. Science, 291, 109–12.CrossRefGoogle ScholarPubMed
Bockheim, J. and Hall, K. (2002). Periglacial processes and landforms of the Antarctic continent: a review. South African J. Sci., 98, 82–101.Google Scholar
Bodhaine, B. A., Deluisi, J. J., Harris, J. M., Houmere, P. and Bauman, S. (1986). Aerosol measurements at the South Pole. Tellus, 38B, 223–35.CrossRefGoogle Scholar
Bond, G., Heinrich, H., Broecker, W., et al. (1992). Evidence for massive discharges of icebergs into the North-Atlantic Ocean during the last glacial period. Nature, 360, 245–49.CrossRefGoogle Scholar
Bond, G., Showers, W., Cheseby, M., et al. (1997). A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 278, 1257–66.CrossRefGoogle Scholar
Bond, G., Kromer, B., Beer, J., et al. (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science, 294, 2130–6.CrossRefGoogle ScholarPubMed
Bormann, N. and Thépaut, J. N. (2004). Impact of MODIS polar winds in ECMWF's 4DVAR data assimilation system. Mon. Wea. Rev., 132, 929–40.2.0.CO;2>CrossRefGoogle Scholar
Boutron, C. F. and Wolff, E. W. (1989). Heavy-metal and sulfur emissions to the atmosphere from human activities in Antarctica. Atmos. Environ., 23, 1669–75.CrossRefGoogle Scholar
Bowen, D. Q. (2010). Sea level ~400 000 years ago (MIS 11): analogue for present and future sea-level? Clim. Past, 6, 19–29.CrossRefGoogle Scholar
Boyer, T. P., Levitus, S., Antonov, J. I., Locarnini, R. A. and Garcia, H. E. (2005). Linear trends in salinity for the World Ocean, 1955–1998. Geophys. Res. Lett., 32, L01604, doi:10.1029/2004GL021791.CrossRefGoogle Scholar
Bracegirdle, T. J., Connolley, W. M. and Turner, J. (2008). Antarctic climate change over the twenty first century. J. Geophys. Res., 113, D03103, doi:10.1029/2007JD008933.CrossRefGoogle Scholar
Brachfeld, S., Domack, E., Kissel, C., et al. (2003). Holocene history of the Larsen-A Ice Shelf constrained by geomagnetic paleointensity dating. Geology, 31, 749–52.CrossRefGoogle Scholar
Bradley, R. S. (1988). The explosive volcano eruption signal in Northern Hemisphere continental temperature records. Climatic Change, 12, 221–43.CrossRefGoogle Scholar
Bradley, R. S. (2003). Climate forcing during the Holocene. In Global Change in the Holocene, ed. Mackay, A., Battarbee, R., Birks, J. and Oldfield, F., London: Arnold, pp. 10–19.Google Scholar
Braithwaite, R. J. and Olesen, O. B. (1990). A simple energy-balance model to calculate ice ablation at the margin of the Greenland Ice-Sheet. J. Glaciol., 36, 222–8.CrossRefGoogle Scholar
Briffa, K. R. (2000). Annual variability in the Holocene: interpreting the message of ancient trees. Quat. Sci. Rev., 19, 87–105.CrossRefGoogle Scholar
Briffa, K. R., Bartholin, T. S., Eckstein, D., et al. (1990). A 1,400-year tree-ring record of summer temperatures in Fennoscandia. Nature, 346, 434–9.CrossRefGoogle Scholar
Broecker, W. S. (2000). Was a change in thermohaline circulation responsible for the Little Ice Age? Proc. Natl. Acad. Sci., 97, 1339–42.CrossRefGoogle ScholarPubMed
Broecker, W. S. (2001). Paleoclimate: was the medieval warm period global? Science, 291, 1497–9.CrossRefGoogle ScholarPubMed
Broecker, W. S. (2006). Was the Younger Dryas triggered by a flood? Science, 312, 1146–8.CrossRefGoogle ScholarPubMed
Broecker, W. S., Bond, G., Klas, M., Bonani, G. and Wolfi, W. (1990). A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography, 5, 469–77.CrossRefGoogle Scholar
Bromwich, D. H. (1988). Snowfall in high southern latitudes. Rev. Geophys., 26, 149–68.CrossRefGoogle Scholar
Bromwich, D. H. and Fogt, R. L. (2004). Strong trends in the skill of the ERA-40 and NCEP/NCAR reanalyses in the high and middle latitudes of the Southern Hemisphere, 1958–2001. J. Clim., 17, 4603–19.CrossRefGoogle Scholar
Bromwich, D. H. and Kurtz, D. D. (1984). Katabatic wind forcing of the Terra Nova Bay polynya. J. Geophys. Res., 89, 3561–72.CrossRefGoogle Scholar
Bromwich, D. H., Carrasco, J. F. and Stearns, C. R. (1992). Satellite observations of katabatic-wind propagation for great distances across the Ross Ice Shelf. Mon. Wea. Rev., 120, 1940–9.2.0.CO;2>CrossRefGoogle Scholar
Bromwich, D. H., Rogers, A. N., Kållberg, P., et al. (2000). ECMWF analyses and reanalyses depiction of ENSO signal in Antarctic precipitation. J. Clim., 13, 1406–20.2.0.CO;2>CrossRefGoogle Scholar
Bromwich, D. H., Cassano, J. J., Klein, T., et al. (2001). Mesoscale modeling of katabatic winds over Greenland with the Polar MM5. Mon. Wea. Rev., 129, 2290–309.2.0.CO;2>CrossRefGoogle Scholar
Bromwich, D. H., Toracinta, E. R., Wei, H., et al. (2004). Polar MM5 simulations of the winter climate of the Laurentide Ice Sheet at the LGM. J. Clim., 17, 3415–33.2.0.CO;2>CrossRefGoogle Scholar
Bromwich, D. H., Monaghan, A. J., Manning, K. W. and Powers, J. G. (2005). Real-time forecasting for the Antarctic: an evaluation of the Antarctic Mesoscale Prediction System (AMPS). Mon. Wea. Rev., 133, 579–603.CrossRefGoogle Scholar
Bromwich, D. H., Fogt, R. L., Hodges, K. I. and Walsh, J. E. (2007). A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J. Geophys. Res., 112, D10111, doi:10.1029/2006JD007859.CrossRefGoogle Scholar
Brook, E. J., Harder, S., Severinghaus, J., Steig, E. J. and Sucher, C. M. (2000). On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochem. Cyc., 14, 559–72.CrossRefGoogle Scholar
Brown, J., Hinkel, K. M. and Nelson, F. E. (2000). The circumpolar active layer monitoring (calm) program: research designs and initial results. Polar Geogr., 24, 165–258.CrossRefGoogle Scholar
Budd, W. F. (1991). Antarctica and global change. Climatic Change, 18, 271–99.CrossRefGoogle Scholar
Bugnion, V. (2000). Reducing the uncertainty in the contribution of Greenland to sea-level rise in the 20th and 21st centuries. Ann. Glaciol., 31, 121–5.CrossRefGoogle Scholar
Cai, M. (2005). Dynamical amplification of polar warming. Geophys. Res. Lett., 32, L22710, doi:10.1029/2005GL 024481.CrossRefGoogle Scholar
Cai, W. J., Baines, P. G. and Gordon, H. B. (1999). Southern mid- to high-latitude variability, a zonal wavenumber-3 pattern, and the Antarctic circumpolar wave in the CSIRO coupled model. J. Clim., 12, 3087–104.2.0.CO;2>CrossRefGoogle Scholar
Caillon, N., Severinghaus, J. P., Jouzel, J., et al. (2003). Timing of atmospheric CO2 and Antarctic temperature changes across Termination III. Science, 299, 1728–31.CrossRefGoogle ScholarPubMed
Calkin, P. E., Wiles, G. C. and Barclay, D. J. (2001). Holocene coastal glaciation of Alaska. Quat. Sci. Rev., 20, 449–61.CrossRefGoogle Scholar
Campbell, I. D., Campbell, C., Apps, M. J., Rutter, N. W. and Bush, A. B. G. (1998). Late Holocene ca.1500 yr climatic periodicities and their implications. Geology, 26, 471–3.2.3.CO;2>CrossRefGoogle Scholar
Carril, A. F., Menendez, C. G. and Navarra, A. (2005). Climate response associated with the Southern Annular Mode in the surroundings of Antarctic Peninsula: a multimodel ensemble analysis. Geophys. Res. Lett., 32, L16713, doi:10.1029/GL023581.CrossRefGoogle Scholar
Carsey, F. D. (1980). Microwave observations of the Weddell Polynya. Mon. Wea. Rev., 108, 2032–44.2.0.CO;2>CrossRefGoogle Scholar
Cash, B. A., Kushner, P. J. and Vallis, G. K. (2002). The structure and composition of the annular modes in an aquaplanet general circulation model. J. Atmos. Sci., 59, 3399–414.2.0.CO;2>CrossRefGoogle Scholar
Cassano, J. J., Uotila, P. and Lynch, A. H. (2006). Changes in synoptic weather patterns in the polar regions in the 20th and 21st centuries. Part 1. Int. J. Climatol., 26, 1027–49.CrossRefGoogle Scholar
Cavalieri, D. J., Parkinson, C. L. and Vinnikov, K. Y. (2003). 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophys. Res. Lett., 30, 1970, doi:10.1029/2003GL018031.CrossRefGoogle Scholar
Chambers, M. J. G. (1966). Investigations of patterned ground at Signy Island, South Orkney Islands: II. Temperature regimes in the active layer. BAS Bull., 10, 71–83.Google Scholar
Chapman, W. L. and Walsh, J. E. (1993). Recent variations in sea ice and air temperature at high latitudes. Bull. Amer. Meteorol. Soc., 74, 33–48.2.0.CO;2>CrossRefGoogle Scholar
Chapman, W. L. and Walsh, J. E. (2007). A synthesis of Antarctic temperatures. J. Clim., 20, 4096–117.CrossRefGoogle Scholar
Chappellaz, J., Barnola, J. M., Raynaud, D., Korotkevich, Y. S. and Lorius, C. (1990). Ice-core record of atmospheric methane over the past 160,000 years. Nature, 345, 127–31.CrossRefGoogle Scholar
Chappellaz, J., Blunier, T., Raynaud, D., et al. (1993). Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP. Nature, 366, 443–5.CrossRefGoogle Scholar
Chappellaz, J., Brook, E., Blunier, T. and Malaiz, B. (1997). CH4 and δ18O of O2 records from Antarctic and Greenland ice: a clue for stratigraphic disturbance in the bottom part of the Greenland Ice Core Project and the Greenland Ice Sheet Project 2 ice cores. J. Geophys. Res., 102, 26 547–57.CrossRefGoogle Scholar
Charles, C. D., Rind, D., Jouzel, J., Koster, R. D., and Fairbanks, R. G. (1994). Glacial-interglacial changes in moisture sources for Greenland: influences on the ice core record of climate. Science, 263, 508–11.CrossRefGoogle ScholarPubMed
Charlson, R. J., Lovelock, J. E., Meinrat, O. A. and Warren, S. G. (1987). Oceanic phytoplankton, atmosphric sulphur, cloud albedo and climate. Nature, 326, 655–61.CrossRefGoogle Scholar
Chase, T. N., Herman, B., Pielke, R. A., Zeng, X. and Leuthold, M. (2002). A proposed mechanism for the regulation of minimum midtropospheric temperatures in the Arctic. J. Geophys. Res., 107, 4193, doi:10.1029/2001JD001425.CrossRefGoogle Scholar
Cheddadi, R., Yu, G., Guiot, J., Harrison, S. P. and Prentice, I. C. (1996). The climate of Europe 6000 years ago. Clim. Dyn., 13, 1–9.CrossRefGoogle Scholar
Chen, B., Smith, S. R. and Bromwich, D. H. (1996). Evolution of the tropospheric split jet over the South Pacific Ocean during the 1986–89 ENSO cycle. Mon. Wea. Rev., 124, 1711–31.2.0.CO;2>CrossRefGoogle Scholar
Chen, J. L., Wilson, C. R., Blankenship, D. D. and Tapley, B. D. (2006). Antarctic mass rates from GRACE. Geophys. Res. Lett., 33, L11502, doi:10.1029/2006GL026369.CrossRefGoogle Scholar
Cheng, H., Edwards, R. L., Briecker, W. S., et al. (2009). Ice age terminations. Science, 326, 248–52.CrossRefGoogle ScholarPubMed
Christoph, M., Barnett, T. P. and Roeckner, E. (1998). The Antarctic Circumpolar Wave an a coupled ocean – atmosphere GCM. J. Clim., 11, 1659–72.2.0.CO;2>CrossRefGoogle Scholar
Church, J. A. and White, N. J. (2006). A 20th century acceleration in global sea-level rise. Geophys. Res. Lett., 33, L01602, doi:10.1029/2005GL024826.CrossRefGoogle Scholar
Ciais, P., Petit, J. R., Jouzel, J., et al. (1992). Evidence for an Early Holocene climatic optimum in the Antarctic deep ice core record. Clim. Dyn., 6, 169–77.CrossRefGoogle Scholar
Ciais, P., Jouzel, J., Petit, J. R., Lipenkov, V. and White, J. W. C. (1994). Holocene temperature variations inferred from six Antarctic ice cores. Ann. Glaciol., 20, 427–39.CrossRefGoogle Scholar
Clague, J. J. and James, T. S. (2002). History and isostatic effects of the last ice sheet in southern British Columbia. Quat. Sci. Rev., 21, 71–87.CrossRefGoogle Scholar
Clapperton, C. M. and Sugden, D. E. (1988). Holocene glacier fluctuations in South America and Antarctica. Quat. Sci. Rev., 7, 185–98.CrossRefGoogle Scholar
Clapperton, C. M., Sugden, D. E., Birnie, J. and Wilson, M. J. (1989). Late-glacial and Holocene glacier fluctuations and environmental-change on South Georgia, Southern-Ocean. Quat. Res., 31, 210–28.CrossRefGoogle Scholar
Clark, C. D., Knight, J. K., and Gray, J. T. (2000). Geomorphological reconstruction of the Labrador Sector of the Laurentide Ice Sheet. Quat. Sci. Rev., 19, 1343–66.CrossRefGoogle Scholar
Clark, P. U., Alley, R. B. and Pollard, D. (1999). Climatology: Northern hemisphere ice-sheet influences on global climate change. Science, 286, 1104–11.CrossRefGoogle Scholar
Clark, P. U., Mitrovica, J. X., Milne, G. A. and Tamisiea, M. E. (2002). Sea-level fingerprinting as a direct test for the source of global meltwater pulse 1A. Science, 295, 2438–41.Google Scholar
Clark, P. U., Archer, D., Pollard, D., et al. (2006). The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in amospheric pCO2. Quat. Sci. Rev., 25, 3150–84.CrossRefGoogle Scholar
Clarke, G. K. C. (2005). Subglacial processes. Annu. Rev. Earth Planet. Sci., 33, 247–76.CrossRefGoogle Scholar
Clarke, G. K. C., Leverington, D. W., Teller, J. T. and Dyke, A. S. (2004). Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 BP cold event. Quat. Sci. Rev., 23, 389–407.CrossRefGoogle Scholar
Claussen, M., Mysak, L. A., Weaver, A. J., et al. (2002). Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim. Dyn., 18, 579–86.Google Scholar
,COHMAP members (1988). Climatic changes of the last 18,000 years: observations and model simulations. Science, 241, 1043–51.CrossRefGoogle Scholar
Comiso, J. C. (2000). Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J. Clim., 13, 1674–96.2.0.CO;2>CrossRefGoogle Scholar
Comiso, J. C. (2003). Warming trends in the Arctic from clear sky satellite observations. J. Clim., 16, 3498–510.2.0.CO;2>CrossRefGoogle Scholar
Comiso, J. C. and Nishio, F. (2008). Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I and SMMR data. J. Geophys. Res., 113, C02S07, doi:10.1029/2007JC004257.CrossRefGoogle Scholar
Comiso, J. C., Wadhams, P., Pedersen, L. T. and Gersten, R. A. (2001). Seasonal and interannual variability of the Odden ice tongue and a study of environmental effects, J. Geophys. Res., 106, 9093–116.CrossRefGoogle Scholar
Compo, G. P., Whitaker, J. S. and Sardeshmukh, P. D. (2006). Feasibility of a 100 year reanalysis using only surface pressure data. Bull. Amer. Meteorol Soc., 87, 175–90.CrossRefGoogle Scholar
Connolley, W. M. (1997). Variability in annual mean circulation in southern high latitudes. Clim. Dyn., 13, 745–56.CrossRefGoogle Scholar
Connolley, W. M. (2002). Long-term variation of the Antarctic Circumpolar Wave. J. Geophys. Res., 107, 8076, doi:10.1029/2000JC000380.Google Scholar
Connolley, W. M. and Bracegirdle, T. J. (2007). An Antarctic assessment of IPCC AR4 coupled models. Geophys. Res. Lett., 34, L22505, doi:10.1029/2007GL031648.CrossRefGoogle Scholar
Connolley, W. M. and King, J. C. (1993). Atmospheric water vapour transport to Antarctica inferred from radiosonde data. Quart. J. Roy. Meteor Soc., 119, 325–42.CrossRefGoogle Scholar
Conway, H., Hall, B. L., Denton, G. H., Gades, A. M. and Waddington, E. D. (1999). Past and future grounding-line retreat of the West Antarctic Ice Sheet. Science, 286, 280–3.CrossRefGoogle ScholarPubMed
Cook, A. J., Fox, A. J., Vaughan, D. G. and Ferrigno, J. G. (2005). Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308, 541–4.CrossRefGoogle ScholarPubMed
Cooper, A. P. R. (1997). Historical observations of Prince Gustav Ice Shelf. Polar Rec., 33, 285–94.CrossRefGoogle Scholar
Cortijo, E., Lehman, S., Keigwin, L., et al. (1999). Changes in meridional temperature and salinity gradients in the North Atlantic Ocean (30°–72°N) during the last interglacial period. Paleoceanography, 14, 23–33.CrossRefGoogle Scholar
Croll, J. (1875). Climate and Time, New York: Appleton & Co.Google Scholar
Crosta, X., Debret, M., Denis, D., Courty, M.-A. and Ther, O. (2007). Holocene long- and short-term climate changes off Adelie Land, East Antarctica. Geochem. Geophys. Geosys., 8, Q11009, doi:10.1029/2007GC001718.CrossRefGoogle Scholar
Crowley, T. J. (2000). Causes of climate change over the past 1000 years. Science, 289, 270–7.CrossRefGoogle ScholarPubMed
Cubasch, U., Meehl, G. A., Boer, G. J., et al. (2001). Projections of future climate change. In Climate Change 2001: The Scientific Basis-Contribution of Working Group I to the Third Assessment Report of the Intergovernment Panel on Climate Change, ed. Houghton, J. T., Ding, Y., Griggs, D. J., et al., Cambridge, UK: Cambridge University Press, pp. 525–82.Google Scholar
Cuffey, K. M. and Clow, G. D. (1997). Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. J. Geophys. Res., 102, 26 383–96.CrossRefGoogle Scholar
Cuffey, K. M., Clow, G. D., Alley, R. B., et al. (1995). Large Arctic temperature change at the Wisconsin-Holocene glacial transition. Science, 270, 455–8.CrossRefGoogle Scholar
Cullather, R. I. and Bromwich, D. H. (2000). The atmospheric hydrologic cycle over the Arctic basin from reanalyses. Part I: Comparison with observations and previous studies. J. Clim., 13, 923–37.2.0.CO;2>CrossRefGoogle Scholar
Cullather, R. I. and Lynch, A. H. (2003). The annual cycle and interannual variability of atmospheric pressure in the vicinity of the North Pole. Int. J. Climatol., 23, 1161–83.CrossRefGoogle Scholar
Cullather, R. I., Bromwich, D. H. and Woert, M. L. (1996). Interannual variations in Antarctic precipitation related to El Niño–Southern Oscillation. J. Geophys. Res., 101, 19 109–18.CrossRefGoogle Scholar
Cullather, R. I., Bromwich, D. H. and Woert, M. L. (1998). Spatial and temporal variability of Antarctic precipitation from atmospheric methods. J. Clim., 11, 334–67.2.0.CO;2>CrossRefGoogle Scholar
Curran, M. A. J., Vanommen, T. D., Morgan, V. I., Phillips, K. L. and Palmer, A. S. (2003). Ice core evidence for Antarctic sea ice decline since the 1950s. Science, 302, 1203–6.CrossRefGoogle ScholarPubMed
Curry, J. A., Rossow, W. B., Randall, D. and Schramm, J. L. (1996). Overview of Arctic cloud and radiation characteristics. J. Clim., 9, 1731–64.2.0.CO;2>CrossRefGoogle Scholar
Czaja, A. and Marshall, J. C. (2006). The partitioning of poleward heat transport between the atmosphere and ocean, J. Atmos. Sci., 63, 1498–511.CrossRefGoogle Scholar
Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., et al. (1998). Past temperatures directly from the Greenland Ice Sheet. Science, 282, 268–71.CrossRefGoogle ScholarPubMed
Dällenbach, A., Blunier, T., Flückiger, J., Stauffer, B., Chappellaz, J. and Raynaud, D. (2000). Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the last glacial and the transition to the Holocene. Geophys. Res. Lett., 27, 1005–8.CrossRefGoogle Scholar
Dansgaard, W. (1985). Greenland ice core studies. Palaeogeog. Palaeoclimatol. Palaeoecol., 50, 185–7.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S. J., Reeh, N., et al. (1975). Climatic changes, Norsemen and modern man. Nature, 255, 24–8.CrossRefGoogle Scholar
Dansgaard, W., White, J. W. C. and Johnsen, S. J. (1989). The abrupt termination of the Younger Dryas climate event. Nature, 339, 532–4.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S. J., Clausen, H. B., et al. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218–20.CrossRefGoogle Scholar
Davis, C. H., Li, Y. H., McConnell, J. R., Frey, M. M. and Hanna, E. (2005). Snowfall-driven growth in East Antarctic ice sheet mitigates recent sea-level rise. Science, 308, 1898–901.CrossRefGoogle ScholarPubMed
Angelis, H. and Kleman, J. (2005). Palaeo-ice streams in the northern Keewatin sector of the Laurentide ice sheet. Ann. Glaciol., 42, 135–44.CrossRefGoogle Scholar
Mare, W. (1997). Abrupt mid-twentieth-century decline in Antarctic sea-ice extent from whaling records. Nature, 389, 57–60.CrossRefGoogle Scholar
Vernal, A. and Hillaire-Marcel, C. (2000). Sea-ice cover, sea-surface salinity and halo-/thermocline structure of the northwest North Atlantic: modern versus full glacial conditions. Quat. Sci. Rev., 19, 65–85.CrossRefGoogle Scholar
Vernal, A. and Hillaire-Marcel, C. (2008). Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science, 320, 1622–5.CrossRefGoogle ScholarPubMed
Vernal, A., Miller, G. H., and Hillaire-Marcel, C. (1991). Paleoenvironments of the last interglacial in northwest North Atlantic region and adjacent mainland Canada. Quat. Int., 10–12, 95–106.CrossRefGoogle Scholar
Vernal, A., Eynaud, F., Hillaire-Marcel, C., et al. (2005). Reconstruction of sea-surface conditions at middle to high latitudes of the Northern Hemisphere during the Last Glacial Maximum (LGM) based on dinoflagellate cyst assemblages. Quat. Sci. Rev., 24, 897–924.CrossRefGoogle Scholar
Vernal, A., Rosell-Melé, A., Kucera, M., et al. (2006). Comparing proxies for the reconstruction of LGM sea-surface conditions in the northern North Atlantic. Quat. Sci. Rev., 25, 2820–34.CrossRefGoogle Scholar
Delmotte, M., Chappellaz, J., Brook, E., et al. (2004). Atmospheric methane during the last four glacial-interglacial cycles: rapid changes and their link with Antarctic temperature. J. Geophys. Res., 109, D12104, doi:10.1029/2003JD004417.CrossRefGoogle Scholar
deMenocal, P., Ortiz, J., Guilderson, T. and Samthein, M. (2000). Coherent high- and low-latitude climate variability during the Holocene warm period. Science, 288, 2198–202.CrossRefGoogle ScholarPubMed
Denton, G. H. and Karlén, W. (1973). Holocene climatic variations: their pattern and possible cause. Quat. Res., 3, 155–205.CrossRefGoogle Scholar
Deser, C. (2000). On the teleconnectivity of the ‘Arctic Oscillation’. Geophys. Res. Lett., 27, 779–82.CrossRefGoogle Scholar
Deser, C., Walsh, J. E. and Timlin, M. S. (2000). Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Clim., 13, 617–33.2.0.CO;2>CrossRefGoogle Scholar
Dickson, R. R. (1999). All change in the Arctic. Nature, 397, 389–91.CrossRefGoogle ScholarPubMed
Dickson, R. R., Meincke, J., Malmberg, S.-A. and Lee, A. J. (1988). The ‘Great Salinity Anomaly’ in the Northern North Atlantic 1968–1982. Prog. Oceanogr., 20, 103–51.CrossRefGoogle Scholar
Dickson, R. R., Lazier, J., Meincke, J., Rhines, P. and Swift, J. (1996). Long-term co-ordinated changes in the convective activity of the North Atlantic. Prog. Oceanogr., 38, 241–95.CrossRefGoogle Scholar
Dickson, R. R., Osborn, T. J., Hurrell, J. W., et al. (2000). The Arctic Ocean response to the North Atlantic Oscillation. J. Clim., 13, 2671–96.2.0.CO;2>CrossRefGoogle Scholar
Dickson, R. R., Yashayaev, I., Meincke, J., et al. (2002). Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature, 416, 832–7.CrossRefGoogle ScholarPubMed
Divine, D. V. and Dick, C. (2006). Historical variability of sea ice edge position in the Nordic Seas. J. Geophys. Res., 111, C01001, doi:10.1029/2004JC002851.CrossRefGoogle Scholar
Doake, C. S. and Vaughan, D. G. (1991). Rapid disintegration of the Wordie Ice Shelf in response to atmospheric warming. Nature, 350, 328–30.CrossRefGoogle Scholar
Domack, E., Duran, D., Leventer, A., et al. (2005). Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature, 436, 681–5.CrossRefGoogle Scholar
Dorale, J. A., Onac, B. P., Fornós, J. J., et al. (2010). Sea-level highstand 81,000 years ago in Mallorca. Science, 327, 860–3.CrossRefGoogle ScholarPubMed
Doran, P. T., Wharton, R. A. and Lyons, W. B. (1994). Paleolimnology of the McMurdo Dry Valleys, Antarctica. J. Paleolimnol., 19, 85–114.CrossRefGoogle Scholar
Doran, P. T., Priscu, J. C., Lyons, W. B., et al. (2002). Antarctic climate cooling and terrestrial ecosystem response. Nature, 415, 517–20.CrossRefGoogle ScholarPubMed
Douglas, M. S. V., Smol, J. P. and Blake, W. (1994). Marked post-18th century environmental-change in high-Arctic ecosystems. Science, 266, 416–19.CrossRefGoogle ScholarPubMed
Dowdeswell, J. A., Hagen, J. O., Bjornsson, H., et al. (1997). The mass balance of circum-Arctic glaciers and recent climate change. Quat. Res., 48. 1–14.CrossRefGoogle Scholar
Drinkwater, M., Long, M. D. and Bingham, A. (2001). Greenland snow accumulation estimates from satellite radar scatterometer data. J. Geophys. Res., 106, 33 935–50.CrossRefGoogle Scholar
Dukhovskoy, D. S., Johnson, M. A. and Proshutinsky, A. (2004). Arctic decadal variability: an auto-oscillatory system of heat and fresh water exchange. Geophys. Res. Lett., 31, L03302, doi:10.1029/2003GL019023.CrossRefGoogle Scholar
Dyke, A. S. and Prest, V. K. (1987). Late Wisconsinan and Holocene history of the Laurentide Ice Sheet. Geogr. Phys. Quatern., 41, 237–63.Google Scholar
Dyke, A. S., Hooper, J. and Savelle, J. M. (1996). A history of sea ice in the Canadian Arctic Archipelago based on postglacial remains of the bowhead whale (Balaena mysticetus). Arctic, 49, 235–55.CrossRefGoogle Scholar
Dyke, A. S., England, J., Reimnitz, E. and Jette, H. (1997). Changes in driftwood delivery to the Canadian Arctic archipelago: the hypothesis of postglacial oscillations of the transpolar drift. Arctic, 50, 1–8.CrossRefGoogle Scholar
Dyke, A. S., Andrews, J. T., Clark, P. U., et al. (2002). The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quat. Sci. Rev., 21, 9–31.CrossRefGoogle Scholar
Dyurgerov, M. B. (2001). Mountain glaciers at the end of the twentieth century: global analysis in relation to climate and water cycle. Polar Geogr., 25, 241–336.CrossRefGoogle Scholar
Dyurgerov, M. B. and Meier, M. F. (2000). Twentieth century climate change: evidence from small glaciers. Proc. Natl. Acad. Sci., 97, 1406–11.CrossRefGoogle ScholarPubMed
Eddy, J. A. (1976). Maunder minimum. Science, 192, 1189–202.CrossRefGoogle ScholarPubMed
Elkibbi, M. and Rial, J. A. (2001). An outsider's review of the astronomical theory of the climate: is the eccentricity-driven insolation the main driver of the ice ages? Earth-Sci. Rev., 56, 161–77.CrossRefGoogle Scholar
Ellis, J. M. and Calkin, P. E. (1984). Chronology of Holocene glaciation, central Brooks Range, Alaska. Bull. Geol. Soc. Amer., 95, 897–912.2.0.CO;2>CrossRefGoogle Scholar
Emiliani, C. (1955). Pleistocene temperatures. J. Geol., 63, 538–78.CrossRefGoogle Scholar
Emslie, S. D., Coats, L. and Licht, K. (2007). A 45,000 yr record of Adélie penguins and climate change in the Ross Sea, Antarctica. Geology, 35, 61–4.CrossRefGoogle Scholar
England, J., Atkinson, N., Bednarski, J., et al. (2006). The Innuitian Ice Sheet: configuration, dynamics and chronology. Quat. Sci. Rev., 25, 689–703.CrossRefGoogle Scholar
,EPICA Community Members (2004). Eight glacial cycles from an Antarctic ice core. Nature, 429, 623–8.CrossRefGoogle Scholar
,EPICA Community Members (2006). One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444, 195–8.CrossRefGoogle Scholar
Etheridge, D. M., Steele, L. P., Langenfelds, R. L., et al. (1996). Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn, J. Geophys. Res., 101, 4115–28.CrossRefGoogle Scholar
Evans, J., Pudsey, C. J., Ó Cofaigh, C., Morris, P. and Domack, E. (2005). Late Quaternary glacial history, flow dynamics and sedimentation along the eastern margin of the Antarctic Peninsula Ice Sheet. Quat. Sci. Rev., 24, 741–74.CrossRefGoogle Scholar
Fahrbach, E., Hoppema, M., Rohardt, G., Schröder, M. and Wisotzki, A. (2004). Decadal-scale variations of water mass properties in the deep Weddell Sea. Ocean Dyn., 54, 77–91.CrossRefGoogle Scholar
Farley, K. A. and Patterson, D. B. (1995). A 100-kyr periodicity in the flux of extraterrestrial 3He to the sea floor. Nature, 378, 600–3.Google Scholar
Farman, J. C., Gardiner, B. G. and Shanklin, J. D. (1985). Large losses of total ozone in Antarctica reveal seasonal CClOx/NOx interaction. Nature, 315, 207–10.CrossRefGoogle Scholar
Feldstein, S. B. (2000). Teleconnections and ENSO: the timescale, power spectra, and climate noise properties. J. Clim., 13, 4430–40.2.0.CO;2>CrossRefGoogle Scholar
Feldstein, S. B. (2002). The recent trend and variance increase of the annular mode. J. Clim., 15, 88–94.2.0.CO;2>CrossRefGoogle Scholar
Fischer, H., Wahlen, M., Smith, J., Mastroianni, D., and Deck, B. (1999). Ice core records of atmospheric CO2 around the last three glacial terminations. Science, 283, 1712–14.CrossRefGoogle ScholarPubMed
Fischer, H., Traufetter, F., Oerter, H., Weller, R. and Miller, H. (2004). Prevalence of the Antarctic Circumpolar Wave over the last two millenia recorded in Dronning Maud Land ice. Geophys. Res. Lett., 31, L08202, doi:10.1029/2003GL019186.CrossRefGoogle Scholar
Fischer, H., Siggaard-Andersen, M. L., Ruth, U., Rothlisberger, R. and Wolff, E. (2007). Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: sources, transport, and deposition. Rev. Geophys., 45, RG1002, doi:10.1029/2005RG000192.CrossRefGoogle Scholar
Fisher, D. A., and Koerner, R. M. (2003). Holocene ice-core climate history: a multi-variable approach. In Global Change in the Holocene, ed. Mackay, A., Battarbee, R., Birks, J., and Oldfield, F., London: Arnold, pp. 281–93.Google Scholar
Fogt, R. L. and Bromwich, D. H. (2006). Decadal variability of the ENSO teleconnection to the high latitude South Pacific governed by coupling with the Southern Annular Mode. J. Clim., 19, 979–97.CrossRefGoogle Scholar
Foldvik, A., Gammelsrod, T., Osterhus, S., et al. (2004). Ice shelf water overflow and bottom water formation in the southern Weddell Sea. J. Geophys. Res., 109, C02015, doi:10.1029/2003JC002008.CrossRefGoogle Scholar
Fox, A. J. and Cooper, A. P. R. (1998). Climate change indicators from archival aerial photography of the Antarctic Peninsula. Ann. Glaciol., 27, 636–42.CrossRefGoogle Scholar
Francis, J. A. (1994). Improvements to TOVS retrievals over sea ice and applications to estimating Arctic energy fluxes. J. Geophys. Res., 99, 10 395–408.CrossRefGoogle Scholar
Frauenfeld, O. W., Zhang, T., Barry, R. G. and Gilichinsky, D. (2004). Interdecadal changes in seasonal freeze and thaw depths in Russia. J. Geophys. Res., 109, D05101, doi:10.1029/2003JD004245.CrossRefGoogle Scholar
Fréchette, B., Wolfe, A. P., Miller, G. H., Richard, P. J. H., and Vernal, A. (2006). Vegetation and climate of the last interglacial on Baffin Island, Arctic Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol., 236, 91–106.CrossRefGoogle Scholar
French, H. M. (1996). The Periglacial Environment, 2nd edn., Harlow, UK: Longmans.Google Scholar
Fronval, T. and Jansen, E. (1996). Rapid changes in ocean circulation and heat flux in the Nordic seas during the last interglacial period. Nature, 383, 806–10.CrossRefGoogle Scholar
Fyfe, J. C. (2006). Southern Ocean warming due to human influence. Geophys. Res. Lett., 33, L19701, doi:10.1029/2006GL027247.CrossRefGoogle Scholar
Fyfe, J. C. and Lorenz, D. J. (2005). Characterizing midlatitude jet variability: lessons from a simple GCM. J. Clim., 18, 3400–4.CrossRefGoogle Scholar
Fyfe, J. C. and Saenko, O. A. (2006). Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett., 33, L06701, doi:10.1029/2005GL025332.CrossRefGoogle Scholar
Gallée, H., Ypersele, J. P., Fichefet, T., Tricot, C. and Berger, A. (1991). Simulation of the last glacial cycle by a coupled, sectorially averaged climate-ice sheet model, 1. The climate model. J. Geophys. Res., 96, 13 139–61.CrossRefGoogle Scholar
Ganachaud, A. and Wunsch, C. (2000). Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453–7.CrossRefGoogle ScholarPubMed
Ganopolski, A. and Rahmstorf, S. (2001). Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409, 153–8.CrossRefGoogle Scholar
Ganopolski, A., Rahmstorf, S., Petoukhov, V. and Claussen, M. (1998). Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature, 391, 351–6.CrossRefGoogle Scholar
Garrett, J. F. (1980). Availability of the FGGE drifting buoy system data set. Deep-Sea Res., 27A, 1083–6.CrossRefGoogle Scholar
Garrett, T. J., and Zhao, C. F. (2006). Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440, 787–9.CrossRefGoogle ScholarPubMed
Genthon, C. and Krinner, G. (1998). Convergence and disposal of energy and moisture on the Antarctic polar cap from ECMWF reanalyses and forecasts. J. Clim., 11, 1703–16.2.0.CO;2>CrossRefGoogle Scholar
Genthon, C., Krinner, G. and Sacchettini, M. (2003). Interannual Antarctic tropospheric circulation and precipitation variability. Clim. Dyn., 21, 289–307.CrossRefGoogle Scholar
Genthon, C., Kaspari, S. and Mayewski, P. A. (2005). Interannual variability of the surface mass balance of West Antarctica from ITASE cores and ERA40 reanalyses, 1958–2000. Clim. Dyn., 24, 759–70.CrossRefGoogle Scholar
Genty, D., Blamart, D., Ouahdi, R., et al. (2003). Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature, 421, 833–7.CrossRefGoogle ScholarPubMed
Gersonde, R. and Zielinski, U. (2000). The reconstruction of late Quaternary Antarctic sea-ice distribution: the use of diatoms as a proxy for sea-ice. Palaeogeog. Palaeoclimatol. Palaeoecol., 162, 263–86.CrossRefGoogle Scholar
Gersonde, R., Crosta, X., Abelmann, A. and Armand, L. (2005). Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum: a circum-Antarctic view based on siliceous microfossil records. Quat. Sci. Rev., 24, 869–96.CrossRefGoogle Scholar
Gibb, J. G. (1986). A New Zealand regional Holocene eustatic sea level curve and its application for determination of vertical tectonic movements. Bull. Roy. Soc. New Zealand, 24, 377–95.Google Scholar
Gibson, J. K., Kållberg, P. and Uppala, S. (1996). The ECMWF re-analysis (ERA) project. ECMWF Newsletter, 7–17.Google Scholar
Gille, S. T. (2002). Warming of the Southern Ocean since the 1950s. Science, 295, 1275–7.CrossRefGoogle ScholarPubMed
Gille, S. T. (2008). Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Clim., 21, 4749–65.CrossRefGoogle Scholar
Gillett, N. P., Allen, M. R. and Williams, K. D. (2003). Modelling the atmospheric response to doubled CO2 and depleted stratospheric ozone using a stratosphere-resolving coupled GCM. Quart. J. Roy. Meteor. Soc., 129, 947–66.CrossRefGoogle Scholar
Gillett, N. P., Stone, D. A., Stott, P. A., et al. (2009). Attribution of polar warming to human influence. Nature Geosci., 1, 750–4.CrossRefGoogle Scholar
Gloersen, P. (1995). Modulation of hemispheric sea-ice cover by ENSO events. Nature, 373, 503–6.CrossRefGoogle Scholar
Gloersen, P. and White, W. B. (2001). Reestablishing the circumpolar wave in sea ice around Antarctica from one winter to the next. J. Geophys. Res., 106, 4391–5.CrossRefGoogle Scholar
Gong, D. and Wang, S. (1999). Definition of Antarctic oscillation index. Geophys. Res. Lett., 26, 459–62.CrossRefGoogle Scholar
Goodwin, I. D. (1998). Did changes in Antarctic ice volume influence late Holocene sea-level lowering? Quat. Sci. Rev., 17, 319–32.CrossRefGoogle Scholar
Goodwin, I. D., Ommen, T. D., Curran, M. A. J. and Mayewski, P. A. (2004). Mid latitude winter climate variability in the South Indian and southwest Pacific regions since 1300 AD. Clim. Dyn., 22, 783–94.CrossRefGoogle Scholar
Goosse, H. and Renssen, H. (2001). A two-phase response of the Southern Ocean to an increase in greenhouse gas concentrations. Geophys. Res. Lett., 28, 3469–72.CrossRefGoogle Scholar
Goosse, H. and Renssen, H. (2005). A simulated reduction in antarctic sea-ice area since 1750: implications of the long memory of the ocean. Int. J. of Climatol., 25, 569–79.CrossRefGoogle Scholar
Grant, A. N., Brönnimann, S. and Haimberger, L. (2008). Recent Arctic warming vertical structure contested. Nature, 455, E2–E3.CrossRefGoogle ScholarPubMed
Grachev, A. M. and Severinghaus, J. P. (2005) A revised +10 ± 4 °C magnitude of the abrupt change in Greenland temperature at the Younger Dryas termination using published GISP2 gas isotope data and air thermal diffusion constants. Quat. Sci Rev. 24, 513–19.CrossRefGoogle Scholar
Graversen, R. G., Mauritsen, T., Tjernstrom, M., Kallen, E. and Svensson, G. (2008). Vertical structure of recent Arctic warming. Nature, 451, 53–6.CrossRefGoogle ScholarPubMed
Gregory, J. M., Huybrechts, P. and Raper, S. C. B. (2004). Climatology: threatened loss of the Greenland ice-sheet. Nature, 428, 616.CrossRefGoogle ScholarPubMed
Groisman, P. Y., Karl, T. R., Knight, R. W. and Stenchikov, G. L. (1994). Changes of snow cover, temperature, and radiative heat balance over the northern hemisphere. J. Clim., 7, 1633–56.2.0.CO;2>CrossRefGoogle Scholar
Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. and Jouzel, J. (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366, 552–4.CrossRefGoogle Scholar
Grove, J. M. (1990). The Little Ice Age, London: Routledge.Google Scholar
Grudd, H., Briffa, K. R., Karlen, W., et al. (2002). A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales. Holocene, 12, 657–65.CrossRefGoogle Scholar
Grumet, N. S., Wake, C. P., Mayewski, P. A., et al. (2001). Variability of sea-ice extent in Baffin Bay over the last millennium. Climatic Change, 49, 129–45.CrossRefGoogle Scholar
Guo, Z. C., Bromwich, D. H. and Cassano, J. J. (2003). Evaluation of Polar MM5 simulations of Antarctic atmospheric circulation. Mon. Wea. Rev., 131, 384–411.2.0.CO;2>CrossRefGoogle Scholar
Haas, C., Nicolaus, M., Willmes, S., Worby, A. and Flinspach, D. (2008). Sea ice and snow thickness and physical properties of an ice floe in the western Weddell Sea and their changes during spring warming. Deep-Sea Res. II, 55, 963–74.CrossRefGoogle Scholar
Haigh, J. D. (1996). The impact of solar variability on climate. Science, 272, 981–4.CrossRefGoogle ScholarPubMed
Hall, A. and Visbeck, M. (2002). Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the Annular Mode. J. Clim., 15, 3043–57.2.0.CO;2>CrossRefGoogle Scholar
Hallberg, R. and Gnanadesikan, A. (2006). The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: results from the modeling eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 2232–52.CrossRefGoogle Scholar
Hanna, E. and Cappelen, J. (2003). Recent cooling in coastal southern Greenland and relation with the North Atlantic Oscillation. Geophys. Res. Lett., 30, 1132, doi:10.1029/2002GL015797.CrossRefGoogle Scholar
Hanna, E., Huybrechts, P. and Mote, T. L. (2002). Surface mass balance of the Greenland ice sheet from climate-analysis data and accumulation/runoff models. Ann. Glaciol., 35, 67–72.CrossRefGoogle Scholar
Hanna, E., Jónsson, T. and Box, J. E. (2004). An analysis of the Icelandic climate since the nineteenth century. Int. J. Climatol., 24, 1193–210.CrossRefGoogle Scholar
Harris, J. M. (1992). An analysis of 5-day midtropospheric flow patterns for the south pole: 1985–1989. Tellus, 44B, 409–21.CrossRefGoogle Scholar
Hartmann, D. L. and Lo, F. (1998). Wave-driven zonal flow vacillation on the Southern Hemisphere. J. Atmos. Sci., 55, 1303–15.2.0.CO;2>CrossRefGoogle Scholar
Hartmann, D. L., Wallace, J. M., Limpasuvan, V., Thompson, D. W. J. and Holton, J. R. (2000). Can ozone depletion and global warming interact to produce rapid climate change? Proc. Natl. Acad. Sci., 97, 1412–17.CrossRefGoogle ScholarPubMed
Harvey, L. D. D. (1980). Solar variability as a contributing factor to Holocene climatic change. Prog. Phys. Geogr., 4, 487–530.CrossRefGoogle Scholar
Hays, J. D., Imbrie, J. and Shackleton, N. J. (1976). Variations in the Earth's orbit: pacemaker of the ice ages. Science, 194, 1121–32.CrossRefGoogle ScholarPubMed
Hearty, P. J., Kindler, P., Cheng, H., and Edwards, R. L. (1999). A +20 m middle Pleistocene sea-level highstand (Bermuda and the Bahamas) due to partial collapse of Antarctic ice. Geology, 27, 375–8.2.3.CO;2>CrossRefGoogle Scholar
Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the Northeast Atlantic-Ocean during the past 130,000 years. Quat. Res., 29, 142–52.CrossRefGoogle Scholar
Hemming, S. R. (2004). Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys., 42, RG1005, doi:10.1029/2003RG000128.CrossRefGoogle Scholar
Herber, A., Thomason, L. W., Dethloff, K., et al. (1996). Volcanic perturbation of the atmosphere in both polar regions: 1991–1994. J. Geophys. Res., 101, 3921–8.CrossRefGoogle Scholar
Herber, A., Thomason, L. W., Gernandt, H., et al. (2002). Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999. J. Geophys. Res., 107, 4097, doi:10.1029/2001JD000536.CrossRefGoogle Scholar
Herterich, K. (1988). A three-dimensional model of the Antarctic ice sheet. Ann. Glaciol., 11, 32–5.CrossRefGoogle Scholar
Heusser, C. J. (1989). Southern westerlies during the last glacial maximum. Quat. Res., 31, 423–5.CrossRefGoogle Scholar
Hewitt, C. D., Stouffer, R. J., Broccoli, A. J., Mitchell, J. F. B. and Valdes, P. J. (2003). The effect of ocean dynamics in a coupled GCM simulation of the Last Glacial Maximum. Clim. Dyn., 20, 203–18.CrossRefGoogle Scholar
Hillaire-Marcel, C., Vernal, A., Bilodeau, G. and Weaver, A. J. (2001). Absence of deep-water formation in the Labrador Sea during the last interglacial period. Nature, 410, 1073–7.CrossRefGoogle ScholarPubMed
Hines, K. M., Bromwich, D. H. and Marshall, G. J. (2000). Artificial surface pressure trends in the NCEP/NCAR reanalysis over the Southern Ocean and Antarctica. J. Clim., 12, 3940–52.2.0.CO;2>CrossRefGoogle Scholar
Hines, K. M. and Bromwich, D. H., (2008). Development and testing of Polar WRF. Part I. Greenland ice sheet meteorology, Mon. Wea. Rev., 136, 1971–89.CrossRefGoogle Scholar
Hjort, C., Ingólfsson, O., Moller, P. and Lirio, J. M. (1997). Holocene glacial history and sea-level changes on James Ross Island, Antarctic Peninsula. J. Quat. Sci., 12, 259–73.3.0.CO;2-6>CrossRefGoogle Scholar
Hjort, C., Ingólfsson, O., Bentley, M. J. and Björck, S. (2003). Late Pleistocene and Holocene glacial and climate history of the Antarctic Peninsula region: a brief overview of the land and late sediment records. In Antarctic Peninsula Climate Variability: A Historical and Paeoenvironmental Perspective. Antarctic Research Series 79, ed. Domack, E., Burnett, A., Convey, P., Kirby, M., and Bindschadler, R., Washington, DC: American Geophysical Union, pp. 95–101.Google Scholar
Hodgson, D. and Vincent, J. S. (1984). A 10,000 year B.P. extensive ice shelf over Viscount Melville Sound, Arctic Canada. Quat. Res., 22, 18–30.CrossRefGoogle Scholar
Hodgson, D. A. and Convey, P. (2005). A 7000-year record of oribatid mite communities on a maritime-Antarctic island: responses to climate change. Arct. Antarct. Alp. Res., 37, 239–45.CrossRefGoogle Scholar
Hodgson, D. A., Verleyen, E., Sabbe, K., et al. (2005). Late Quaternary climate-driven environmental change in the Larsemann Hills, East Antarctica, multi-proxy evidence from a lake sediment core. Quat. Res., 64, 83–99.CrossRefGoogle Scholar
Hogg, A. M., Meredith, M. P., Blundell, J. R. and Wilson, C. (2008). Eddy heat flux in the Southern Ocean: response to variable wind forcing. J. Clim., 21, 608–20.CrossRefGoogle Scholar
Holland, D. M., Jacobs, S. S. and Jenkins, A. (2003). Modeling Ross Sea ice shelf – ocean interaction. Antarct. Sci., 15, 13–23.CrossRefGoogle Scholar
Holland, M. M. and Bitz, C. M. (2003). Polar amplification of climate change in coupled models. Clim. Dyn., 21, 221–32.CrossRefGoogle Scholar
Hoskins, B. J. and Hodges, K. I. (2002). New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 1041–61.2.0.CO;2>CrossRefGoogle Scholar
Hoskins, B. J. and Hodges, K. I. (2005). A new perspective on Southern Hemisphere storm tracks. J. Clim., 18, 4108–29.CrossRefGoogle Scholar
Hoskins, B. J. and Karoly, D. J. (1981). The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–96.2.0.CO;2>CrossRefGoogle Scholar
Hu, R. M., Blanchet, J. P. and Girard, E. (2005). Evaluation of the direct and indirect radiative and climate effects of aerosols over the western Arctic. J. Geophys. Res., 110, D11213, doi:10.1029/2004JD005043.CrossRefGoogle Scholar
Huber, C., Leuenberger, M., Spahni, R., et al. (2006). Isotope calibrated Greenland temperature record over Marine Isotope Stage 3 and its relation to CH4. Earth Planet. Sci. Lett., 243, 504–19.CrossRefGoogle Scholar
Hughes, C. W., Woodworth, P. L., Meredith, M. P., et al. (2003). Coherence of Antarctic sea levels, Southern Hemisphere Annular Mode, amd flow through Drake Passage. Geophys. Res. Lett., 30, 1464, doi:10.1029/2003GL017240.CrossRefGoogle Scholar
Hulbe, C. L., MacAyeal, D. R., Denton, G. H., Kleman, J. and Lowell, T. V. (2004). Catastrophic ice shelf breakup as the source of Heinrich event icebergs. Paleoceanography, 19, PA1004, doi:10.1029/2003PA000890.CrossRefGoogle Scholar
Hurrell, J. W. (1995). Decadal trends in the North-Atlantic oscillation: regional temperatures and precipitation. Science, 269, 676–9.CrossRefGoogle ScholarPubMed
Hurrell, J. W. (1996). Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett., 23, 665–8.CrossRefGoogle Scholar
Hurrell, J. W., Kushnir, Y., Ottersen, G. and Visbeck, M. (2003). An overview of the North Atlantic Oscillation. In The North Atlantic Oscillation, ed. Hurrell, J. W., Kushnir, Y., Ottersen, G. and Visbeck, M., Washington, DC: American Geophysical Union, pp. 1–35.Google Scholar
Huybers, P. and Denton, G. (2008). Antarctic temperature at orbital timescales controlled by local summer duration. Nat. Geosci., 1, 787–92.CrossRefGoogle Scholar
Huybers, P. and Wunsch, C. (2005). Obliquity pacing of the late Pleistocene glacial terminations. Nature, 434, 491–4.CrossRefGoogle ScholarPubMed
Huybrechts, P. and Wolde, J. (1999). The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J. Clim., 12, 2169–88.2.0.CO;2>CrossRefGoogle Scholar
Huybrechts, P., Gregory, J., Janssens, I. and Wild, M. (2004). Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations. Global Planet. Change, 42, 83–105.CrossRefGoogle Scholar
Ichiyanagi, K., Numaguti, A. and Kato, K. (2002). Interannual variation of stable isotopes in Antarctic precipitation in response to El Niño-Southern Oscillation. Geophys. Res. Lett., 29, 1001, doi:10.1029/2000GL012815.CrossRefGoogle Scholar
Ikehara, M., Kawamura, K., Ohkouchi, N., et al. (1997). Alkenone sea surface temperature in the Southern Ocean for the last two deglaciations. Geophys. Res. Lett., 24, 679–82.CrossRefGoogle Scholar
Imbrie, J., Berger, A., Boyle, E. A., et al. (1993). On the structure and origin of major glaciation cycles. 2. The 100,000-year cycle. Paleoceanography, 8, 699–735.CrossRefGoogle Scholar
Indermuhle, A., Stocker, T. F., Joos, F., et al. (1999). Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature, 398, 121–6.CrossRefGoogle Scholar
Intrieri, J. M. and Shupe, M. D. (2004). Characteristics and radiative effects of diamond dust over the western Arctic Ocean region. J. Clim., 17, 2953–60.2.0.CO;2>CrossRefGoogle Scholar
,IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK: Cambridge University Press.Google Scholar
Jacobs, G. A. and Mitchell, J. L. (1996). Ocean circumpolar variations associated with the Antarctic Circumpolar Wave. Geophys. Res. Lett., 23, 2947–50.CrossRefGoogle Scholar
Jacobs, S. S., Giulivi, C. F. and Mele, P. A. (2002). Freshening of the Ross Sea during the late 20th century. Science, 297, 386–9.CrossRefGoogle ScholarPubMed
Jakobsson, M., Løvlie, R., Arnold, E. M., et al. (2001). Pleistocene stratigraphy and paleoenvironmental variation from Lomonosov Ridge sediments, central Arctic Ocean. Global Planet. Change, 31, 1–22.CrossRefGoogle Scholar
Jansen, J. H. F., Kuijpers, A. and Troelstra, S. R. (1986). A mid-Brunhes climatic event: long-term changes in global atmosphere and ocean circulation. Science, 232, 619–22.CrossRefGoogle ScholarPubMed
Jennings, A. E. and Weiner, N. W. (1996). Environmental change in eastern Greenland during the last 1300 years: evidence from foraminifera and lithofacies in Nansen Fjord, 68° N. Holocene, 6, 179–91.CrossRefGoogle Scholar
Jennings, A. E., Knudsen, K. L., Hald, M., Hansen, C. V. and Andrews, J. T. (2002). A mid-Holocene shift in Arctic sea-ice variability on the East Greenland Shelf. Holocene, 12, 49–58.CrossRefGoogle Scholar
Jiang, H., Seidenkrantz, M.-S., Knudsen, K. L. and Eriksson, J. (2002). Late-Holocene summer sea-surface temperatures based on a diatom record from the north Icelandic shelf. Holocene, 12, 137–47.Google Scholar
Jiang, X., Pawson, S., Camp, C. D., et al. (2008). Interannual variability and trends of extratropical ozone. Part I: Northern Hemisphere. J. Atmos. Sci., 65, 3013–29.CrossRefGoogle Scholar
Johannessen, O. M., Bengtsson, L., Miles, M. W., et al. (2004). Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus, 56A, 328–41.CrossRefGoogle Scholar
Johnsen, K. P., Miao, J. and Kidder, S. Q. (2004). Comparison of atmospheric water vapor over Antarctica derived from CHAMP/GPS and AMSU-B data. Phys. Chem. Earth, 29, 251–5.CrossRefGoogle Scholar
Johnsen, S. J., Clausen, H. B., Dansgaard, W., et al. (1992). Irregular glacial interstadials recorded in a new Greenland ice core. Nature, 359, 311–13.CrossRefGoogle Scholar
Johnson, R. G. and Lauritzen, S.-E. (1995). Hudson Bay–Hudson Strait Jökulhlaups and Heinrich events: a hypothesis. Palaeogeog. Palaeoclimatol. Palaeoecol., 117, 123–37.CrossRefGoogle Scholar
Jones, A., Bowden, T. and Turner, J. (1998). Predicting total ozone based on GTS data: applications for Southern Hemisphere high-latitude populations. J. Appl. Meteorol., 37, 477–85.2.0.CO;2>CrossRefGoogle Scholar
Jones, D. A. and Simmonds, I. (1993). A climatology of Southern Hemisphere extratropical cyclones. Clim. Dyn., 9, 131–45.CrossRefGoogle Scholar
Jones, J. M. and Widmann, M. (2003). Instrument- and tree-ring-based estimates of the Antarctic oscillation. J. Clim., 16, 3511–24.2.0.CO;2>CrossRefGoogle Scholar
Jones, J. M., Fogt, R. L., Widmann, M., et al. (2009) Historical Southern Hemisphere Annular Mode variability. Part I: Century length seasonal reconstructions of the Southern Hemisphere Annular Mode. J. Clim., 22, 5319–45.CrossRefGoogle Scholar
Jones, P. D. (1990). Antarctic temperatures over the present century: a study of the early expedition record. J. Clim., 3, 1193–203.2.0.CO;2>CrossRefGoogle Scholar
Jones, P. D., Osborn, T. J. and Briffa, K. R. (2003). Pressure-based measures of the North Atlantic Oscillation (NAO): a comparison and an assessment of changes in the strength of the NAO and in its influence on surface climate parameters. In The North Atlantic Oscillation, ed. Hurrell, J. W., Kushnir, Y., Ottersen, G. and Visbeck, M., Washington, DC: American Geophysical Union, pp. 51–62.Google Scholar
Jones, V. J., Hodgson, D. A. and Chepstow-Lusty, A. P. (2000). Palaeolimnological evidence for marked Holocene environmental changes on Signy Island, Antarctica. Holocene, 10, 43–60.CrossRefGoogle Scholar
Jorgenson, M. T., Racine, C. H. and Osterkamp, T. (2001). Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Climatic Change, 48, 551–79.CrossRefGoogle Scholar
Jourdain, B. and Legrand, M. (2001). Seasonal variations of atmospheric dimethylsulfide, dimethylsulfoxide, sulfur dioxide, methanesulfonate, and non-sea-salt sulfate aerosols at Dumont d'Urville (coastal Antarctica) (December 1998 to July 1999). J. Geophys. Res., 106, 14 391–408.CrossRefGoogle Scholar
Joussaume, S. and Taylor, K. E. (1995) Status of the Paleoclimate Modeling Intercomparison Project (PMIP). In Proceedings of the First International AMIP Scientific Conference WCRP-92, Monterey, CA. ed. Gates, L. W., Geneva: WMO, pp. 425–430.Google Scholar
Jouzel, J., Alley, R. B., Cuffey, K. M., et al. (1997). Validity of the temperature reconstruction from water isotopes in ice cores. J. Geophys. Res., 102, 26 471–87.CrossRefGoogle Scholar
Jouzel, J., Masson-Delmotte, V., Cattani, O., et al. (2007). Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317, 793–6.CrossRefGoogle ScholarPubMed
Kahl, J. D., Serreze, M. C., Shiotani, S., Skony, S. M. and Schnell, R. C. (1992). In-situ meteorological sounding archives for Arctic studies. Bull. Amer. Meteorol. Soc., 73, 1824–30.2.0.CO;2>CrossRefGoogle Scholar
Kahl, J. D. W., Serreze, M. C., Stone, R. S., Shiotani, S., Kisley, M. and Schnell, R. C. (1993). Tropospheric temperature trends in the Arctic: 1958–1986. J. Geophys. Res., 98, 12 825–38.CrossRefGoogle Scholar
Kaleschke, L., Richter, A., Burrows, J., et al. (2004). Frost flowers on sea ice as a source of sea salt and their influence on tropospheric halogen chemistry. Geophys. Res. Lett., 31, L16114, doi:10.1029/2004GL020655.CrossRefGoogle Scholar
Kalnay, E., Kanamitsu, M., Kistler, R., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteorol. Soc., 77, 437–71.2.0.CO;2>CrossRefGoogle Scholar
Kanamitsu, M., Ebisuzaki, W., Woolen, J., et al. (2002). NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteorol. Soc., 83, 1631–43.CrossRefGoogle Scholar
Kapsner, W. R., Alley, R. B., Shuman, C. A., Anandakrishnan, S. and Grootes, P. M. (1995). Dominant influence of atmospheric circulation on snow accumulation in Greenland over the past 18,000 years. Nature, 373, 52–4.CrossRefGoogle Scholar
Kaspari, S., Mayewski, P. A., Dixon, D., et al. (2004). Climate variability in West Antarctica derived from annual accumulation rate records from ITASE firn/ice cores. Ann. Glaciol., 39, 585–94.CrossRefGoogle Scholar
Kawamura, K., Parrenin, F., Lisiecki, L., et al. (2007). Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature, 448, 912–16.CrossRefGoogle ScholarPubMed
Key, J. R., Santek, D., Velden, C. S., et al. (2003). Cloud-drift and water vapor winds in the polar regions from MODIS. IEEE Trans. Geosci. Remote Sens., 41, 482–92.CrossRefGoogle Scholar
Khodri, M., Leclainche, Y., Ramstein, G., et al. (2001). Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature, 410, 570–4.CrossRefGoogle ScholarPubMed
Kidson, J. W. (1999). Principal modes of Southern Hemisphere low-frequency variability obtained from NCEP-NCAR reanalyses. J. Clim., 12, 2808–30.2.0.CO;2>CrossRefGoogle Scholar
King, J. C. and Harangozo, S. A. (1998). Climate change in the western Antarctic Peninsula since 1945: observations and possible causes. Ann. Glaciol., 27, 571–5.CrossRefGoogle Scholar
King, J. C. and Turner, J. (1997). Antarctic Meteorology and Climatology, Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Kistler, R., Kalnay, E., Collins, W., et al. (2001). The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull. Amer. Meteorol. Soc., 82, 247–67.2.3.CO;2>CrossRefGoogle Scholar
Kleiber, H.-P., Knies, J., and Niessen, F. (2000). The Late Weichselian glaciation of the Franz Victoria Trough, northern Barents Sea: ice sheet extent and timing. Mar. Geol., 168, 25–44.CrossRefGoogle Scholar
Kleman, J., Fastook, J., and Stroeven, A. P. (2002). Geologically and geomorphologically constrained numerical model of Laurentide Ice Sheet inception and build-up. Quat. Int., 95–96, 87–98.CrossRefGoogle Scholar
Klitgaard-Kristensen, D., Rasmussen, T. L., Sejrup, H. P., Haflidason, H. and Weering, T. C. E. (1998). Rapid changes in the oceanic fronts in the Norwegian Sea during the last deglaciation: implications for the Younger Dryas cooling event. Mar. Geol., 152, 177–88.CrossRefGoogle Scholar
Knies, J., Kleiber, H.-P., Matthiessen, J., Müller, C. and Nowaczyk, N. (2001). Marine records indicate maximum extent of Saalian and Weichselian ice-sheets along the northern Eurasian margin. Global Planet. Change, 31, 45–64.CrossRefGoogle Scholar
Knorr, G. and Lohmann, G. (2003). Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Nature, 424, 532–6.CrossRefGoogle ScholarPubMed
Knudsen, K.-L., Seidenkrantz, M.-S., and Kristensen, P. (2002). Last interglacial and early glacial circulation in the northern North Atlantic Ocean. Quat. Res., 58, 22–6.CrossRefGoogle Scholar
Knutti, R., Flückiger, J., Stocker, T. F., and Timmermann, A. (2004). Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. Nature, 430, 851–6.CrossRefGoogle ScholarPubMed
Koch, L. (1945). The east Greenland ice. Medd. Grønland, 130, 1–374.Google Scholar
Kohfeld, K. E., Quéré, C., Harrison, S. P. and Anderson, R. F. (2005). Role of marine biology in glacial-interglacial CO2 cycles. Science, 308, 74–8.CrossRefGoogle ScholarPubMed
König-Langlo, G., King, J. C. and Pettré, P. (1998). Climatology of the three coastal Antarctic stations Dumont d'Urville, Neumayer and Halley. J. Geophys. Res., 103, 10 935–46.CrossRefGoogle Scholar
Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C. and Oppenheimer, M. (2009). Probabilistic assessment of sea level during the last interglacial stage. Nature, 462, 863–7.CrossRefGoogle ScholarPubMed
Krabill, W., Hanna, E., Huybrechts, P., et al. (2004). Greenland Ice Sheet: increased coastal thinning. Geophys. Res. Lett., 31, L24402, doi:10.1029/2004GL021533.CrossRefGoogle Scholar
Krinner, G. and Genthon, C. (1998). GCM simulations of the Last Glacial Maximum surface climate of Greenland and Antarctica. Clim. Dyn., 14, 741–58.CrossRefGoogle Scholar
Kuhlbrodt, T., Griesel, A., Montoya, M., et al. (2007). On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys., 45, RG2001, doi:10.1029/2004RG000166.CrossRefGoogle Scholar
Kulbe, T., Melles, M., Verkulich, S. R. and Pushina, Z. V. (2001). East Antarctic climate and environmental variability over the last 9400 years inferred from marine sediments of the Bunger Oasis. Arct. Antarct. Alpine Res., 33, 223–30.CrossRefGoogle Scholar
Kunz-Pirrung, M., Gersonde, R., and Hodell, D. A. (2002). Mid-Bruhnes century-scale diatom sea surface temperature and sea ice records from the Atlantic sector of the Southern Ocean (ODP Leg 177, sites 1093, 1094 and core PS2089–2). Palaeogeogr. Palaeoclimatol. Palaeoecol., 182, 305–28.CrossRefGoogle Scholar
Kushner, P. J., Held, I. M. and Delworth, T. L. (2001). Southern Hemisphere atmospheric circulation response to global warming. J. Clim., 14, 2238–49.2.0.CO;2>CrossRefGoogle Scholar
Kushnir, Y., Robinson, W. A., Blade, I., (2002). Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J. Clim., 15, 2233–56.2.0.CO;2>CrossRefGoogle Scholar
Kutzbach, J. E. (1988). Climatic changes of the last 18,000 years: observations and model simulations. Science, 241, 1043–52.Google Scholar
Kuzmina, S. I., Bengtsson, L., Johannessen, O. M., et al. (2005). The North Atlantic Oscillation and greenhouse gas forcing. Geophys. Res. Lett., 32, L04703, doi:10.1029/2004GL021064.CrossRefGoogle Scholar
Kwok, R. and Comiso, J. C. (2002a). Spatial patterns of variability in antarctic surface temperature: connections to the Southern Hemisphere Annular Mode and the Southern Oscillation. Geophys. Res. Lett., 29, 1705, doi:10.1029GL015415.CrossRefGoogle Scholar
Kwok, R. and Comiso, J. C. (2002b). Southern Ocean climate and sea ice anomalies associated with the Southern Oscillation. J. Clim., 15, 487–501.2.0.CO;2>CrossRefGoogle Scholar
Kwok, R., Cunningham, G. F. and Pang, S. S. (2004). Fram Strait sea ice outflow. J. Geophys. Res., 109, C01009, doi:10.1029/2003JC001785.CrossRefGoogle Scholar
Labeyrie, L., Cole, J., Alverson, K., and Stocker, T. (2003). The history of climate dynamics in the Late Quaternary. In Paleoclimate, Global Change and the Future, ed. Alverson, K. D, Bradley, R., and Pedersen, T., Heidelberg, Germany: Springer, pp. 33–52.CrossRefGoogle Scholar
Labracherie, M., Labeyrie, L. D., Duprat, J., et al. (1989). The last deglaciation in the southern ocean. Paleoceanography, 4, 629–38.CrossRefGoogle Scholar
Lachlan-Cope, A. (2010). Antarctic clouds. Polar Res., 29, 150–8.CrossRefGoogle Scholar
Lachlan-Cope, T. A. and Connolley, W. M. (2006). Teleconnections between the tropical Pacific and the Amundsen-Bellingshausen Sea: role of the El Niño/Southern Oscillation. J. Geophys. Res., 111, D23101, doi:10.1029/2005JD006386.CrossRefGoogle Scholar
Lachlan-Cope, T. A., Connolley, W. M., Turner, J., et al. (2009). Antarctic winter tropospheric warming: the potential role of polar stratospheric clouds, a sensitivity study. Atmos. Sci. Lett., 10, 262–6.Google Scholar
Lamb, H. H. (1977). Climate: Present, Past and Future. Vol. 2: Climatic History and the Future, London: Methuen.Google Scholar
Lamb, H. H. (1995). Climate, History and the Modern World, 2nd edn, London: Routledge.Google Scholar
Lambeck, K. and Chappell, J. (2001). Sea level change through the last glacial cycle. Science, 292, 679–86.CrossRefGoogle ScholarPubMed
Lambert, S. and Fyfe, J. C. (2006). Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse gas experiments: results from the models participating in the IPCC diagnostic exercize. Clim. Dyn., 26, 713–28.CrossRefGoogle Scholar
Lammers, R. B., Shiklomanov, A. I., Vorosmarty, C. J., Fekete, B. M. and Peterson, B. J. (2001). Assessment of contemporary Arctic river runoff based on observational discharge records. J. Geophys. Res., 106, 3321–34.CrossRefGoogle Scholar
Landais, A., Barnola, J.-M., Masson-Delmotte, V., et al. (2004). A continuous record of temperature evolution over a sequence of Dansgaard-Oeschger events during Marine Isotope Stage 4 (76 to 62 kyr BP). Geophys. Res. Lett., 31, L22211, doi:10.1029/2004GL021193.CrossRefGoogle Scholar
Landvik, J. Y., Landvik, S., Bondevik, S., et al. (1998). The Last Glacial Maximum of Svalbard and the Barents Sea area: ice sheet extent and configuration. Quat. Sci. Rev., 17, 43–75.CrossRefGoogle Scholar
Lang, C., Leuenberger, M., Schwander, J. and Johnsen, S. (1999). 16°C rapid temperature variation in central Greenland 70,000 years ago. Science, 286, 934–7.CrossRefGoogle ScholarPubMed
Lanzante, J. R., Klein, S. A. and Seidel, D. J. (2003). Temporal homogenization of monthly radiosonde temperature data. Part I: methodology. J. Clim., 16, 224–40.2.0.CO;2>CrossRefGoogle Scholar
Larsen, E., Lyså, A., Demidov, I., et al. (1999). Age and extent of the Scandinavian ice sheet in northwest Russia. Boreas, 28, 115–32.CrossRefGoogle Scholar
Larsen, H. C., Saunders, A. D., Clift, P. D., et al. and ,ODP Leg 152 Scientific Party (1994). Seven million years of glaciation in Greenland. Science, 264, 952–55.CrossRefGoogle ScholarPubMed
Laxon, S., Peacock, N. and Smith, D. (2003). High interannual variability of sea ice thickness in the Arctic region. Nature, 425, 947–50.CrossRefGoogle ScholarPubMed
Quéré, C., Rodenbeck, C., Buitenhuis, E. T., et al. (2007). Saturation of the Southern Ocean CO2 sink due to recent climate change. Science, 316, 1735–8.CrossRefGoogle ScholarPubMed
Quéré, C., Raupach, M. R., Canadell, J. G., et al. (2009). Trends in the sources and sinks of carbon dioxide. Nature Geosci., 2(12), 831–6.CrossRefGoogle Scholar
Lean, J. (2002). Solar forcing of climate change in recent millennia. In Climate Development and History of the North Atlantic Realm, ed. Wefer, G., Berger, W. H., Behre, K.-E. and Jansen, E., Berlin: Springer-Verlag, pp. 75–88.CrossRefGoogle Scholar
Lean, J., Skumanich, A. and White, O. (1992). Estimating the sun's radiative output during the Maunder Minimum. Geophys. Res. Lett., 19, 1591–4.CrossRefGoogle Scholar
Lean, J., Beer, J. and Bradley, R. S. (1995). Reconstruction of solar irradiance since 1610: implications for climate change. Geophys. Res. Lett., 22, 3195–98.CrossRefGoogle Scholar
Leck, C. and Bigg, E. K. (2005). Source and evolution of the marine aerosol: a new perspective. Geophys. Res. Lett., 32, L19803, doi:10.1029/GL023651.CrossRefGoogle Scholar
Lee, A. M., Roscoe, H. K. and Oltmans, S. (2000). Model and measurements show Antarctic ozone loss follows edge of polar night. Geophys. Res. Lett., 27, 3845–8.CrossRefGoogle Scholar
Lefebvre, W., Goosse, H., Timmermann, R. and Fichefet, T. (2004). Influence of the Southern Annular Mode on the sea ice-ocean system. J. Geophys. Res., 109, C09005, doi:10.1029/2004JC002403.CrossRefGoogle Scholar
Legates, D. R. and Willmott, C. J. (1990). Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10, 111–27.CrossRefGoogle Scholar
Legrand, M. and Feniet-Saigne, C. (1991). Methanesulfonic acid in south polar snow layers: a record of strong El Nino? Geophys. Res. Lett., 18, 187–90.CrossRefGoogle Scholar
Legrand, M. and Mayewski, P. (1997). Glaciochemistry of polar ice cores: a review. Rev. Geophys., 35, 219–43.CrossRefGoogle Scholar
Legrand, M., Fenietsaigne, C., Saltzman, E. S., et al. (1991). Ice-core record of oceanic emissions of dimethylsulfide during the last climate cycle. Nature, 350, 144–6.CrossRefGoogle Scholar
Legrand, M., Hammer, C., Deangelis, M., et al. (1997). Sulfur-containing species (methanesulfonate and SO4) over the last climatic cycle in the Greenland Ice Core Project (central Greenland) ice core. J. Geophys. Res., 102, 26 663–79.CrossRefGoogle Scholar
Lehman, S. J. and Keigwin, L. D. (1992). Sudden changes in North Atlantic circulation during the last deglaciation. Nature, 356, 757–62.CrossRefGoogle Scholar
Leventer, A., Domack, E., Ishman, S., et al. (1996). Productivity cycles of 200–300 years in the Antarctic Peninsula region: understanding linkages among the sun, atmosphere, oceans, sea ice, and biota. Geol. Soc. Amer. Bull., 108, 1626–44.2.3.CO;2>CrossRefGoogle Scholar
Limpasuvan, V. and Hartmann, D. L. (1999). Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26, 3133–6.CrossRefGoogle Scholar
Limpasuvan, V. and Hartmann, D. L. (2000). Wave-maintained annular modes of climate variability. J. Clim., 13, 4414–29.2.0.CO;2>CrossRefGoogle Scholar
Lisiecki, L. E. and Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071.Google Scholar
Liu, J., Yuan, X., Rind, D. and Martinson, D. G. (2002). Mechanism study of the ENSO and southern high latitude climate teleconnections. Geophys. Res. Lett., 29, 1679, doi:10.1029/2002GL015143.CrossRefGoogle Scholar
Liu, J., Curry, J. A. and Martinson, D. G. (2004). Interpretation of recent Antarctic sea ice variability. Geophys. Res. Lett., 31, L02205, doi:10.1029/2003GL018732.CrossRefGoogle Scholar
Loulergue, L., Schilt, A., Spahni, R., et al. (2008). Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature, 453, 383–6.CrossRefGoogle ScholarPubMed
Lowe, A. L. and Anderson, J. B. (2002). Late Quaternary. advance and retreat of the West Antarctic Ice Sheet in Pine Island Bay, Antarctica. Quat. Sci. Rev., 21, 1879–97.CrossRefGoogle Scholar
Lubin, D. and Massom, R. (2006). Polar Remote Sensing. Vol. I: Atmosphere and Oceans, Chichester, UK: Springer-Praxis.Google Scholar
Lubin, D. and Vogelmann, M. (2006). A climatologically significant aerosol longwave indirect effect in the Arctic. Nature, 439, 453–6.CrossRefGoogle ScholarPubMed
Lubin, D., Chen, B., Bromwich, D. H., et al. (1998). The impact of Antarctic cloud radiative properties on a GCM climate simulation. J. Clim., 11, 447–62.2.0.CO;2>CrossRefGoogle Scholar
Lucchitta, B. K., Mullins, K. F., Allison, A. L. and Ferrigno, J. G. (1993). Antarctic glacial tongue velocities from Landsat images: first results. Ann. Glaciol., 17, 356–66.CrossRefGoogle Scholar
Lunkka, J. P., Saarnisto, M., Gey, V., Demidov, I., and Kiselova, V. (2001). Extent and age of the Last Glacial Maximum in the southeastern sector of the Scandinavian Ice Sheet. Global Planet. Change, 31, 407–25.CrossRefGoogle Scholar
Lüthi, D., Floch, M., Bereiter, B., et al. (2008). High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453, 379–82.CrossRefGoogle ScholarPubMed
Lynch, A. H., Uotila, P. and Cassano, J. J. (2006). Changes in synoptic weather patterns in the polar regions in the 20th and 21st centuries, Part 2: Antarctic. Int. J. Climatol., 26, 1181–99.CrossRefGoogle Scholar
MacAyeal, D. R. (1993). Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic's Heinrich events. Paleoceanography, 8, 775–84.CrossRefGoogle Scholar
Macdonald, G. M., Velichko, A. A., Kremenetski, C. V., et al. (2000). Holocene treeline history and climate change across northern Eurasia. Quat. Res., 53, 302–11.CrossRefGoogle Scholar
Mahowald, N. M., Lamarque, J.-F., Tix, X. X., and Wolff, E. (2006). Sea-salt aerosol response to climate change: Last Glacial Maximum, preindustrial, and doubled dioxide climates. J. Geophys. Res., 111, D05303, doi:10.1029/2005JD006459.Google Scholar
Manabe, S. and Stouffer, R. J. (1994). Multiple-century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon-dioxide. J. Clim., 7, 5–23.2.0.CO;2>CrossRefGoogle Scholar
Mangerud, J., Jakobsson, M., Alexanderson, H., et al. (2004). Ice-dammed lakes and rerouting of the drainage of Northern Eurasia during the last glaciation. Quat. Sci. Rev., 23, 1313–32.CrossRefGoogle Scholar
Marshall, G. J. (2002). Trends in Antarctic geopotential height and temperature: a comparison between radiosonde and NCEP-NCAR reanalysis data. J. Clim., 15, 659–74.2.0.CO;2>CrossRefGoogle Scholar
Marshall, G. J. (2003). Trends in the Southern Annular Mode from observations and reanalyses. J. Clim., 16, 4134–43.2.0.CO;2>CrossRefGoogle Scholar
Marshall, G. J. (2007). Half-century seasonal relationships between the Southern Annular Mode and Antarctic temperatures. Int. J. Climatol., 27(3), 373–83.CrossRefGoogle Scholar
Marshall, G. J. and Connolley, W. M. (2006). The effect of changing Southern Hemisphere winter sea surface temperatures on Southern Annular Mode strength. Geophys. Res. Lett., 33, L17717, doi:10.1029/2006GL026627.CrossRefGoogle Scholar
Marshall, G. J. and Harangozo, S. A. (2000). An appraisal of NCEP/NCAR reanalysis MSLP viability for climate studies in the South Pacific. Geophys. Res. Lett., 27, 3057–60.CrossRefGoogle Scholar
Marshall, G. J., and King, J. C. (1998). Southern Hemisphere circulation anomalies associated with extreme Antarctic Peninsula winter temperatures. Geophys. Res. Lett., 25, 2437–40.CrossRefGoogle Scholar
Marshall, G. J., and Turner, J. (1997). Surface wind fields of Antarctic mesocyclones derived from ERS-1 scatterometer data. J. Geophys. Res., 102, 13 907–21.CrossRefGoogle Scholar
Marshall, G. J., Turner, J. and Miners, W. D. (1998). Interpreting recent accumulation records through an understanding of the regional synoptic climatology: an example from the southern Antarctic Peninsula. Ann. Glaciol., 27, 610–16.CrossRefGoogle Scholar
Marshall, G. J., Orr, A., Lipzig, N. P. M. and King, J. C. (2006). The impact of a changing Southern Hemisphere Annular Mode on Antarctic Peninsula summer temperatures. J. Clim., 19, 5388–404.CrossRefGoogle Scholar
Marshall, J., Johnson, H. and Goodman, J. (2001). A study of the interaction of the North Atlantic oscillation with ocean circulation. J. Clim., 14, 1399–421.2.0.CO;2>CrossRefGoogle Scholar
Martinez-Macchiavello, J. C., Tatur, A., Servant-Vildary, S. and del Valle, R. (1996). Holocene environmental change in a marine-estuarine-lacustrine sediment sequence, King George Island, South Shetland Islands. Antarct. Sci., 8, 313–22.CrossRefGoogle Scholar
Martinson, D. G. and Iannuzzi, R. A. (2003). Spatial/temporal patterns in Weddell gyre characteristics and their relationship to global climate. J. Geophys. Res., 108, 8083, doi:10.1029/2000JC000538.CrossRefGoogle Scholar
Maslin, M. A., Pike, J., Stickley, C., and Ettwein, V. (2003). Evidence of Holocene climate variability from marine sediments. In Global Change in the Holocene, ed. Mackay, A., Battarbee, R., Birks, J. and Oldfield, F.. London: Arnold, pp. 185–209.Google Scholar
Massom, R. and Lubin, D. (2006). Polar Remote Sensing. Vol. II: Ice Sheets, Chichester, UK: Springer-Praxis.Google Scholar
Masson, V., Vimeux, F., Jouzel, J., et al. (2000). Holocene climate variability in Antarctica based on 11 ice-core isotopic records. Quat. Res., 54, 348–58.CrossRefGoogle Scholar
Masuda, K. (1990). Atmospheric heat and waterbudgets of polar regions: analysis of FGGE data. In Proceedings of the Third NIPR Symposium on Polar Meteorology and Glaciology, Tokyo: National Institute of Polar Research, pp. 79–88.Google Scholar
Mäusbacher, R., Müller, J. and Schmidt, R. (1989). Evolution of post glacial sedimentation in Antarctic lakes. Z. Geomorphol., 33, 219–34.Google Scholar
Mayewski, P. A., Meeker, L. D., Whitlow, S., et al. (1993). The atmosphere during the Younger Dryas. Science, 261, 195–7.CrossRefGoogle ScholarPubMed
Mayewski, P. A., Meeker, L. B., Whitlow, S., et al. (1994). Changes in atmospheric circulation and ocean ice cover over the North Atlantic during the last 41,000 years. Science, 263, 1747–51.CrossRefGoogle ScholarPubMed
Mayewski, P. A., Lyons, W. B., Zielinski, G. A., et al. (1995). An ice-core-based late Holocene history for the Transantarctic Mountains, Antarctica. Antarct. Res. Ser., 67, 33–45.CrossRefGoogle Scholar
Mayewski, P. A., Meeker, L. D., Twickler, M., et al. (1997). Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. Science, 102, 26 345–66.Google Scholar
Mayewski, P. A.et al. (2006). The International Trans-Antarctic Scientific Expedition (ITASE): an overview. Ann. Glaciol., 41, 180–185.CrossRefGoogle Scholar
McClelland, J. W., Dery, S. J., Peterson, B. J., Holmes, R. M. and Wood, E. F. (2006). A pan-arctic evaluation of changes in river discharge during the latter half of the 20th century. Geophys. Res. Lett., 33, L06715, doi:10.1029/2006GL025753.CrossRefGoogle Scholar
McConnell, J. R., Lamorey, G. W., Hanna, E., et al. (2001). Annual net snow accumulation over southern Greenland from 1975 to 1998. J. Geophys. Res., 106, 33 827–37.CrossRefGoogle Scholar
McConnell, J. R., Edwards, R., Kok, G. L., et al. (2007). 20th-century industrial black carbon emissions altered Arctic climate forcing. Science, 317, 1381–4.CrossRefGoogle ScholarPubMed
McLaren, A. (1989). The under-ice thickness distribution of the Arctic Basin as recorded in 1958 and 1970. J. Geophys. Res., 94, 4971–83.CrossRefGoogle Scholar
McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D. and Brown-Leger, S. (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834–7.CrossRefGoogle ScholarPubMed
Meehl, G. A., Hurrell, J. W. and Loon, H. (1998). A modulation of the mechanism of the semiannual oscillation in the Southern Hemisphere. Tellus, 50A, 442–50.CrossRefGoogle Scholar
Meese, D. A., Gow, A. J., Alley, R. B., et al. (1997). The Greenland Ice Sheet Project 2 depth-age scale: methods and results. J. Geophys. Res., – Oceans, 102, 26 411–23.CrossRefGoogle Scholar
Melles, M., Kulbe, T., Verkulich, S. R., Pushina, Z. V. and Hubberten, H. W. (1997). Late Pleistocene and Holocene environmental history of Bunger Hills, East Antarctica, as revealed by fresh-water and epishelf lake sediments. In The Antarctic Region: Geological Evolution and Processes, ed. Ricci, C. A., Siena, Italy: Università degli Studi di Siena, pp. 809–20.Google Scholar
Meredith, M. P. and Hogg, A. M. (2006). Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys. Res. Lett., 33, L16608, doi:10.1029/2006GL026499.CrossRefGoogle Scholar
Meredith, M. P. and King, J. C. (2005). Climate change in the ocean to the west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett., 32, L19606, doi:10.1029/2005GL024042.CrossRefGoogle Scholar
Meredith, M. P., Woodworth, P. L., Hughes, C. W. and Stepanov, V. (2004). Changes in the ocean transport through Drake Passage during the 1980s and 1990s, forced by changes in the Southern Annular Mode. Geophys. Res. Lett., 31, L21305, 10.1029/2004GL021169.CrossRefGoogle Scholar
Meyerson, E. A., Mayewski, P. A., Kreutz, K. J., et al. (2002). The polar expression of ENSO and sea-ice variability as recorded in a South Pole ice core. Ann. Glaciol., 35, 430–6.CrossRefGoogle Scholar
Milankovitch, M. (1930). Mathematische Klimalehre und Astronomische Theorie der Klimaschwankungen. In Handbuch der Klimatologie I(A), ed. Köppen, W. and Geiger, R., Berlin: Gebrüder Borntraeger, pp. 1–176.Google Scholar
Miller, J. R. and Russell, G. L. (1992). The impact of global warming on river runoff. J. Geophys. Res., 97, 2757–64.CrossRefGoogle Scholar
Miller, R. L., Schmidt, G. A. and Shindell, D. T. (2006). Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J. Geophys. Res., 111, D18101, doi:10.1029/2005JD006323.CrossRefGoogle Scholar
Mitrovica, J. X., Tamisiea, M. E., Davis, J. L. and Milne, G. A. (2001). Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature, 409, 1026–9.CrossRefGoogle ScholarPubMed
Mo, K. C. and Ghil, M. (1987). Statistics and dynamics of persistent anomalies. J. Atmos. Sci., 44, 877–901.2.0.CO;2>CrossRefGoogle Scholar
Mo, K. C. and Higgins, R. W. (1998). The Pacific-South American modes and tropical convection during the Southern Hemisphere winter. Mon. Weather Rev., 126, 1581–96.2.0.CO;2>CrossRefGoogle Scholar
Molnia, B. F. (1986). Glacial history of the northeastern Gulf of Alaska: a synthesis. In Glaciation in Alaska: The Geologic Record, ed. Hamilton, T. D., Reed, K. M. and Thorson, R. M., Anchorage, AL: Alaska Geological Society, pp. 219–35.Google Scholar
Monaghan, A. J., Bromwich, D. H., Wei, H. L., et al. (2003). Performance of weather forecast models in the rescue of Dr. Ronald Shemenski from South Pole in April 2001. Weather Forecast., 18, 142–60.2.0.CO;2>CrossRefGoogle Scholar
Monaghan, A. J., Bromwich, D. H., Fogt, R. L., et al. (2006a). Insignificant change in Antarctic snowfall since the International Geophysical Year. Science, 313, 827–31.CrossRefGoogle ScholarPubMed
Monaghan, A. J., Bromwich, D. H. and Wang, S.-H. (2006b). Recent trends in Antarctic snow accumulation from Polar MM5 simulations. Phil. Trans. Roy. Soc. Lond. Ser. A, 364, 1683–708.CrossRefGoogle ScholarPubMed
Monnin, E., Indermühle, A., Dällenbach, A., et al. (2001). Atmospheric CO2 concentrations over the last glacial termination. Science, 291, 112–14.CrossRefGoogle ScholarPubMed
Moore, G. W. K., Alverson, K. and Renfrew, I. A. (2002). A reconstruction of the air-sea interaction associated with the Weddell polynya. J. Phys. Oceanogr., 32, 1685–98.2.0.CO;2>CrossRefGoogle Scholar
Moore, J. J., Hughen, K. A., Miller, G. H. and Overpeck, J. T. (2001). Little Ice Age recorded in summer temperature reconstruction from varved sediments of Donard Lake, Baffin Island, Canada. J. Paleolimnol., 25, 503–17.CrossRefGoogle Scholar
Moran, K., Backman, J., Brinkhuis, H., et al. (2006). The Cenozoic palaeoenvironment of the Arctic Ocean. Nature, 441, 601–5.CrossRefGoogle ScholarPubMed
Mosley-Thompson, E., McConnell, J. R., Bales, R. C., et al. (2001). Local to regional-scale variability of annual net accumulation on the Greenland ice sheet from PARCA cores. J. Geophys. Res., 106, 33 839–51.CrossRefGoogle Scholar
Mosley-Thompson, E. and Thompson, L. G. (2003). Ice core paleoclimate histories from the Antarctic Peninsula: where do we go from here? In Antarctic Peninsula Climate Variability: A Historical and Paeoenvironmental Perspective, ed. Domack, E., Burnett, A., Convey, P., Kirby, M. and Bindschadler, R., Antarctic Research Series 79, Washington, DC, American Geophysical Union, pp. 115–27.Google Scholar
Motoi, T., Ono, N. and Wakatsuchi, M. (1987). A mechanism for the formation of the Weddell Polynya in 1974. J. Phys. Oceanogr, 17, 2241–47.2.0.CO;2>CrossRefGoogle Scholar
Mueller, D. R., Vincent, W. F. and Jeffries, M. O. (2003). Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophys. Res. Lett., 30, 2031, doi:10.1029/2003GL017931.CrossRefGoogle Scholar
Muller, R. A., and MacDonald, G. J. (1997). Glacial cycles and astronomical forcing. Science, 277, 215–18.CrossRefGoogle Scholar
Mulvaney, R., Pasteur, E. C., Peel, D. A., Saltzman, E. S. and Whung, P. Y. (1992). The ratio of MSA to non-sea-salt sulphate in Antarctic Peninsular ice cores. Tellus, 44B, 295–303.CrossRefGoogle Scholar
Murphy, J. M., Sexton, D. M. H., Barnett, D. N., et al. (2004). Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768–72.CrossRefGoogle Scholar
Murton, J. B., Bateman, M. D., Dallimore, S. R., Teller, J. T. and Yang, Z. (2010). Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature, 464, 740–3.CrossRefGoogle ScholarPubMed
Muscheler, R., Beer, J., Wagner, G., and Finkel, R. C. (2000). Changes in deep-water formation during the Younger Dryas event inferred from 10Be and 14C records. Nature, 408, 567–70.CrossRefGoogle ScholarPubMed
Muscheler, R., Beer, J. and Vonmoos, M. (2004). Causes and timing of the 8200 yr BP event inferred from the comparison of the GRIP Be-10 and the tree ring delta C-14 record. Quat. Sci. Rev., 23, 2101–11.CrossRefGoogle Scholar
Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. and Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698–702.CrossRefGoogle Scholar
Mysak, L. A. (1986). El Niño, interannual variability and fisheries in the northeast Pacific Ocean. Can. J. Fish. Aquat. Sci., 43, 464–97.CrossRefGoogle Scholar
Mysak, L. A. (2001). Oceanography: patterns of Arctic circulation. Science, 293, 1269–70.CrossRefGoogle ScholarPubMed
Mysak, L. A., Manak, D. K. and Marsden, R. F. (1990). Sea-ice anomalies observed in the Greenland and Labrador Seas during 1901–1984 and their relation to an interdecadal Arctic climate cycle. Clim. Dyn., 5, 111–33.CrossRefGoogle Scholar
Mysak, L. A., Ingram, R. G., Wang, J. and Baaren, A. (1996). The anomalous sea-ice extent in Hudson Bay, Baffin Bay and the Labrador Sea during three simultaneous NAO and ENSO episodes. Atmos. Ocean, 34, 313–43.CrossRefGoogle Scholar
Mysak, L. A., Wright, K. M., Sedlacek, J. and Eby, M. (2005). Simulation of sea ice and ocean variability in the Arctic during 1955–2002 with an intermediate complexity model. Atmos. Ocean, 43, 101–18.CrossRefGoogle Scholar
Nakada, M. and Lambeck, K. (1988). The melting history of the late Pleistocene Antarctic ice-sheet. Nature, 333, 36–40.CrossRefGoogle Scholar
Nakamura, N. and Oort, A. H. (1988). Atmospheric heat budgets of the polar regions. J. Geophys. Res., 93, 9510–24.CrossRefGoogle Scholar
Nakicenovic, N., Alcamo, J., Davis, G., et al. (2000). Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge, UK: Cambridge University Press.Google Scholar
Namias, J. (1950). The index cycle and its role in the general circulation. J. Meteorol., 7, 130–9.2.0.CO;2>CrossRefGoogle Scholar
Newman, P. A., Gleason, J. F., McPeters, R. D. and Stolarski, R. S. (1997). Anomalously low ozone over the Arctic. Geophys. Res. Lett., 24, 2689–92.CrossRefGoogle Scholar
Newman, P. A., Nash, E. R., Kawa, S. R., Montzka, S. A. and Schauffler, S. M. (2006). When will the Antarctic ozone hole recover? Geophys. Res. Lett., 33, L12814, doi:10.1029/2005GL025232.CrossRefGoogle Scholar
Nghiem, S. V., Chao, Y., Neumann, G., et al. (2006). Depletion of perennial sea ice in the East Arctic Ocean. Geophys. Res. Lett., 33, L17501, doi:10.1029/2006GL027198.CrossRefGoogle Scholar
,North Greenland Ice Core Project members (2004). High-resolution record of Northen Hemisphere climate extending into the last interglacial period. Nature, 431, 147–51.CrossRefGoogle Scholar
O'Brien, S. R., Mayewski, P. A., Meeker, L. D., et al. (1995). Complexity of Holocene climate as reconstructed from a Greenland ice core. Science, 270, 1962–4.CrossRefGoogle Scholar
Oechel, W., Hastings, S. J., Vourlitis, G., et al. (1993). Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature 361, 520–3.CrossRefGoogle Scholar
Oerlemans, J. and Reichert, B. K. (2000). Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic. J. Glaciol., 46, 1–6.CrossRefGoogle Scholar
Ogilvie, A. E. J. (1984). The past climate and sea-ice record from Iceland. 1. Data to AD 1780. Climatic Change, 6, 131–52.CrossRefGoogle Scholar
Ogilvie, A. E. J. (1991). Climatic changes in Iceland A.D. c.865 to 1598. Acta Archaeol., 61, 233–51.Google Scholar
Ogilvie, A. E. J. (1992). Documentary evidence for changes in the climate of Iceland AD 1500 to 1800. In Climate Since AD 1500, ed. Bradley, R. S. and Jones, P. D., London: Routledge, pp. 92–117.Google Scholar
Ogilvie, A. E. J. and Jónsdóttir, I. (2000). Sea ice, climate and Icelandic fisheries in historical times. Arctic, 53, 383–394.CrossRefGoogle Scholar
Ohmura, A., Dutton, E. G., Forgan, B., et al. (1998). Baseline Surface Radiation Network (BSRN/WCRP): new precision radiometry for climate research. Bull. Amer. Meteorol. Soc., 79, 2115–36.2.0.CO;2>CrossRefGoogle Scholar
Ohmura, A., Calanca, P., Wild, M. and Anklin, M. (1999). Precipitation, accumulation and mass balance of Greenland ice sheet. Z. Gletscherkd. Glazialgeol., 35, 1–20.Google Scholar
Oke, P. R. and England, M. H. (2004). Oceanic response to changes in the latitude of the Southern Hemisphere subpolar westerly winds. J. Clim., 17, 1040–54.2.0.CO;2>CrossRefGoogle Scholar
Orsi, A. H., Whitworth, T. and Nowlin, W. D. (1995). On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42, 641–73.CrossRefGoogle Scholar
Orsi, A. H., Johnson, G. C. and Bullister, J. L. (1999). Circulation, mixing and production of Antarctic Bottom Water. Prog. Oceanogr., 43, 55–109.CrossRefGoogle Scholar
Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., et al. and ,CAPE Last Interglacial Project Members (2006). Simulating Arctic climate warmth and icefield retreat in the Last Interglaciation. Science, 311, 1751–53.CrossRefGoogle ScholarPubMed
Overland, J. E., and Wang, M. (2005). The Arctic climate paradox: the recent decrease of the Arctic Oscillation. Geophys. Res. Lett., 32, L06701, doi: 10.1029/2004GL021752.CrossRefGoogle Scholar
Overland, J. E., McNutt, S. L., Groves, J., et al. (2000). Regional sensible and radiative heat flux estimates for the winter Arctic during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. J. Geophys. Res., 105, 14 093–102.CrossRefGoogle Scholar
Overland, J. E., Spillane, M. C., Percival, D. B., Wang, M. and Mofjeld, H. O. (2004). Seasonal and regional variation of pan-Arctic surface air temperature over the instrumental record. J. Clim., 17, 23 263–82.2.0.CO;2>CrossRefGoogle Scholar
Overpeck, J., Hughen, K., Hardy, D., et al. (1997). Arctic environmental change of the last four centuries. Science, 278, 1251–6.CrossRefGoogle Scholar
Overpeck, J. T., Otto-Bliesner, B. L., Miller, G. H., et al. (2006). Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science, 311, 1747–50.CrossRefGoogle ScholarPubMed
Paillard, D. (1998). The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature, 391, 378–81.CrossRefGoogle Scholar
Parish, T. R. and Bromwich, D. H. (1987). The surface windfield over the Antarctic ice sheets. Nature, 328, 51–4.CrossRefGoogle Scholar
Parish, T. R. and Cassano, J. J. (2003). The role of katabatic winds on the Antarctic surface wind regime. Mon. Wea. Rev., 131, 317–33.2.0.CO;2>CrossRefGoogle Scholar
Park, Y. H., Roquet, F. and Vivier, F. (2004). Quasi-stationary ENSO wave signals versus the Antarctic Circumpolar Wave scenario. Geophys. Res. Lett., 31, L09315, doi:10.1029/2004GL019806.CrossRefGoogle Scholar
Parkinson, C. L. (1995). Recent sea-ice advances in Baffin Bay/Davis Strait and retreats in the Bellingshausen Sea. Ann. Glaciol., 21, 348–52.CrossRefGoogle Scholar
Parkinson, C. L., Cavalieri, D. J., Gloersen, P., Zwally, H. J. and Comiso, J. C. (1999). Arctic sea ice extents, areas and trends 1978–1996. J. Geophys. Res., 104, 20 837–56.CrossRefGoogle Scholar
Parrenin, F., Barnola, J.-M., Beer, J., et al. (2007). The EDC3 chronology for the EPICA Dome C ice core. Clim. Past, 3, 485–97.CrossRefGoogle Scholar
Peck, L. S. (2005). Prospects for survival in the Southern Ocean: vulnerability of benthic species to temperature change. Antarct. Sci., 17, 497–507.CrossRefGoogle Scholar
Peltier, W. R. (1994). Ice-age paleotopography. Science, 265, 195–201.CrossRefGoogle ScholarPubMed
Peltier, W. R. (2002). Comments on the paper of Yokoyama et al. (2000), entitled ‘Timing of the Last Glacial Maximum from observed sea level minima’. Quat. Sci. Rev., 21, 409–14.CrossRefGoogle Scholar
Peltier, W. R. (2005). On the hemispheric origins of meltwater pulse 1a. Quat. Sci. Rev., 24, 1655–71.CrossRefGoogle Scholar
Pereira, E. B., Evangelista, H., Pereira, K. C. D., Cavalcanti, I. F. A. and Setzer, A. W. (2006). Apportionment of black carbon in the South Shetland Islands, Antarctic Peninsula. J. Geophys. Res., 111, D03303, doi:10.1029/2005JD006086.CrossRefGoogle Scholar
Perlwitz, J., Pawson, S., Fogt, R. L., Nielsen, J. E. and Neff, W. D. (2008). Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys. Res. Lett., 35, L08714, doi:10.1029/2008GL033317.CrossRefGoogle Scholar
Peterson, B. J., Holmes, R. M., McClelland, J. W., et al. (2002). Increasing river discharge to the Arctic Ocean. Science, 298, 2171–73.CrossRefGoogle ScholarPubMed
Peterson, B. J., McClelland, J. W., Curry, R., et al. (2006). Trajectory shifts in the Arctic and Subarctic freshwater cycle. Science, 313, 1061–6.CrossRefGoogle ScholarPubMed
Petit, J. R., Jouzel, J., Raynaud, D., et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429–36.CrossRefGoogle Scholar
Pilcher, J. R., Hall, V. A. and McCormac, F. G. (1995). Dates of Holocene Icelandic volcanic eruptions from tephra layers in Irish peats. Holocene, 5, 103–10.CrossRefGoogle Scholar
Pisias, N. G., Martinson, D. G., Moore, T. C., et al. (1984). High resolution stratigraphic correlation of benthic oxygen isotopic records spanning the last 300,000 years. Mar. Geol., 56, 119–36.CrossRefGoogle Scholar
Polyakov, I. V., Bekryaev, R. V., Alekseev, G. V., et al. (2003). Variability and trends of air temperature and pressure in the maritime Arctic, 1875–2000. J. Clim., 16, 2067–77.2.0.CO;2>CrossRefGoogle Scholar
Porter, S. C. (1986). Late Holocene fluctuations of the fjord glacier variations during the last millennium. Quat. Res., 26, 27–48.CrossRefGoogle Scholar
Portis, D. H., Walsh, J. E., El Hamly, M. and Lamb, P. J. (2001). Seasonality of the North Atlantic Oscillation. J. Clim., 14, 2069–78.2.0.CO;2>CrossRefGoogle Scholar
Przybylak, R. (2003). The Climate of the Arctic, Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
Pudsey, C. J. and Evans, J. (2001). First survey of Antarctic sub-ice shelf sediments reveals mid-Holocene ice shelf retreat. Geology, 29, 787–90.2.0.CO;2>CrossRefGoogle Scholar
Quadrelli, R. and Wallace, J. M. (2004). A simplified linear framework for interpreting patterns of Northern Hemisphere wintertime climate variability. J. Clim., 17, 3728–44.2.0.CO;2>CrossRefGoogle Scholar
Raab, A., Melles, M., Berger, G. W., Hagedorn, B., and Hubberton, H.-W. (2003). Non-glacial paleoenvironments and the extent of Weichselian ice sheets on Severnaya Zemlya, Russian High Arctic. Quat. Sci. Rev., 22, 2267–83.CrossRefGoogle Scholar
Radok, U. and Lile, R. C. (1977). A year of snow accumulation at plateau station. Antarct. Res. Ser., 25, 17–26.CrossRefGoogle Scholar
Rahmstorf, S. (2002). Ocean circulation and climate during the past 120,000 years. Nature, 419, 207–14.CrossRefGoogle ScholarPubMed
Rahmstorf, S. (2007). A semi-empirical approach to projecting future sea-level rise. Science, 315, 368–70.CrossRefGoogle ScholarPubMed
Rahmstorf, S. and Ganapolski, A. (1999). Long-term global warming scenarios computed with an efficient coupled climate model. Climatic Change, 43, 353–67.CrossRefGoogle Scholar
Räisänen, J. (2001). CO2-induced climate change in CMIP2 experiments: quantification of agreement and role of internal variability. J. Clim., 14, 2088–104.2.0.CO;2>CrossRefGoogle Scholar
Raisbeck, G. M., Yiou, F., Jouzel, J., and Stocker, T. F. (2007). Direct north-south synchronization of abrupt climate change record in ice cores using beryllium 10. Clim. Past, 3, 755–69.CrossRefGoogle Scholar
Randel, W. J. and Wu, F. (1999). Cooling of the Arctic and Antarctic polar stratospheres due to ozone depletion. J. Clim., 12, 1467–79.2.0.CO;2>CrossRefGoogle Scholar
Raphael, M. N. (2003). Impact of observed sea-ice concentration on the Southern Hemisphere extratropical atmospheric circulation in summer. J. Geophys. Res., 108, 4687, doi:10.1029/2002JD003308.CrossRefGoogle Scholar
Raphael, M. N. (2004). A zonal wave 3 index for the Southern Hemisphere. Geophys. Res. Lett., 31, L23212, doi:10.1029/2004GL020365.CrossRefGoogle Scholar
Raphael, M. N. (2007). The influence of atmospheric zonal wave three on Antarctic sea ice variability. J. Geophys. Res., 112, D12112, doi:10.1029/2006JD007852.CrossRefGoogle Scholar
Rasmussen, E. A. and Turner, J. (2003). Polar Lows: Mesoscale Weather Systems in the Polar Regions, Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., et al. (2006). A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res., 111, D06102, doi:10.1029/2005JD006079.CrossRefGoogle Scholar
Rauthe, M. A., Hense, A. and Paeth, H. (2004). A model intercomparison study of climate change. Int. J. Climatol., 24, 643–62.CrossRefGoogle Scholar
Raymo, M. E. (1997). The timing of major climate terminations. Paleoceanography, 12, 577–85.CrossRefGoogle Scholar
Raymo, M. E., Lisiecki, L. E., and Nisancioglu, K. H. (2006). Plio-Pleistocene ice volume, Antarctic climate, and the global δ18O record. Science, 313, 492–5.CrossRefGoogle ScholarPubMed
Raynaud, D., Barnola, J. M., Chappellaz, J., et al. (2000). The ice record of greenhouse gases: a view in the context of future changes. Quat. Sci. Rev., 19, 9–17.CrossRefGoogle Scholar
Raynaud, D., Loutre, M. F., Ritz, C., et al. (2003). Marine Isotope Stage (MIS) 11 in the Vostok ice core: CO2 forcing and stability of East Antarctica. In Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question, ed. Droxler, A. W., Poore, R. Z. and Burckle, L. H., Washington, DC: American Geophysical Union, pp. 27–40.CrossRefGoogle Scholar
Renfrew, I. A., King, J. C. and Markus, T. (2002). Coastal polynyas in the southern Weddell Sea: variability of the surface energy budget. J. Geophys. Res., 107, 3063, doi:10.1029/2000JC000720.CrossRefGoogle Scholar
Renssen, H., Geel, B., Plicht, J., and Magny, M. (2001a). Reduced solar activity as a trigger for the start of the Younger Dryas? Quat. Int., 68–71, 373–83.Google Scholar
Renssen, H., Goosse, H., Fichefet, T. and Campin, J. M. (2001b). The 8.2 kyr BP event simulated by a global atmosphere-sea-ice-ocean model. Geophys. Res. Lett., 28, 1567–70.CrossRefGoogle Scholar
Renwick, J. A. (2004). Trends in the Southern Hemisphere polar vortex in NCEP and ECMWF reanalyses. Geophys. Res. Lett., 31, L07209, doi:10.1029/2003GL019302.CrossRefGoogle Scholar
Renwick, J. A. (2005). Persistent positive anomalies in the Southern Hemisphere circulation. Mon. Wea. Rev., 133, 977–88.CrossRefGoogle Scholar
Renwick, J. A. and Revell, M. J. (1999). Blocking over the South Pacific and Rossby wave propagation. Mon. Wea. Rev., 127, 2233–47.2.0.CO;2>CrossRefGoogle Scholar
Reusch, D. B., and Alley, R. B. (2002). Automatic weather stations and artificial neural networks: improving the instrumental record in West Antarctica. Mon. Wea. Rev., 130, 3037–53.2.0.CO;2>CrossRefGoogle Scholar
Reusch, D. B., Mayewski, P. A., Whitlow, S. I., Pittalwala, I. I. and Twickler, M. S. (1999). Spatial variability of climate and past atmospheric circulation patterns from central West Antarctic glaciochemistry. J. Geophys. Res., 104, 5985–6001.CrossRefGoogle Scholar
Richter-Menge, J., Overland, J. E., Proshutinsky, A., et al. (2006). State of the Arctic: NOAA OAR Special Report, Seattle, WA: NOAA/OAR/PMEL.Google Scholar
Ridley, J. K., Huybrechts, P., Gregory, J. M. and Lowe, J. A. (2005). Elimination of the Greenland ice sheet in a high CO2 climate. J. Clim., 18, 3409–27.CrossRefGoogle Scholar
Rignot, E. J. (1998). Fast recession of a West Antarctic glacier. Science, 281, 549–51.CrossRefGoogle Scholar
Rignot, E. and Thomas, R. H. (2002). Mass balance of polar ice sheets. Science, 297, 1502–6.CrossRefGoogle ScholarPubMed
Rignot, E., Casassa, G., Gogineni, S., et al. (2005). Recent ice loss from the Fleming and other glaciers, Wordie Bay, West Antarctic Peninsula. Geophys. Res. Lett., 32, L07502, doi:10.1029/2004GL021947.CrossRefGoogle Scholar
Rignot, E., Bamber, J. L., Broeke, M. R., et al. (2008). Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci., 1(2), 106–110.CrossRefGoogle Scholar
Rigor, I. G. and Wallace, J. M. (2004). Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophys. Res. Lett., 31, L09401, doi:10.1029/2004GL019492.CrossRefGoogle Scholar
Rigor, I. G., Colony, R. L. and Martin, S. (2000). Variations in surface air temperature observations in the Arctic, 1979–97. J. Clim., 13, 896–914.2.0.CO;2>CrossRefGoogle Scholar
Rigor, I. G., Wallace, J. M. and Colony, R. L. (2002). Response of sea ice to the Arctic Oscillation. J. Clim., 15, 2648–63.2.0.CO;2>CrossRefGoogle Scholar
Rintoul, S. R. (1998). On the origin and influence of Adélie Land Bottom Water. In Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, ed. Jacobs, S. S. and Weiss, R. F., Washington DC: American Geophysical Union, pp. 151–71.CrossRefGoogle Scholar
Rintoul, S. R. (2007). Rapid freshening of Antarctic Bottom Water formed in the Indian and Pacific Oceans. Geophys. Res. Lett., 34, L06606, doi:10.1029/2006GL028550.CrossRefGoogle Scholar
Ritchie, J. C., Cwynar, L. C. and Spear, R. W. (1983). Evidence from North-West Canada for an early Holocene Milankovitch thermal maximum. Nature, 305, 126–8.CrossRefGoogle Scholar
Robertson, R., Visbeck, M., Gordon, A. L. and Fahrbach, E. (2002). Long-term temperature trends in the deep waters of the Weddell Sea. Deep-Sea Res. II, 49, 4791–806.CrossRefGoogle Scholar
Robinson, L. F., Adkins, J. F., Keigwin, L. D., et al. (2005). Radiocarbon variability in the western North Atlantic during the last deglaciation. Science, 310, 1469–73.CrossRefGoogle ScholarPubMed
Robock, A. and Free, M. P. (1995). Ice cores as an index of global volcanism from 1850 to the present. J. Geophys. Res., 100, 11 549–67.CrossRefGoogle Scholar
Rogers, J. C. (1984). Association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere. Mon. Wea. Rev., 112, 1999–2015.2.0.CO;2>CrossRefGoogle Scholar
Rohling, E. J., Fenton, M., Jorissen, F. J., et al. (1998). Magnitudes of sea-level lowstands of the past 500,000 years. Nature, 394, 162–5.CrossRefGoogle Scholar
Rohling, E. J., Grant, K., Hemleben, C. H., et al. (2008). High rates of sea-level rise during the last interglacial period. Nature Geosci., 1, 38–42.CrossRefGoogle Scholar
Romanovsky, V. E., Sazonova, T. S., Balobaev, V. T., Shender, N. I. and Sergueev, D. O. (2007). Past and recent changes in air and permafrost temperatures in eastern Siberia. Global Planet. Change, 56, 399–413.CrossRefGoogle Scholar
Roscoe, H. K., Colwell, S. R. and Shanklin, J. D. (2003). Stratospheric temperatures in Antarctic winter: does the 40-year record confirm trends in stratospheric water vapour? Quart. J. Roy. Meteorol. Soc., 129, 1745–59.CrossRefGoogle Scholar
Roscoe, H. K., Carver, G. D. and Haynes, P. H. (2010). The 2002 split ozone hole: the wave of the century? Weather, 60, 15–18.CrossRefGoogle Scholar
Rosén, P., Segerström, U., Eriksson, L., Renberg, I. and Birks, H. J. B. (2001). Holocene climate change reconstructed from diatoms, chironomids, pollen and near-infrared spectroscopy at an alpine lake (Sjuodjijaure) in northern Sweden. Holocene, 11, 551–62.CrossRefGoogle Scholar
Röthlisberger, R., Bigler, M., Hutterli, M., et al. (2000). Technique for continuous high-resolution analysis of trace substances in firn and ice cores. Environ. Sci. Technol., 34, 338–42.CrossRefGoogle Scholar
Röthlisberger, R., Mulvaney, R., Wolff, E. W., et al. (2002). Dust and sea salt variability in central East Antarctica (Dome C) over the last 45 kyrs and its implications for southern high-latitude climate. Geophys. Res. Lett., 29, 1963, doi:10.1029/2002GL015186.CrossRefGoogle Scholar
Röthlisberger, R., Mudelsee, M., Bigler, M., et al. (2008). The Southern Hemisphere at glacial terminations: insights from the Dome C ice core. Clim. Past, 4, 345–356.CrossRefGoogle Scholar
Rothrock, D. A., Yu, Y. and Maykut, G. A. (1999). Thinning of the Arctic sea-ice cover. Geophys. Res. Lett., 26, 3469–72.CrossRefGoogle Scholar
Rothrock, D. A. and Zhang, J. (2005). Arctic Ocean sea ice volume: what explains its recent depletion? J. Geophys. Res., 110, C01002, doi:10.1029/2004JC002282.CrossRefGoogle Scholar
Rothrock, D. A., Zhang, J. and Yu, Y. (2003). The Arctic ice thickness anomaly of the 1990s: a consistent view from observations and models. J. Geophys. Res., 108, 3083, doi:10.1029/ 2001JC001208.CrossRefGoogle Scholar
Rott, H., Skvarca, P. and Nagler, T. (1996). Rapid collapse of northern Larsen Ice Shelf, Antarctica. Science, 271, 788–92.CrossRefGoogle Scholar
Ruddiman, W. F. (2003). Orbital insolation, ice volume, and greenhouse gases. Quat. Sci. Rev., 22, 1597–629.CrossRefGoogle Scholar
Rusin, N. P. (1961). Meteorological and Radiational Regime of Antarctica, Jerusalem: Israel Program for Scientific Translations.Google Scholar
Saltzman, E. S., Dioumaeva, I. and Finley, B. D. (2006). Glacial/interglacial variations in methanesulfonate (MSA) in the Siple Dome ice core, West Antarctica. Geophys. Res. Lett., 33, L11811, doi:10.1029/2005GL025629.CrossRefGoogle Scholar
Sato, N., Kikuchi, K., Barnard, S. C. and Hogan, A. W. (1981). Some characteristic properties of ice crystal precipitation in the summer season at South Pole Station, Antarctica. J. Meteorol. Soc. Jpn, 59, 772–80.CrossRefGoogle Scholar
Schauer, U., Fahrbach, E., Osterhus, S. and Rohardt, G. (2004). Arctic warming through the Fram Strait: oceanic heat transport from 3 years of measurements. J. Geophys. Res., 109, C06026, doi:10.1029/2003JC001823.CrossRefGoogle Scholar
Schmidt, R., Mäusbacher, R. and Müller, J. (1990). Holocene diatom flora and stratigraphy from sediment cores of two Antarctic lakes (King George Island). J. Paleolimnol., 3, 55–74.CrossRefGoogle Scholar
Schmittner, A., Latif, M. and Schneider, B. (2005). Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys. Res. Lett., 32, L23710, doi:10.1029/2005GL024368.CrossRefGoogle Scholar
Schneider, D. P., Steig, E. J. and Comiso, J. C. (2004). Recent climate variability in Antarctica from satellite-derived temperature data. J. Clim., 17, 1569–83.2.0.CO;2>CrossRefGoogle Scholar
Schneider, D. P., Steig, E. J., Ommen, T. D., et al. (2006). Antarctic temperatures over the past two centuries from ice cores. Geophys. Res. Lett., 33, L16707, doi:10.1029/2006GL027057.CrossRefGoogle Scholar
Schubert, S. D., Pfaendtner, J. and Rood, R. (1993). An assimilated data set for Earth Science applications. Bull. Amer. Meteorol. Soc., 74, 2331–42.2.0.CO;2>CrossRefGoogle Scholar
Schutz, B. E., Zwally, H. J., Shuman, C. A., Hancock, D. and DiMarzio, J. P. (2005). Overview of the ICESat Mission. Geophys. Res. Lett., 32, L21S01, doi:10.1029/2005GL024009.CrossRefGoogle Scholar
Schwander, J., Jouzel, J., Hammer, C. U., et al. (2001). A tentative chronology for the EPICA Dome Concordia ice core. Geophys. Res. Lett., 28, 4243–46.CrossRefGoogle Scholar
Screen, J. A., Gillett, N. P., Stevens, D. P., Marshall, G. J. and Roscoe, H. K. (2009). The role of eddies in the Southern Ocean temperature response to the Southern Annular Mode. J. Clim., 22, 806–18.CrossRefGoogle Scholar
Sedwick, P. N., Harris, P. T., Robertson, L. G., et al. (2001). Holocene sediment records from the continental shelf of Mac. Robertson Land, East Antarctica. Paleoceanography, 16, 212–25.CrossRefGoogle Scholar
Serreze, M. C. and Barry, R. G. (2005). The Arctic Climate System, Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Serreze, M. C. and Francis, J. A. (2006). The Arctic amplification debate. Climatic Change, 76, 241–64.CrossRefGoogle Scholar
Serreze, M. C., and Hurst, C. M. (2000). Representation of mean Arctic precipitation from NCEP-NCAR and ERA reanalyses. J. Clim., 13, 182–201.2.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C., Kahl, J. and Schnell, R. (1992). Low-level temperature inversions of the Eurasian Arctic and comparisons with Soviet ice island data. J. Clim., 5, 599–613.2.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C., Barry, R. G., Rehder, M. C. and Walsh, J. E. (1995). Variability in atmospheric circulation and moisture flux over the Arctic. Phil. Trans. Roy. Soc. Lond. Ser. A, 352, 215–25.CrossRefGoogle Scholar
Serreze, M. C., Rogers, J. C., Carsey, F. and Barry, R. G. (1997). Icelandic low cyclone activity: climatological features, linkages with the NAO and relationships with recent changes in the Northern Hemisphere circulation. J. Clim., 10, 453–64.2.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C., Walsh, J. E., Chapin, F. S., et al. (2000). Observational evidence of recent change in the northern high-latitude environment. Climatic Change, 46, 159–207.CrossRefGoogle Scholar
Serreze, M. C., Barrett, A. P. and Lo, F. (2005). Northern high latitude precipitation as depicted by atmospheric reanalyses and satellite retrievals. Mon. Wea. Rev., 133, 3407–30.CrossRefGoogle Scholar
Serreze, M. C., Barrett, A. P., Slater, A. G., et al. (2007a). The large-scale energy budget of the Arctic. J. Geophys. Res., 112, D11122, doi:10.1029/2006JD008230.CrossRefGoogle Scholar
Serreze, M. C., Holland, M. M. and Stroeve, J. (2007b). Perspectives on the Arctic's shrinking sea-ice cover. Science, 315, 1533–6.CrossRefGoogle ScholarPubMed
Severinghaus, J. P. and Brook, E. J. (1999). Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science, 286, 930–4.CrossRefGoogle ScholarPubMed
Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. and Bender, M. L. (1998). Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature, 391, 141–6.CrossRefGoogle Scholar
Severinghaus, J. P., Grachev, A., Luz, B., and Caillon, N. (2003). A method for precise measurement of argon 40/36 and krypton/argon ratios in trapped air in polar ice with applications to past firn thickness and abrupt climate change in Greenland and at Siple Some, Antarctica. Geochim. Cosmochim. Acta, 67, 325–43.CrossRefGoogle Scholar
Shackleton, N. J. (1969). The last interglacial in the marine and terrestrial record. Proc. Roy. Soc. Lond., Ser. B, 174, 135–54.CrossRefGoogle Scholar
Shackleton, N. J. (2000). The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science, 289, 1897–902.CrossRefGoogle ScholarPubMed
Shaffer, G., Olsen, S. M. and Bjerrum, C. J (2004). Ocean subsurface warming as a mechanism for coupling Dansgaard-Oeschger climate cycles and ice-rafting events. Geophys. Res. Lett., 31, L24202, doi:10.1029/2004GL020968.CrossRefGoogle Scholar
Shepherd, A. and Wingham, D. (2007). Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science, 315, 1529–32.CrossRefGoogle ScholarPubMed
Shepherd, A., Wingham, D. J., Mansley, J. A. D. and Corr, H. F. J. (2001). Inland thinning of Pine Island Glacier, West Antarctica. Science, 291, 862–4.CrossRefGoogle ScholarPubMed
Shin, S.-I., Liu, Z., Otto-Bliesner, B., et al. (2003). A simulation of the Last Glacial Maximum climate using the NCAR-CCSM. Clim. Dyn., 20, 127–51.CrossRefGoogle Scholar
Shindell, D. (2003). Whither Arctic climate? Science, 299, 215–16.CrossRefGoogle ScholarPubMed
Shindell, D. T. and Schmidt, G. A. (2004). Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophys. Res. Lett., 31, L18209, doi:10.2029/2004GL020724.CrossRefGoogle Scholar
Shuchman, R. A., Josberger, E. G., Russel, C. A., et al. (1998). Greenland Sea Odden sea ice feature: intra-annual and interannual variability. J. Geophys. Res., 103, 12 709–24.CrossRefGoogle Scholar
Siddall, M., Rohling, E. J., Thompson, W. G., and Waelbroeck, C. (2008). Marine Isotope Stage 3 sea level fluctuatoins: data synthesis and new outlook. Rev. Geophys., 46, RG4003, doi:10.1029/2007RG000226.CrossRefGoogle Scholar
Siegenthaler, U., Stocker, T. F., Monnin, E., et al. (2005). Stable carbon cycle-climate relationship during the late Pleistocene. Science, 310, 1313–17.CrossRefGoogle ScholarPubMed
Sigman, D. M. and Boyle, E. A. (2000). Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859–69.CrossRefGoogle ScholarPubMed
Sime, L. C., Wolff, E. W., Oliver, K. I. C. and Tindall, J. C. (2009). Evidence for warmer interglacials in East Antarctic ice cores. Nature, 462, 342–6.CrossRefGoogle ScholarPubMed
Simmonds, I. and Keay, K. (2000a). Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP-NCAR reanalysis. J. Clim., 13, 873–85.2.0.CO;2>CrossRefGoogle Scholar
Simmonds, I. and Keay, K. (2000b). Variability of Southern Hemisphere extratropical cyclone behavior, 1958–97. J. Clim., 13, 550–561.2.0.CO;2>CrossRefGoogle Scholar
Simmonds, I., Keay, K. and Lim, E. P. (2003). Synoptic activity in the seas around Antarctica. Mon. Wea. Rev., 131, 272–88.2.0.CO;2>CrossRefGoogle Scholar
Sinclair, M. R. (1996). A climatology of anticyclones and blocking for the Southern Hemisphere. Mon. Wea. Rev., 124, 245–63.2.0.CO;2>CrossRefGoogle Scholar
Sinnhuber, B. M., Chipperfield, M. P., Davies, S., et al. (2000). Large loss of total ozone during the Arctic winter of 1999/2000. Geophys. Res. Lett., 27, 3473–6.CrossRefGoogle Scholar
Skvarca, P., Rack, W., Rott, H. and Donángelo, T. I. (1999). Climatic trend, retreat and disintegration of ice shelves on the Antarctic Peninsula: an overview. Polar Res., 18, 151–7.CrossRefGoogle Scholar
Smith, H. J., Wahlen, M., Mastroianni, D. and Taylor, K. C. (1997). The CO2 concentration of air trapped in GISP2 ice from the Last Glacial Maximum-Holocene transition. Geophys. Res. Lett., 24, 1–4.CrossRefGoogle Scholar
Smith, R. I. L. (1990). Signy island as a paradigm of biological and environmental change in Antarctic terrestrial ecosystems. In Antarctic Ecosystems: Ecological Change and Conservation, ed. Kerry, K. R. and Hempel, G., Berlin: Springer-Verlag, pp. 32–50.CrossRefGoogle Scholar
Son, S. W., Polvani, L. M., Waugh, D. W., et al. (2008). The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320, 1486–9.CrossRefGoogle ScholarPubMed
Sowers, T. (2001). N2O record spanning the penultimate deglaciation from the Vostok ice core. J. Geophys. Res., 106, 31 903–14.CrossRefGoogle Scholar
Sowers, T. (2006). Late Quaternary. atmospheric CH4 isotope record suggests marine clathrates are stable. Science, 311, 838–40.CrossRefGoogle ScholarPubMed
Spahni, R., Chappellaz, J., Stocker, T. F., et al. (2005). Atmospheric methane and nitrous oxide of the Late Pleistocene from Antarctic ice cores. Science, 310, 1317–21.CrossRefGoogle ScholarPubMed
Spielhagen, R. F., Baumann, K.-H., Erlenkeuser, H., et al. (2004). Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quat. Sci. Rev., 23, 1455–83.CrossRefGoogle Scholar
Stea, R. R., Piper, D. J. W., Fader, G. B. J. and Boyd, R. (1998). Wisconsinan glacial and sea-level history of Maritime Canada and the adjacent continental shelf: a correlation of land and sea events. Geol. Surv. Amer. Bull., 110, 821–45.2.3.CO;2>CrossRefGoogle Scholar
Steele, M., Morison, J., Ermond, W., et al. (2004). Circulation of summer Pacific halocline water in the Arctic Ocean. J. Geophys. Res., 109, C02027, 10.1029/2003JC002009.CrossRefGoogle Scholar
Steffen, K. and Box, J. (2001). Surface climatology of the Greenland ice sheet: Greenland Climate Network 1995–1999. J. Geophys. Res., 106, 33 951–64.CrossRefGoogle Scholar
Steig, E. J. (2006). The south-north connection. Nature, 444, 152–3.CrossRefGoogle ScholarPubMed
Steig, E. J. and Alley, R. B. (2002). Phase relationships between Antarctic and Greenland climate records. Ann. Glaciol., 35, 451–6.CrossRefGoogle Scholar
Steig, E. J., Morse, D. L., Waddington, E. D., et al. (2000). Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica. Geogr. Ann. A, 82 A, 213–35.CrossRefGoogle Scholar
Steig, E. J., Schneider, D. P., Rutherford, S. D., et al. (2009). Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457, 459–62.CrossRefGoogle ScholarPubMed
Stenchikov, G., Robock, A., Ramaswamy, V., et al. (2002). Arctic Oscillation response to the 1991 Mount Pinatubo eruption: effects of volcanic aerosols and ozone depletion. J. Geophys. Res., 107, 4803, doi:10.1029/2002JD002090.CrossRefGoogle Scholar
Stenni, B., Masson-Delmotte, V., et al. (2001). An oceanic cold reversal during the last deglaciation. Science, 293, 2074–77.CrossRefGoogle ScholarPubMed
Stenni, B., Proposito, M., Gragnani, R., et al. (2002). Eight centuries of volcanic signal and climate change at Talos Dome (East Antarctica). J. Geophys. Res., 107, 4076, doi:10.1029/2000JD000317.CrossRefGoogle Scholar
Stephens, B. B. and Keeling, R. (2000). The influence of Antarctic sea ice on glacial-interglacial CO2 variations. Nature, 404, 171–4.CrossRefGoogle ScholarPubMed
Stocker, T. F. and Schmittner, A. (1997). Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature, 388, 862–5.CrossRefGoogle Scholar
Stocker, T. F., Wright, D. G. and Mysak, L. A. (1992). A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies. J. Clim., 5, 773–97.2.0.CO;2>CrossRefGoogle Scholar
Stohl, A. (2006). Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys. Res., 111, D11306, doi:10.1029/2005JD006888.CrossRefGoogle Scholar
Stolarski, R. S., Krueger, A. J., Schoeberl, M. R., et al. (1986). Nimbus-7 satellite measurements of the springtime Antarctic ozone decrease. Nature, 322, 808–11.CrossRefGoogle Scholar
Stone, R. S., Dutton, E. G., Harris, J. M. and Longenecker, D. (2002). Earlier spring snowmelt in northern Alaska as an indicator of climate change. J. Geophys. Res., 107, 4089, doi:10.1029/2000JD000286.CrossRefGoogle Scholar
Stotter, J., Wastl, M., Caseldine, C. and Haberle, T. (1999). Holocene palaeoclimatic reconstruction in northern Iceland: approaches and results. Quat. Sci. Rev., 18, 457–74.CrossRefGoogle Scholar
Straus, D. M. and Shukla, J. (2002). Does ENSO force the PNA? J. Clim., 15, 2340–2358.2.0.CO;2>CrossRefGoogle Scholar
Stroeve, J., Serreze, M. C., Drobot, S., et al. (2008). Arctic sea ice extent plummets in 2007. Eos, 89, 13.CrossRefGoogle Scholar
Stuiver, M. and Braziunas, T. F. (1993). Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. Holocene, 3, 289–305.CrossRefGoogle Scholar
Stuiver, M. and Reimer, P. J. (1993). Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon, 35, 215–30.CrossRefGoogle Scholar
Stuiver, M., Braziunas, T. F., Becker, B. and Kromer, B. (1991). Climatic, solar, oceanic, and geomagnetic influences on Late-Glacial and Holocene atmospheric 14C/12C change. Quat. Res., 35, 1–24.CrossRefGoogle Scholar
Sturm, M., Schimel, J., Michaelson, G., et al. (2005). Winter biological processes could help convert arctic tundra to shrubland. BioScience, 55, 17–26.CrossRefGoogle Scholar
Su, F., Adam, J. C., Trenberth, K. E. and Lettenmaier, D. P. (2006). Evaluation of surface water fluxes of the pan-Arctic land region with a land surface model and ERA-40 reanalysis. J. Geophys. Res., 111, D05110, doi:10.1029/2005JD006387.CrossRefGoogle Scholar
Suttie, T. K. (1970). Portrait of a polar low. Weather, 25, 504–7.CrossRefGoogle Scholar
Svendsen, J. I., Alexanderson, H., Astakhov, V. I., et al. (2004). Late Quaternary. ice sheet history of northern Eurasia. Quat. Sci. Rev., 23, 1229–71.CrossRefGoogle Scholar
Svensson, A., Nielsen, S. W., Kipfstuhl, S., et al. (2005). Visual stratigraphy of the North Greenland Ice Core Project (NorthGRIP) ice core during the last glacial period. J. Geophys. Res., 110, C03012, D02108, doi.10.1029/2004JD005134.CrossRefGoogle Scholar
Swift, J. H., Aagaard, K., Timokhov, L. and Nikiforov, E. G. (2005). Long-term variability of Arctic Ocean waters: evidence from a reanalysis of the EWG data set. J. Geophys. Res., 110, C03012, doi:10.1029/2004JC002312.CrossRefGoogle Scholar
Talley, L. D. (2002). Ocean circulation. In Encyclopedia of Global Environmental Change, Vol. 1, ed. MacCracken, M. C. and Perry, J. S., Chichester, UK: John Wiley and Sons, pp. 557–79.Google Scholar
Tangborn, W. (1980). 2 Models for Estimating Climate-Glacier Relationships in the North Cascades, Washington, USA. J. Glaciol., 25, 3–21.CrossRefGoogle Scholar
Tarasov, L. and Peltier, W. R. (2004). A geophysically constrained large ensemble analysis of the deglacial history of the North American ice-sheet complex. Quat. Sci. Rev., 23, 359–88.CrossRefGoogle Scholar
Tarasov, L. and Peltier, W. R. (2005). Arctic freshwater forcing of the Younger Dryas cold reversal. Nature, 435, 662–5.CrossRefGoogle ScholarPubMed
Tatur, A. and del Valle, R. (1986). Badania paleolimnologicne i geomorfologicne na wyspie krola jerzego-Antarktyka zachodnia (1984–1986). [Paleolimnological and geomorphological investigations on King George Island – West Antarctica]. (In Polish) Przeglad Geologiczny, 11, 621–6.Google Scholar
Taylor, F. and McMinn, A. (2001). Evidence from diatoms for Holocene climate fluctuation along the East Antarctic margin. Holocene, 11, 455–66.CrossRefGoogle Scholar
Taylor, K. C., Hammer, C. U., Alley, R. B., et al. (1993). Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores. Nature, 366, 549–52.CrossRefGoogle Scholar
Teller, J. T., Boyd, M., Yang, Z., Kor, P. S. G. and Fard, A. M. (2005). Alternative routing of Lake Agassiz overflow during the Younger Dryas: new dates, paleotopography, and a re-evaluation. Quat. Sci. Rev., 24, 1890–905.CrossRefGoogle Scholar
,TEMPO (1996). Potential role of vegetation feedback in the climate sensitivity of high-latitude regions: a case study at 6000 years B.P. Global Biogeochem. Cy., 10, 727–36.CrossRefGoogle Scholar
Thie, J. (1974). Distribution and thawing of permafrost in the southern part of the discontinuous permafrost zone in Manitoba. Arctic, 27, 189–200.CrossRefGoogle Scholar
Thoma, M., Jenkins, A., Holland, D. and Jacobs, S. (2008). Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett., 35, L18602, doi:10.1029/2008GL034939.CrossRefGoogle Scholar
Thomas, E. R., Wolff, E. W., Mulvaney, R., et al. (2007). The 8.2 ka event from Greenland ice cores. Quat. Sci. Rev., 26, 70–81.CrossRefGoogle Scholar
Thomas, R., Rignot, E., Casassa, G., et al. (2004). Accelerated sea-level rise from West Antarctica. Science, 306, 255–8.CrossRefGoogle ScholarPubMed
Thompson, D. W. J. and Solomon, S. (2002). Interpretation of recent Southern Hemisphere climate change. Science, 296, 895–9.CrossRefGoogle ScholarPubMed
Thompson, D. W. J. and Wallace, J. M. (1998). The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–300.CrossRefGoogle Scholar
Thompson, D. W. J. and Wallace, J. M. (2000). Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim., 13, 1000–16.2.0.CO;2>CrossRefGoogle Scholar
Thompson, D. W. J., Wallace, J. M. and Hegerl, G. C. (2000). Annular modes in the extratropical circulation. Part II: Trends. J. Clim., 13, 1018–36.2.0.CO;2>CrossRefGoogle Scholar
Thorarinsson, S. (1940). Present glacier shrinkage and eustatic change in sea level. Geogr. Ann., 22, 131–59.Google Scholar
Thorne, P. W. (2008). Arctic tropospheric warming amplification? Nature, 455, E1–E2.CrossRefGoogle ScholarPubMed
Thorne, P. W., Parker, D. E., Tett, S. F. B., et al. (2005). Revisiting radiosonde upper air temperatures from 1958 to 2002. J. Geophys. Res., 110, D18105, doi:10.1029/2004JD005753.CrossRefGoogle Scholar
Tjernstrom, M., Zagar, M., Svensson, G., et al. (2005). Modelling the arctic boundary layer: an evaluation of six ARCMIP regional-scale models using data from the Sheba project. Bound.-Lay. Meteorol., 117, 337–81.CrossRefGoogle Scholar
Toniazzo, T., Gregory, J. M. and Huybrechts, P. (2004). Climatic impact of a Greenland deglaciation and its possible irreversibility. J. Clim., 17, 21–33.2.0.CO;2>CrossRefGoogle Scholar
Tremblay, L.-B., Mysak, L. A. and Dyke, A. S. (1997). Evidence from driftwood records for century-to-millennial scale variations of the high latitude atmospheric circulation during the Holocene. Geophys. Res. Lett., 24, 2027–30.CrossRefGoogle Scholar
Trenberth, K. E. and Hurrell, J. W. (1994). Decadal atmosphere-ocean variations in the Pacific. Clim. Dyn., 9, 303–19.CrossRefGoogle Scholar
Tsukernik, M., Chase, T. N., Serreze, M. C., et al. (2004). On the regulation of minimum mid-tropospheric temperatures in the Arctic. Geophys. Res. Lett., 31, L06112, doi:10.1029/2003GL018831.CrossRefGoogle Scholar
Tsukernik, M., Kindig, D. N. and Serreze, M. C. (2007). Characteristics of winter cyclone activity in the northern North Atlantic: insights from observations and regional modeling. J. Geophys. Res., 112, D03101, doi:10.1029/2006JD007184.CrossRefGoogle Scholar
Turner, J. (2004). The El Niño-Southern Oscillation and Antarctica. Int. J. Climatol., 24, 1–31.CrossRefGoogle Scholar
Turner, J., Lachlan-Cope, T. A. and Thomas, J. P. (1993). A comparison of Arctic and Antarctic mesoscale vortices. J. Geophys. Res., 98 D7, 13 019–34.CrossRefGoogle Scholar
Turner, J., Bromwich, D., Colwell, S., et al. (1996). The Antarctic First Regional Observing Study of the Troposphere (FROST) project. Bull. Amer. Meteorol. Soc., 77, 2007–32.2.0.CO;2>CrossRefGoogle Scholar
Turner, J., Marshall, G. J. and Lachlan-Cope, T. A. (1998). Analysis of synoptic-scale low pressure systems within the Antarctic Peninsula sector of the circumpolar trough. Int. J. Climatol., 18, 253–80.3.0.CO;2-3>CrossRefGoogle Scholar
Turner, J., Connolley, W. M., Leonard, S., Marshall, G. J. and Vaughan, D. G. (1999). Spatial and temporal variability of net snow accumulation over the Antarctic from ECMWF re-analysis project data. Int. J. Climatol., 19, 697–724.3.0.CO;2-3>CrossRefGoogle Scholar
Turner, J., Marshall, G. J. and Ladkin, R. (2001). An operational, real-time cloud detection scheme for use in the Antarctic based on AVHRR data. Int. J. Rem. Sens., 22, 3027–46.CrossRefGoogle Scholar
Turner, J., Colwell, S. R., Marshall, G. J., et al. (2004). The SCAR READER project: towards a high-quality database of mean Antarctic meteorological observations. J. Clim., 17, 2890–8.2.0.CO;2>CrossRefGoogle Scholar
Turner, J., Colwell, S. R., Marshall, G. J., et al. (2005). Antarctic climate change during the last 50 years. Int. J. Climatol., 25, 279–94.CrossRefGoogle Scholar
Turner, J., Lachlan-Cope, T. A., Colwell, S. R., Marshall, G. J. and Connolley, W. M. (2006a). Significant warming of the Antarctic winter troposphere. Science, 311, 1914–17.CrossRefGoogle ScholarPubMed
Turner, J., Connolley, W. M., Lachlan-Cope, T. A. and Marshall, G. J. (2006b). The performance of the Hadley Centre climate model (HadCM3) in high southern latitudes. Int. J. Climatol., 26, 91–112.CrossRefGoogle Scholar
Turner, J., Overland, J. E. and Walsh, J. E. (2007). An Arctic and Antarctic perspective on recent climate change. Int. J. Climatol., 27, 277–93.CrossRefGoogle Scholar
Turner, J., Anderson, P. S., Lachlan-Cope, T. A., et al. (2009a). Record low surface air temperature at Vostok station, Antarctica. J. Geophys. Res., 114, D24102, doi:10.1029/2009JD012104.CrossRefGoogle Scholar
Turner, J., Comiso, J. C., Marshall, G. J., et al. (2009b). Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett., 36, L08502, doi:10.1029/2009GL037524.CrossRefGoogle Scholar
Tziperman, E., Raymo, M. E., Huybers, P. and C. Wunsch, C. (2006). Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing. Paleoceanography, 21, PA4206, doi:10.1029/2005PA001241.CrossRefGoogle Scholar
Uppala, S. M., Kallberg, P. W., Simmons, A. J., et al. (2005). The ERA-40 re-analysis. Quart. J. Roy. Meteorol. Soc., 131, 2961–3012.CrossRefGoogle Scholar
Uttal, T., Curry, J. A., McPhee, M. G., et al. (2002). Surface heat budget of the Arctic Ocean. Bull. Amer. Meteorol. Soc., 83, 255–75.2.3.CO;2>CrossRefGoogle Scholar
Valdes, P. J. (2003). An introduction to climate modelling of the Holocene. In Global Change in the Holocene, ed. Mackay, A., Battarbee, R., Birks, J. and Oldfield, F., London: Arnold, pp. 20–35.Google Scholar
Berg, W. J., Broeke, M. R., Reijmer, C. H. and Meijgaard, E. (2005). Characteristics of the Antarctic surface mass balance, 1958–2002, using a regional atmospheric climate model. Ann. Glaciol., 41, 97–104.CrossRefGoogle Scholar
Berg, W. J., Broeke, M. R., Reijmer, C. H. and Meijgaard, E. (2006). Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J. Geophys. Res., 111, D11104, doi:10.1029/2005JD006495.CrossRefGoogle Scholar
Wal, R. S. W. and Wild, M. (2001). Modelling the response of glaciers to climate change by applying volume-area scaling in combination with a high resolution GCM. Clim. Dyn., 18, 359–66.Google Scholar
Wal, R. S. W., Greuell, W., Broeke, M. R., Reijmer, C. H. and Oerlemans, J. (2006). Surface mass-balance observations and automatic weather station data along a transect near Kangerlussuaq, West Greenland. Ann. Glaciol., 42, 311–16.Google Scholar
Broeke, M. R. (1998). The semi-annual oscillation and Antarctic climate. Part 1: Influence on near surface temperatures (1957–79). Antarct. Sci., 10, 175–83.Google Scholar
Broeke, M. R., Wal, R. S. W. and Wind, M. (1997). Representation of Antarctic katabatic winds in a high-resolution GCM and a note on their climate sensitivity. J. Clim., 10, 3111–30.2.0.CO;2>CrossRefGoogle Scholar
Broeke, M., Reijmer, C. and Wal, R. (2004a). Surface radiation balance in Antarctica as measured with automatic weather stations. J. Geophys. Res., 109, D09103, doi:10.1029/2003JD004394.Google Scholar
Broeke, M. R., Reijmer, C. H. and Wal, R. S. W. (2004b). A study of the surface mass balance in Dronning Maud Land, Antarctica, using automatic weather stations. J. Glaciol., 50, 565–82.CrossRefGoogle Scholar
Lipzig, N. P. M., Meijgaard, E. and Oerlemans, J. (1999). Evaluation of a regional atmospheric model using measurements of surface heat exchange processes from a site in Antarctica. Mon. Wea. Rev., 127, 1994–2011.2.0.CO;2>CrossRefGoogle Scholar
Lipzig, N. P. M., Turner, J., Colwell, S. R. and Broeke, M. R. (2004). The near-surface wind field over the Antarctic continent. Int. J. Climatol., 24, 1973–82.CrossRefGoogle Scholar
Loon, H. (1972). Pressure in the Southern Hemisphere. In Meteorology of the Southern Hemisphere, ed. Loon, H., Taljaard, J. J., Sasamori, T., et al., Boston, MA: American Meteorological Society, pp. 59–86.CrossRefGoogle Scholar
Loon, H. and Jenne, R. L. (1972). Half-yearly oscillations in the Drake Passage. Deep-Sea Res., 19, 525–7.Google Scholar
Loon, H. and Rogers, J. C. (1978). The seesaw in winter temperatures between Greenland and northern Europe. Part I: General description. Mon. Wea. Rev., 106, 296–310.2.0.CO;2>CrossRefGoogle Scholar
Loon, H. and Rogers, J. C. (1984). Interannual variations in the half-yearly cycle of pressure gradients and zonal wind at sea level on the Southern Hemisphere. Tellus, 36A, 76–86.CrossRefGoogle Scholar
Loon, H., Kidson, J. W. and Mullan, A. B. (1993). Decadal variation of the annual cycle in the Australian dataset. J. Clim., 6, 1227–31.2.0.CO;2>CrossRefGoogle Scholar
Vaughan, D. G. and Doake, C. S. (1996). Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature, 379, 328–31.CrossRefGoogle Scholar
Veillette, J. (1994). Evolution and paleohydrology of glacial lakes Barlow and Ojibway. Quat. Sci. Rev., 13, 945–71.CrossRefGoogle Scholar
Veillette, J. J., Dyke, A. S., and Roy, M. (1999). Ice-flow evolution of the Labrador Sector of the Laurentide Ice Sheet: a review, with new evidence from northern Quebec. Quat. Sci. Rev., 18, 993–1019.CrossRefGoogle Scholar
Velicogna, I. and Wahr, J. (2005). Greenland mass balance from GRACE. Geophys. Res. Lett., 32, L18505, doi:10.1029/2005GL023955.Google Scholar
Venegas, S. A. (2003). The Antarctic Circumpolar Wave: a combination of two signals? J. Clim., 16, 2509–25.2.0.CO;2>CrossRefGoogle Scholar
Vermeer, M. and Rahmstorf, S. (2009). Global sea level linked to global temperature. Proc. Natl. Acad. Sci., 106, 21 527–32.CrossRefGoogle ScholarPubMed
Vinther, B. M., Buchardt, S. L., Clausen, H. B., et al. (2009). Holocene thinning of the Greenland ice sheet. Nature, 461, 385–8.CrossRefGoogle ScholarPubMed
Visbeck, M., Chassignet, E. P., Curry, R. G., et al. (2003). The ocean's response to North Atlantic Oscillation variability. In The North Atlantic Oscillation, ed. Hurrell, J. W., Kushnir, Y., Ottersen, G. and Visbeck, M., Washington, DC: American Geophysical Union, pp. 113–45.Google Scholar
Volodin, E. M. and Galin, V. Y. (1999). Interpretation of winter warming on Northern Hemisphere continents in 1977–94. J. Clim., 12, 2947–55.2.0.CO;2>CrossRefGoogle Scholar
Waddington, E. D., Conway, H., Steig, E. J., et al. (2005). Decoding the dipstick: thickness of Siple Dome, West Antarctica, at the Last Glacial Maximum. Geology, 33, 281–4.CrossRefGoogle Scholar
Wadhams, P. (1990). Evidence for thinning of the Arctic ice cover north of Greenland. Nature, 345, 795–7.CrossRefGoogle Scholar
Wadhams, P. (1992). Sea ice thickness distribution in the Greenland Sea and Eurasian Basin, May 1987. J. Geophys. Res., 97, doi:10.1029/91JC03137.CrossRefGoogle Scholar
Wadhams, P. (1994). Sea ice thickness changes and their relation to climate. In The Polar Oceans and Their Role in Shaping the Global Environment, ed. Johannessen, O. M., Muench, R. D. and Overland, J. E., Washington, DC: American Geophysical Union, pp. 337–61.Google Scholar
Walker, D. P., Brandon, M. A., Jenkins, A., et al. (2007). Oceanic heat transport onto the Amundsen Sea shelf through a submarine glacial trough. Geophys. Res. Lett., 34, L02602, doi:10.1029/2006GL028154.CrossRefGoogle Scholar
Walker, G. T. and Bliss, E. W. (1932). World Weather V. Mem. Roy. Meteorol. Soc., 4, 53–84.Google Scholar
Wallace, J. M. (2000). North Atlantic Oscillation/annular mode: two paradigms-one phenomenon. Quart. J. Roy. Meteorol. Soc., 126, 791–805.CrossRefGoogle Scholar
Wallace, J. M. and Gutzler, D. S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784–812.2.0.CO;2>CrossRefGoogle Scholar
Walsh, J. E. and Johnson, C. M. (1979). An analysis of Arctic sea ice. J. Phys. Oceanogr., 9, 580–91.2.0.CO;2>CrossRefGoogle Scholar
Walsh, J. E., Chapman, W. L. and Shy, T. L. (1996). Recent decrease of sea level pressure in the central Arctic. J. Clim., 9, 480–6.2.0.CO;2>CrossRefGoogle Scholar
Wang, M. and Overland, J. E. (2005). Detecting arctic climate change using Koppen classification. Climatic Change, 67, 43–62.CrossRefGoogle Scholar
Wang, M., Overland, J. E., Kattsov, V., et al. (2007). Intrinsic versus forced variation in coupled climate model simulations over the Arctic during the 20th century. J. Clim., 20, 1093–107.CrossRefGoogle Scholar
Wang, P., Tian, J., Cheng, X., Liu, C., and Xu, J. (2003). Carbon reservoir changes precede major ice-sheet expansion at the mid-Brunhes event. Geology, 31, 239–42.2.0.CO;2>CrossRefGoogle Scholar
Warren, S. G., Hahn, C. J., London, J., Chervin, R. M., and Jenne, R. L. (1986). Global Distribution of Total Cloud and Cloud Type Amounts Over Land. NCAR Technical Note TN-273+STR/DOE Technical Report ER/60085-H1 edition. Boulder, CO: NCAR.Google Scholar
Warrick, R. A., Provost, C., Meier, M. F., Oerlemans, J. and Woodworth, P. L. (1995). Changes in sea level. In Climate Change 1995: The Science of Climate Change, ed. Houghton, J. T., Filho, L. G. Meiro, Callender, B. A., et al. Cambridge, UK: Cambridge University Press, pp. 359–405.Google Scholar
Watanabe, O., Jouzel, J., Johnsen, S., et al. (2003). Homogeneous climate variability across East Antarctica over the past three glacial cycles. Nature, 422, 509–12.CrossRefGoogle ScholarPubMed
Watkins, S. J., Maher, B. A. and Bigg, G. R. (2007). Ocean circulation at the Last Glacial Maximum: a combined modelling and magnetic proxy-based study. Paleoceanography, 22, PA2204, doi:10.1029/2006PA001281.CrossRefGoogle Scholar
Waugh, D. W. and Randel, W. J. (1999). Climatology of arctic and antarctic polar vortices using elliptical diagnostics. J. Atmos. Sci., 56, 1594–613.2.0.CO;2>CrossRefGoogle Scholar
Weaver, A. J., Eby, M., Wiebe, E. C., et al. (2001). The UVic Earth System Climate Model: model description, climatology and application to past, present and future climates. Atmos. Ocean., 39, 361–428.CrossRefGoogle Scholar
Weaver, A. J., Saenko, O. A., Clark, P. U. and Mitrovica, J. X. (2003). Meltwater Pulse 1A from Antarctica as a trigger of the Bølling-Allerød warm interval. Science, 299, 1709–13.CrossRefGoogle ScholarPubMed
Webb, D. J., Killworth, P. D., Coward, A. C. and Thompson, S. R. (1991). The FRAM Atlas of the Southern Ocean, Swindon, UK: Natural Environment Research Council.Google Scholar
WebbIII, T., Bartlein, P. J., Harrison, S. P. and Anderson, K. H. (1993). Vegetation, lake levels, and climate in eastern North America for the past 18,000 years. In Global Climates since the Last Glacial Maximum, ed. Wright, H. E., Kutzbach, J. E., Webb, T., et al., Minneapolis, MN: University of Minnesota Press, pp. 414–67.Google Scholar
Weisse, R., Mikolajewicz, U., Sterl, A. and Drijfhout, S. S. (1999). Stochastically forced variability in the Antarctic Circumpolar Current. J. Geophys. Res., 104, 11 049–64.CrossRefGoogle Scholar
White, W. B. and Peterson, R. G. (1996). An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent. Nature, 380, 699–702.CrossRefGoogle Scholar
White, W. B., Chen, S. C., Allan, R. J. and Stone, R. C. (2002). Positive feedbacks between the Antarctic Circumpolar Wave and the global El Niño-Southern Oscillation wave. J. Geophys. Res., 107, 3165, doi:10.1029/2000JC000581.CrossRefGoogle Scholar
White, W. B., Gloersen, P. and Simmonds, I. (2004). Tropospheric response in the Antarctic Circumpolar Wave along the sea ice edge around Antarctica. J. Clim., 17, 2765–79.2.0.CO;2>CrossRefGoogle Scholar
Whitworth, T. and Peterson, R. G. (1985). Volume transport of the Antarctic Circumpolar Current from bottom pressure measurements. J. Phys. Oceanogr., 15, 810–16.2.0.CO;2>CrossRefGoogle Scholar
Williams, L. D. and Wigley, T. M. L. (1983). A comparison of evidence for late Holocene summer temperature-variations in the Northern Hemisphere. Quat. Res., 20, 286–307.CrossRefGoogle Scholar
Winckler, G. and Fischer, H. (2006). 30,000 years of cosmic dust in Antarctic ice. Science, 313, 491.CrossRefGoogle ScholarPubMed
Wingham, D. J., Shepherd, A., Muir, A. and Marshall, G. J. (2006). Mass balance of the Antarctic ice sheet. Phil. Trans. Roy. Soc. Lond. Ser. A, 364, 1627–35.CrossRefGoogle ScholarPubMed
,WMO (2003). Scientific Assessment of Ozone Depletion: 2002. Global Ozone Research and Monitoring Project, Report No. 47, Geneva: World Meteorological Organization.Google Scholar
Wolfe, B. B., Edwards, T. W. D., Aravena, R., et al. (2000). Holocene paleohydrology and paleoclimate at Treeline, north-central Russia, inferred from oxygen isotope records in lake sediment cellulose. Quat. Res., 53, 319–29.CrossRefGoogle Scholar
Wolff, E. W. and Suttie, E. D. (1994). Antarctic snow record of Southern Hemisphere lead pollution. Geophys. Res. Lett., 21, 781–4.CrossRefGoogle Scholar
Wolff, E. W., Rankin, A. M. and Röthlisberger, R. (2003). An ice core indicator of Antarctic sea ice production? Geophys. Res. Lett., 30, 2158, doi:10.1029/2003GL018454.CrossRefGoogle Scholar
Wolff, E. W., Fischer, H., Fundel, F., et al. (2006). Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature, 440, 491–6.CrossRefGoogle ScholarPubMed
Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O. and Svensson, A. (2010). Millenial-scale variability during the last glacial: the ice core record. Quat. Sci. Rev., 29, 2828–38.CrossRefGoogle Scholar
Worby, A. P. and Allison, I. (1991). Ocean-atmosphere energy exchange over thin, variable concentration Antarctic pack ice. Ann. Glaciol., 15, 184–90.CrossRefGoogle Scholar
Worby, A. P., Geiger, C. A., Paget, M. J., et al. (2008). The thickness distribution of Antarctic sea ice. J. Geophys. Res., 113, C05S92, doi:10.1029/2007JC004254.CrossRefGoogle Scholar
Wu, B. Y., Wang, J. and Walsh, J. E. (2006). Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J. Clim., 19, 210–25.CrossRefGoogle Scholar
Wu, Q. G. and Straus, D. M. (2004). AO, COWL, and observed climate trends. J. Clim., 17, 2139–56.2.0.CO;2>CrossRefGoogle Scholar
Wunsch, C. (1999). The interpretation of short climate records, with comments on the North Atlantic and Southern Oscillations. Bull. Amer. Meteorol. Soc., 80, 245–55.2.0.CO;2>CrossRefGoogle Scholar
Wunsch, C. (2003). The spectral description of climate change including the 100 ky energy. Clim. Dyn., 20, 353–63.CrossRefGoogle Scholar
Yang, D. Q., Goodison, B., Metcalfe, J., et al. (2001). Compatibility evaluation of national precipitation gage measurements. J. Geophys. Res., 106, 1481–91.CrossRefGoogle Scholar
Yang, F. and Schlesinger, M. E. (2002). On the surface and atmospheric temperature changes following the 1991 Pinatubo volcanic eruption: a GCM study. J. Geophys. Res., 107, 4073, doi:10.1029/2001JD000373.CrossRefGoogle Scholar
Yokoyama, Y., Lambeck, K., Deckker, P., Johnston, P. and Fifield, I. K. (2000). Timing of the Last Glacial Maximum from observed sea-level minima. Nature, 406, 713.CrossRefGoogle ScholarPubMed
Yuan, X. (2004). ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms. Antarct. Sci., 16, 415–25.CrossRefGoogle Scholar
Yuan, X. and Martinson, D. G. (2000). Antarctic sea ice extent variability and its global connectivity. J. Clim., 13, 1697–717.2.0.CO;2>CrossRefGoogle Scholar
Yuan, X. J. and Martinson, D. G. (2001). The Antarctic Dipole and its predictability. Geophys. Res. Lett., 28, 3609–12.CrossRefGoogle Scholar
Zazulie, N., Rusticucci, M. and Solomon, S. (2010). Changes in climate at high southern latitudes: a unique daily record at Orcadas spanning 1903–2008. J. Clim., 23, 189–96.CrossRefGoogle Scholar
Zenk, W. and Morozov, E. (2007). Decadal warming of the coldest Antarctic Bottom Water flowing through the Vema Channel. Geophys. Res. Lett., 34, L14607, doi:10.1029/2007/GL030340.CrossRefGoogle Scholar
Zhang, X. D., Walsh, J. E., Zhang, J., Bhatt, U. S. and Ikeda, M. (2004). Climatology and interannual variability of arctic cyclone activity: 1948–2002. J. Clim., 17, 2300–2317.2.0.CO;2>CrossRefGoogle Scholar
Zhang, Y., Wallace, J. M. and Battisti, D. S. (1997). ENSO-like interdecadal variability: 1900–93. J. Clim., 10, 1004–20.2.0.CO;2>CrossRefGoogle Scholar
Zielinski, G. A. (2000). Use of paleo-records in determining variability within the volcanism climate system. Quat. Sci. Rev., 19, 417–38.CrossRefGoogle Scholar
Zielinski, G. A., Mayewski, P. A., Meeker, L. D., et al. (1994). Record of volcanism since 7000 B.C. from the GISP2 Greenland ice core and implications for the volcano-climate system. Science, 264, 948–52.CrossRefGoogle ScholarPubMed
Zoltai, S. C. (1995). Permafrost distribution in peatlands of west-central Canada during the Holocene warm period 6000 years ago. Géogr. Phys Quatern., 49, 45–54.CrossRefGoogle Scholar
Zwally, H. J. (1989). Growth of Greenland ice sheet: interpretation. Science, 246(4937), 1589–91.CrossRefGoogle ScholarPubMed
Zwally, H. J., Comiso, J. C., Parkinson, C. L., et al. (1983a). Antarctic Sea Ice, 1973–1976. Report NASA SP-459, Washington, DC: NASA.Google Scholar
Zwally, H. J., Parkinson, C. L. and Comiso, J. C. (1983b). Variability of Antarctic sea ice and changes in carbon dioxide. Science, 220, 1005–12.CrossRefGoogle ScholarPubMed
Zwally, H. J., Comiso, J. C., Parkinson, C. L., Cavalieri, D. J. and Gloersen, P. (2002a). Variability of Antarctic sea ice 1979–1998. J. Geophys. Res., 107, 3041, 10.1029/2000JC000733.CrossRefGoogle Scholar
Zwally, H. J., Abdalati, W., Herring, T., et al. (2002b). Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297, 218–22.CrossRefGoogle ScholarPubMed
Zwally, H. J., Giovinetto, M. B., Li, J., et al. (2005). Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J. Glaciol., 51, 509–27.CrossRefGoogle Scholar
Zweck, C. and Huybrechts, P. (2005). Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity. J. Geophys. Res., 110, D07103, doi:10.1029/2004JD005489.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • John Turner, British Antarctic Survey, Cambridge, Gareth J. Marshall, British Antarctic Survey, Cambridge
  • Book: Climate Change in the Polar Regions
  • Online publication: 07 September 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511975431.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • John Turner, British Antarctic Survey, Cambridge, Gareth J. Marshall, British Antarctic Survey, Cambridge
  • Book: Climate Change in the Polar Regions
  • Online publication: 07 September 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511975431.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • John Turner, British Antarctic Survey, Cambridge, Gareth J. Marshall, British Antarctic Survey, Cambridge
  • Book: Climate Change in the Polar Regions
  • Online publication: 07 September 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511975431.010
Available formats
×