Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T13:05:42.534Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  26 August 2019

Peter H. Yoon
Affiliation:
University of Maryland, College Park
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhiezer, A. I., Akhiezer, I. A., Polovin, R. V., Sitenko, A. G., and Stepanov, K. N. 1975. Plasma Electrodynamics. Volume 1 – Linear Theory. Volume 2 – Non-Linear Theory and Fluctuations. Pergamon, New York.Google Scholar
Alexandrov, A. F., Bogdankevich, L. S., and Rukhadze, A. A. 1984. Principles of Plasma Electrodynamics. Springer-Verlag, Berlin.Google Scholar
Appert, K., Tran, T. M., and Vaclavik, . 1976. Two-dimensional quasi-linear evolution of the electron-beam-plasma instability. Phys. Rev. Lett., 37, 502.CrossRefGoogle Scholar
Armstrong, T. P., Pasonessa, M. T., Bell II, E. V., and Krimigis, S. M. 1983. Voyager observations of Saturnian ion and electron phase space densities. J. Geophys. Res., 88, 8893.CrossRefGoogle Scholar
Aschwanden, M. J. 2005. Physics of the Solar Corona. Springer-Verlag, Berlin.Google Scholar
Balescu, R. 1960. Irreversible processes in ionized gases. Phys. Fluids, 3, 52.Google Scholar
Bardwell, S., and Goldman, M. V. 1976. Three-dimensional Langmuir wave instabilities in type III solar radio bursts. Astrophys. J., 209, 912.Google Scholar
Baumjohann, W., and Treumann, R. A. 1997. Basic Space Plasma Physics. Imperial College Press, London.Google Scholar
Beliaev, S. T., and Budker, G. I. 1956. The relativistic kinetic equation. Sov. Phys. Dok., 1, 218.Google Scholar
Bernstein, I. B., and Engelmann, F. 1966. Quasilinear theory of plasma waves. Phys. Fluids, 9, 937.CrossRefGoogle Scholar
Biskamp, D. 2003. Magnetohydrodynamic Turbulence. Cambridge University Press, Cambridge.Google Scholar
Brazhenko, A. I., Melnik, V. N., Konovalenko, A. A., Pylaev, O. S., Frantsuzenko, A. V., Dorovskyy, V. V., Vashchishin, R. V., and Rucker, H. O. 2012. Search for the third harmonic of type III bursts radio emission at decameter wavelengths. Odessa Astron. Publ., 25, 181.Google Scholar
Brodin, G., and Stenflo, L. 2015. Three-wave coupling coefficients for perpendicular wave propagation in a magnetized plasma. Phys. Plasmas, 22, 104503.CrossRefGoogle Scholar
Bruno, R., and Carbone, V. 2016. Turbulence in the Solar Wind. Springer International Publishing, Switzerland.CrossRefGoogle Scholar
Cairns, I. H. 1987a. Fundamental plasma emission involving ion sound waves. J. Plasma Phys., 28, 169.Google Scholar
Cairns, I. H. 1987b. Second harmonic plasma emission involving ion sound waves. J. Plasma Phys., 28, 179.Google Scholar
Cairns, I. H. 1987c. Third and higher harmonic plasma emission due to Raman scattering. J. Plasma Phys., 28, 199.Google Scholar
Cane, H. V., Erickson, W. C., and Prestage, N. P. 2002. Solar flares, type III radio bursts, coronal mass ejections, and energetic particles. J. Geophys. Res., 107, 1315.CrossRefGoogle Scholar
Cap, F. F. 1976. Handbook on Plasma Instabilities. Academic Press, New York.Google Scholar
Chen, L. 1987. Waves and Instabilities in Plasmas. World Scientific, Singapore.CrossRefGoogle Scholar
Crabtree, C., Rudakov, L., Ganguli, G., Mithaiwala, M., Galinsky, V., and Shevchenko, V. 2012. Weak turbulence in the magnetosphere: Formation of whistler wave cavity by nonlinear scattering. Phys. Plasmas, 19, 032903.Google Scholar
Cravens, T. E. 1997. Physics of Solar System Plasmas. Cambridge University Press, Cambridge.Google Scholar
Davidson, R. C. 1972. Methods in Nonlinear Plasma Theory. Academic Press, New York.Google Scholar
Dawson, J. M., and Shanny, R. 1968. Some investigations of nonlinear behavior in one-dimensional plasmas. Phys. Fluids, 11, 1506.Google Scholar
Diamond, P. H., Itoh, S.-I., and Itoh, K. 2010. Modern Plasma Phsyics, Volume 1: Physical Kinetics of Turbulent Plasmas. Cambridge University Press, Cambridge.Google Scholar
Drummond, W. E., and Pines, D. 1962. Nonlinear stability of plasma oscillations. Nucl. Fusion Suppl., 2, 1049.Google Scholar
Dulk, G. A. 1985. Radio emission from the sun and stars. Ann. Rev. Astron. Astrophys., 23, 169.Google Scholar
Dum, C. T. 1990. Simulation studies of plasma waves in the electron foreshock: The generation of Langmuir waves by a gentle bump-on-tail electron distribution. J. Geophys. Res., 95, 8095.Google Scholar
Dum, C. T., and Nishikawa, K.-I. 1994. Two-dimensional simulation studies of the electron beam-plasma instability. Phys. Plasmas, 1, 1821.Google Scholar
Dupree, T. H. 1966. A perturbation theory for strong plasma turbulence. Phys. Fluids, 9, 1773.Google Scholar
Ellis, R. A., and Porkolab, M. 1968. Nonlinear interations of cyclotron harmonic plasma waves. Phys. Rev. Lett., 21, 529.CrossRefGoogle Scholar
Ergun, R. E., Larson, D., Lin, R. P., McFadden, J. P., Carlson, C. W., Anderson, K. A., Muschietti, L., McCarthy, M., Parks, G. K., Reme, H., Bosqued, J. M., D’Uston, C., Sanderson, T. R., Wenzel, K. P., Kaiser, M., Lepping, R. P., Bale, S. D., Kellogg, P., and Bougeret, J.-L. 1998. Wind spacecraft observations of solar impulsive electron events associated with solar type III radio bursts. Astrophys. J., 503, 435.Google Scholar
Fainberg, J., and Stone, R. G. 1974. Satellite observations of type III solar radio bursts at low frequencies. Space Sci. Rev., 16, 145.CrossRefGoogle Scholar
Feldman, W. C., Asbridge, J. R., Bame, S. J., Montgomery, M. D., and Gary, S. P. 1975. Solar wind electrons. J. Geophys. Res., 80, 4181.CrossRefGoogle Scholar
Felten, T., Schlickeiser, R., Yoon, P. H., and Lazar, M. 2013. Spontaneous electromagnetic fluctuations in unmagnetized plasmas. II. Relativistic form factors of aperiodic thermal modes. Phys. Plasmas, 20, 052113.Google Scholar
Foroutan, G., Robinson, P. A., Zahed, H., Li, B., and Cairns, I. H. 2007. Quasilinear dynamics of a cloud of hot electrons propagating through a plasma in the presence of an externally applied uniform electric field. Phys. Plasmas, 14, 122902.Google Scholar
Frank, L. A., and Gurnett, D. A. 1972. Direct observations of low-energy solar electrons associated with a type III solar radio burst. Solar Phys., 27, 446.Google Scholar
Fried, D. F., and Conte, S. D. 1961. Plasma Dispersion Function: The Hilbert Transform of the Gaussian. Academic Press, New York.Google Scholar
Frieman, E. A., and Rutherford, P. 1964. Kinetic theory of weakly unstable plasma. Ann. Phys., 28, 134.CrossRefGoogle Scholar
Gaelzer, R., Yoon, P. H., Umeda, T., Omura, Y., and Matsumoto, H. 2003. Harmonic Langmuir waves: II. Turbulence spectrum. Phys. Plasmas, 10, 373.Google Scholar
Ganguli, G., Rudakov, L., Scales, W., Wang, J., and Mithaiwala, M. 2010. Three dimensional character of whistler turbulence. Phys. Plasmas, 17, 052310.Google Scholar
Ganse, U., Kilian, P., Vainio, R., and Spanier, F. 2012a. Emission of type II radio bursts – Single-beam versus two-beam scenario. Solar Phys., 280(2), 551560.Google Scholar
Ganse, U., Kilian, P., Spanier, F., and Vainio, R. 2012b. Nonlinear wave interactions as emission process of type II radio bursts. Astrophys. J., 751(2), 145.Google Scholar
Gary, S. P. 1993. Theory of Space Plasma Microinstabilities. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Ginzburg, C. L., and Zheleznyakov, V. V. 1958. On the possible mechanisms of sporadic solar radio emission (radiation in an isotropic plasma). Sov. Astron. – AJ, 2, 653.Google Scholar
Goldman, M. V. 1983. Progress and problems in the theory of type III solar radio emission. Solar Phys., 89, 403.CrossRefGoogle Scholar
Goldman, M. V., and Dubois, D. F. 1982. Beam-plasma instability in the presence of low-frequency turbulence. Phys. Fluids, 25, 1062.Google Scholar
Goldstein, M. L., Smith, R. A., and Papadopoulos, K. 1979. Nonlinear stability of solar type III radio bursts, II. Application to observations near 1 AU. Astrophys. J., 234, 683.Google Scholar
Gorbunov, L. M., and Silin, V. P. 1965. Nonlinear interaction between plasma waves. Sov. Phys. JETP, 20, 135.Google Scholar
Gorbunov, L. M., Pustovalov, V. V., and Silin, V. P. 1965. Nonlinear interaction of electromagnetic waves in a plasma. Sov. Phys. JETP, 20, 967.Google Scholar
Gosling, J. T., Asbridge, J. R., Bame, S. J., Feldman, W. C., Zwicki, R. D., Paschmann, G., Sckopke, N., and Hynds, R. J. 1981. Interplanetary ions during an energetic storm particle event – The distribution function from solar wind thermal energies to 1.6 MeV. J. Geophys. Res., 86, 547.Google Scholar
Gosling, J. T., Skoug, R. M., and McComas, D. J. 2003. Solar electron bursts at very low energies: Evidence for acceleration in the high corona? Geophys. Res. Lett., 30, 1697.Google Scholar
Graham, D. B., Cairns, I. H., Malaspina, D. M., and Ergun, R. E. 2012. Evidence against the oscillating two-streaming instability and spatial collapse of Langmuir waves in solar type III radio bursts. Astrophys. J. Lett., 753, L18.CrossRefGoogle Scholar
Grognard, R. J.-M. 1982. Numerical simulation of the weak turbulence excited by a beam of electrons in the interplanetary plasma. Solar Phys., 81, 173.Google Scholar
Guernsey, R. L. 1960. The kinetic theory of fully ionized gases. DOE Tech. Rep., NP-9067.Google Scholar
Gurnett, D. A., Marsch, E., Pilipp, W., Schwenn, R., and Rosenbauer, H. 1979. Ion acoustic waves and related plasma observations in the solar wind. J. Geophys. Res., 84, 2029.CrossRefGoogle Scholar
Hao, X., O’Shea, B. W., Collins, D. C., Norman, M. L., Li, H., and Li, S. 2008. The Biermann battery in cosmological MHD simulations of population III star formation. Astrophys. J. Lett., 688, L57.Google Scholar
Hasegawa, A. 1975. Instabilities and Nonlinear Effects. Springer, New York.Google Scholar
Hasegawa, A., Mima, K., and Duong-van, M. 1985. Plasma distribution function in a superthermal radiation field. Phys. Rev. Lett., 54, 2608.Google Scholar
Helander, P., and Sigmar, D. J. 2002. Collisional Transport in Magnetized Plasmas. Cambridge University Press, Cambridge.Google Scholar
Horton, W., and Choi, D.-I. 1979. Renormalized turbulence theory for the ion acoustic problem. Phys. Rep., 49, 273.CrossRefGoogle Scholar
Huba, J. D. 2009. NRL Plasma Formulary. Naval Research Laboratory, Washington, DC.Google Scholar
Ichimaru, S. 1973. Basic Principles of Plasma Physics. Benjamin, New York.Google Scholar
Ishihara, O., and Hirose, A. 1981. Quasilinear mechanism of high-energy ion-tail formation in the ion-acoustic instability. Phys. Rev. Lett., 46, 771.CrossRefGoogle Scholar
Ishihara, O., Hirose, A., and Langdon, A. B. 1980. Nonlinear saturation of the Buneman instability. Phys. Rev. Lett., 44, 1404.Google Scholar
Ishihara, O., Hirose, A., and Langdon, A. B. 1981. Nonlinear evolution of Buneman instability. Phys. Fluids, 24, 452.Google Scholar
Itoh, S.-I., and Itoh, K. 2009. Kinetic description of nonlinear plasma turbulence. J. Phys. Soc. Jap., 78, 124502.CrossRefGoogle Scholar
Ivanov, A. A., Soboleva, T. K., and Yushmanov, P. N. 1976. Three-dimensional quasi-linear relaxation. Sov. Phys. JETP, 42, 1027.Google Scholar
Joyce, G., Knorr, G., and Burns, T. 1971. Nonlinear behavior of the one-dimensional weak beam plasma system. Phys. Fluids, 14, 797.Google Scholar
Kadomtsev, B. B. 1965. Plasma Turbulence. Academic Press, New York.Google Scholar
Kane, S. R. 1972. Evidence for a common origin of the electrons responsible for the impulsive X-ray and type III radio bursts. Solar Phys., 27, 174.CrossRefGoogle Scholar
Kaplan, S. A., and Tsytovich, V. N. 1968. Radio emission from beams of fast particles under cosmic conditions. Sov. Astron. – AJ, 11, 956.Google Scholar
Kaplan, S. A., and Tsytovich, V. N. 1973. Plasma Astrophysics. Pergamon Press, New York.Google Scholar
Karlický, M., and Vandas, M. 2007. Shock drift electron acceleration and generation of waves. Plant. Space Sci., 55(15), 23362339.Google Scholar
Kasaba, Y., Matsumoto, H., and Omura, Y. 2001. One- and two-dimensional simulations of electron beam instability: Generation of electrostatic and electromagnetic 2f/sub p/ waves. J. Geophys. Res., 106(A9), 1869318711.Google Scholar
Kim, S., Schlickeiser, R., Yoon, P. H., López, R. A., and Lazar, M. 2017. Spontaneous emission of electromagnetic fluctuations in Kappa magnetized plasmas. Plasma Phys. Control. Fusion, 59, 125003.CrossRefGoogle Scholar
Kivelson, M. G., and Russell, C. T. 1995. Introduction to Space Physics. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Kliem, B., Krüger, A., and Treumann, R. A. 1992. Third plasma harmonic radiation in type II bursts. Solar Phys., 140, 149.CrossRefGoogle Scholar
Klimas, A. J. 1983. A mechanism for plasma waves at the harmonics of the plasma frequency in the electron foreshock boundary. J. Geophys. Res., 88, 9081.Google Scholar
Klimas, A. J. 1990. Trapping saturation of the bump-on-tail instability and electrostatic harmonic excitation in Earth’s foreshock. J. Geophys. Res., 95, 14905.Google Scholar
Klimontovich, Yu. L. 1967. The Statistical Theory of Non-Equilibrium Processes in a Plasma. Pergamon Press, New York.Google Scholar
Klimontovich, Yu. L. 1982. Kinetic Theory of Nonideal Gases and Nonideal Plasmas. Pergamon Press, New York.Google Scholar
Kono, M., and Ichikawa, H. 1973. Renormalization of the wave-particle interaction in weakly turbulent plasmas. Prog. Theor. Phys., 49, 754.Google Scholar
Kono, M., and Škorić, M. 2010. Nonlinear Physics of Plasmas. Springer, Heidelberg.Google Scholar
Kontar, E. P., and Pécseli, H. L. 2002. Nonlinear development of electron-beam-driven weak turbulence in an inhomogeneous plasma. Phys. Rev. E, 65, 066408.CrossRefGoogle Scholar
Kovrizhnykh, L. M. 1965. On the theory of a turbulent plasma. Sov. Phys. JETP, 21, 744.Google Scholar
Kovrizhnykh, L. M., and Tsytovich, V. N. 1964. Interaction of longitudinal and transverse waves in a plasma. Sov. Phys. JETP, 19, 1494.Google Scholar
Kovrizhnykh, L. M., and Tsytovich, V. N. 1965. Effects of transverse electromagnetic wave decay in a plasma. Sov. Phys. JETP, 20, 978.Google Scholar
Krafft, C., Volokitin, A. S., and Krasnoselskikh, V. V. 2013. Interaction of energetic particles with waves in strongly inhomogeneous solar wind plasmas. Astrophys. J., 778, 111.CrossRefGoogle Scholar
Krall, N. A., and Trivelpiece, A. W. 1973. Principles of Plasma Physics. McGraw-Hill, New York.Google Scholar
Krommes, J. A. 2002. Fundamental statistical descriptions of plasma turbulence in magnetic fields. Phys. Rep., 360, 1.Google Scholar
Krucker, S., Kontar, E. P., Christe, S., and Lin, R. P. 2007. Solar flare electron spectra at the Sun and near the Earth. Astrophys. J., 663, L109.CrossRefGoogle Scholar
Kulsrud, R. M., and Zweibel, E. G. 2008. On the origin of cosmic magnetic fields. Rep. Prog. Phys., 71, 046901.Google Scholar
Kundu, M. R. 1965. Solar Radio Astronomy. Interscience, New York.Google Scholar
Landau, L. D. 1937. The kinetic equation in the case of Coulomb interaction. Zh. Eksp. Teor. Fiz., 7, 2.Google Scholar
Landau, L. D. 1946. On the vibrations of the electronic plasma. Zh. Eksp. Teor. Fiz., 16, 574.Google Scholar
Lazar, M., Yoon, P. H., and Schlickeiser, R. 2012. Spontaneous electromagnetic fluctuations in unmagnetized plasmas. III. Generalized Kappa distributions. Phys. Plasmas, 19, 122108.Google Scholar
Le Chat, G., Issautier, K., Meyer-Vernet, N., Zouganelis, I., and Maksimovic, M. 2009. Quasi-thermal noise in space plasma: “kappa” distributions. Phys. Plasmas, 16, 102903.Google Scholar
Lenard, A. 1960. On Bogoliubov’s kinetic equation for a spatially homogeneous plasma. Ann. Phys., 10, 390.Google Scholar
Leubner, M. P. 2002. A nonextensive entropy approach to kappa-distributions. Astrophys. Space Sci., 282, 573.Google Scholar
Li, B., Cairns, I. H., and Robinson, P. A. 2008a. Simulations of coronal type III solar radio bursts: 1. Simulation model. J. Geophys. Res., 113, A06104.Google Scholar
Li, B., Cairns, I. H., and Robinson, P. A. 2008b. Simulations of coronal type III solar radio bursts: 2. Dynamic spectrum for typical parameters. J. Geophys. Res., 113, A06105.Google Scholar
Li, B., Cairns, I. H., and Robinson, P. A. 2009. Simulations of coronal type III solar radio bursts: 3. Effects of beam and coronal parameters. J. Geophys. Res., 114, A02104.Google Scholar
Lin, R. P. 1970. The emission and propagation of ∼40keV solar flare electrons. Solar Phys., 12, 266.Google Scholar
Lin, R. P. 1998. WIND observations of suprathermal electrons in the interplanetary medium. Space Sci. Rev., 86, 61.CrossRefGoogle Scholar
Lin, R. P., Evans, L. G., and Fainberg, J. 1973. Simultaneous observations of fast solar electrons and type III radio burst emission near 1 AU. Astrophys. Lett., 14, 191.Google Scholar
Lin, R. P., Potter, D. W., Gurnett, D. A., and Scarf, F. L. 1981. Energetic electrons and plasma waves associated with a solar type III radio burst. Astrophys. J., 251, 364.Google Scholar
Lin, R. P., Levedahl, W. K., Lotko, W., Gurnett, D. A., and Scarf, F. L. 1986. Evidence for nonlinear wave-wave interactions in solar type III radio bursts. Astrophys. J., 308, 954.Google Scholar
Livadiotis, G. 2017. Kappa Distributions. Elsevier Amsterdam.Google Scholar
Livadiotis, G., and McComas, D. J. 2009. Beyond kappa distributions: Exploiting Tsallis statistical mechanics in space plasmas. J. Geophys. Res., 114, A11105.Google Scholar
López, R. A., and Yoon, P. H. 2017. Simulation of electromagnetic fluctuations in thermal magnetized plasma. Plasma Phys. Control. Fusion, 59, 115003.Google Scholar
Mace, R. L., Hellberg, M. A., and Treumann, R. A. 1998. Electrostatic fluctuations in plasmas containing suprathermal particles. J. Plasma Phys., 59, 393.CrossRefGoogle Scholar
Magelssen, G. R., and Smith, D. F. 1977. Nonrelativistic electron stream propagation in the solar atmosphere and type III radio bursts. Solar Phys., 55, 211.CrossRefGoogle Scholar
Maksimovic, M., Hoang, S., Meyer-Vernet, N., Moncuquet, M., and Bougeret, J.-L. 1995. Solar wind electron parameters from quasi-thermal noise spectroscopy and comparison with other measurements on Ulysses. J. Geophys. Res., 199, 19881.Google Scholar
Maksimovic, M., Pierrard, V., and Riley, P. 1997. Ulysses electron distributions fitted with Kappa functions. Geophys. Res. Lett., 24, 1151.CrossRefGoogle Scholar
Maksimovic, M., Zouganelis, I., Chaufray, J.-Y., Issautier, K., Scime, E. E., Littleton, J. E., Marsch, E., McComas, D. J., Salem, C., Lin, R. P., and Elliott, H. 2005. Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU. J. Geophys. Res., 110, A09104.CrossRefGoogle Scholar
Mann, G., Jansen, F., MacDowall, R. J., Kaiser, M. L., and Stone, R. G. 1999. A heliospheric density model and type III radio bursts. Astron. Astrophys., 348, 614.Google Scholar
McLean, D. J., and Labrum, N. R. 1985. Solar Radiophysics: Studies of Emission from the Sun at Metre Wavelengths. Cambridge University Press, Cambridge.Google Scholar
Mel’nik, V., Lapshin, V., and Kontar, E. 1999. Propagation of a monoenergetic electron beam in the solar corona. Solar Phys., 184, 353.Google Scholar
Melrose, D. B. 1980a. Plasma Astrophysics, Vol. 1 & 2. Gordon and Breach, New York.Google Scholar
Melrose, D. B. 1980b. The emission mechanisms for solar radio bursts. Space Sci. Rev., 26, 3.Google Scholar
Melrose, D. B. 1982. ‘Plasma emission’ without Langmuir waves. Austr. J. Phys., 35, 67.CrossRefGoogle Scholar
Melrose, D. B. 1986. Instabilities in Space and Laboratory Plasmas. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Melrose, D. B. 1987. Plasma emission – A review. Solar Phys., 111, 89.CrossRefGoogle Scholar
Melrose, D. B., and Sy, W. 1972. Scattering of waves in a magnetoactive plasma. Astrophys. Space Sci., 17, 343.Google Scholar
Meyer-Vernet, N. 1979. On natural noises detected by antennas in plasmas. J. Geophys. Res., 84, 5373.Google Scholar
Meyer-Vernet, N. 2007. Basics of the Solar Wind. Cambridge University Press, Cambridge.Google Scholar
Meyer-Vernet, N., Couturier, P., Hoang, S., Perche, C., Steinberg, J. L., Fainberg, J., and Meetre, C. 1986. Plasma diagnosis from thermal noise and limits on dust flux or mass in comet Giacobini-Zinner. Science, 232, 370.Google Scholar
Meyer-Vernet, N., Hoang, S., and Moncuquet, M. 1993. Bernstein waves in the Io plasma torus: A novel kind of electron temperature sensor. J. Geophys. Res., 98, 21163.Google Scholar
Meyer-Vernet, N., Issautier, K., and Moncuquet, M. 2017. Quasi-thermal noise spectroscopy: The art and the practice. J. Geophys. Res., 122, 7925.Google Scholar
Mikhailovskii, A. B. 1974. Theory of Plasma Instabilities, Vol. 1 & 2. Consultants Bureau, New York.Google Scholar
Mikhajlenko, V. S., and Stepanov, K. N. 1981. Weak ion-cyclotron turbulence theory of a plasma with a transverse current. Plasma Phys., 23, 1165.CrossRefGoogle Scholar
Mithaiwala, M., Rudakov, L., Crabtree, C., and Ganguli, G. 2012. Co-existence of whistler waves with kinetic Alfven wave turbulence for the high-beta solar wind plasma. Phys. Plasmas, 19, 102902.CrossRefGoogle Scholar
Montgomery, D. C., and Tidman, D. A. 1964. Plasma Kinetic Theory. McGraw-Hill, New York.Google Scholar
Morse, R. L., and Nielson, C. W. 1969. Numerical simulation of warm two-beam plasma. Phys. Fluids, 12, 2418.Google Scholar
Muschietti, L. 1990. Electron beam formation and stability. Solar Phys., 130, 201.Google Scholar
Muschietti, L., and Dum, D. T. 1991. Nonlinear wave scattering and electron beam relaxation. Phys. Fluids B, 3, 1968.Google Scholar
Musher, S. L., Rubenchik, A. M., and Zakharov, V. E. 1995. Weak Langmuir turbulence. Phys. Report, 252, 177.CrossRefGoogle Scholar
Newbury, J. A., Russell, C. T., Phillips, J. L., and Gary, S. P. 1998. Electron temperature in the ambient solar wind: Typical properties and a lower bound at 1 AU. J. Geophys. Res., 103, 9553.Google Scholar
Nicholson, D. R. 1983. Introduction to Plasma Theory. John Wiley & Sons, New York.Google Scholar
Nicholson, D. R., Goldman, M. V., Hoyng, P., and Weatherall, J. C. 1978. Nonlinear Langmuir waves during type III solar radio bursts. Astrophys. J., 223, 605.Google Scholar
Nishikawa, K.-I., and Cairns, I. H. 1991. Simulation of the nonlinear evolution of electron plasma waves. J. Geophys. Res., 96, 19343.CrossRefGoogle Scholar
Olbert, S. 1968. Physics of the Magnetosphere, eds. Carovillano, R. D. L. & McClay, J. F.. Astrophys. Space Sci. Libr., Vol. 10 Springer, Dordrecht p. 641.Google Scholar
Papadopoulos, K., Geldstein, M. L., and Smith, R. A. 1974. Stabilization of electron streams in type III solar radio bursts. Astrophys. J., 190, 175.CrossRefGoogle Scholar
Parks, G. K. 2004. Physics of Space Plasmas. Westview Press, Boulder.Google Scholar
Pezzi, O., Valentini, F., and Veltri, P. 2016. Collisional relaxation of fine velocity structures in plasmas. Phys. Rev. Lett., 116, 145001.Google Scholar
Pitaevskii, L. P., and Lifshitz, E. M. 1981. Physical Kinetics: Volume 10 (Course of Theoretical Physics). Pergamon, New York.Google Scholar
Porkolab, M., and Chang, R. P. H. 1978. Nonlinear wave effects in laboratory plasmas: A comparison between theory and experiment. Rev. Mod. Phys., 50, 745.Google Scholar
Pustovalov, V. V., and Silin, V. P. 1975. Nonlinear theory of the interaction of waves in a plasma. Page 37 of: Theory of Plasma (ed. Skobel’tsyn, D. V.). Proc. (Trudy) of the P. N. Lebedev Physics Institute, Vol. 61. Consultants Bureau, New York, p. 37.Google Scholar
Ratcliffe, H., Bian, N. H., and Kontar, E. P. 2012. Density fluctuations and the acceleration of electrons by beam-generated Langmuir waves in the solar corona. Astrophys. J., 761, 176.CrossRefGoogle Scholar
Reid, H. A. S., and Ratcliffe, H. 2014. A review of solar type III radio bursts. Res. Astron. Astrophys., 14, 773.Google Scholar
Reiner, M. J., Stone, R. G., and Fainberg, J. 1992. Detection of fundamental and harmonic type III radio emission and the associated Langmuir waves at the source region. Astrophys. J., 394, 340.CrossRefGoogle Scholar
Reiner, M. J., Goetz, K., Fainberg, J., Kaiser, M. L., Maksimovic, M., Cecconi, B., Hoang, S., Bale, S. D., and Bougeret, J.-L. 2009. Multipoint observations of solar type III radio bursts from STEREO and Wind. Solar Phys., 259, 255.Google Scholar
Rha, K., Ryu, C.-M., and Yoon, P. H. 2013. Asymmetric electron distributions in the solar wind. Astrophys. J. Lett., 775, L21.CrossRefGoogle Scholar
Rhee, T., Ryu, C.-M., Woo, M. Kaang, H. H., Yi, S., and Yoon, P. H. 2009a. Multiple harmonic plasma emission. Astrophys. J., 694(1), 618625.Google Scholar
Rhee, T., Woo, M., and Ryu, C.-M. 2009b. Simulation study of plasma emission in beam-plasma interactions. J. Kor. Phys. Soc., 54(1), 313316.Google Scholar
Roberson, C., Gentle, K. W., and Nielson, P. 1971. Experimental test of quasilinear theory. Phys. Rev. Lett., 26, 226.CrossRefGoogle Scholar
Roberts, J. A. 1959. Solar radio bursts of spectral type II. Austr. J. Phys., 12, 327.Google Scholar
Robinson, P. A., and Cairns, I. H. 1998a. Fundamental and harmonic emission in type III solar radio bursts – I. Emission at a single location or frequency. Solar Phys., 181, 363.Google Scholar
Robinson, P. A., and Cairns, I. H. 1998b. Fundamental and harmonic emission in type III solar radio bursts – II. Dominant modes and dynamic spectra. Solar Phys., 181, 395.Google Scholar
Robinson, P. A., and Cairns, I. H. 1998c. Fundamental and harmonic emission in type III solar radio bursts – III. Heliocentric variation of interplanetary beam and source parameters. Solar Phys., 181, 429.Google Scholar
Rogister, A., and Oberman, C. 1968. On the kinetic theory of stable and weakly unstable plasma. Part 1. J. Plasma Phys., 2, 33.Google Scholar
Rogister, A., and Oberman, C. 1969. On the kinetic theory of stable and weakly unstable plasma. Part 2. J. Plasma Phys., 3, 119.Google Scholar
Rosenberg, H. 1976. Solar radio observations and interpretations. Phil. Trans. R. Soc. London, Ser. A., 281, 461.Google Scholar
Rosenbluth, M. N., MacDonald, W. M., and Judd, D. L. 1957. Fokker-Planck equation for an inverse-square force. Phys. Rev., 107, 1.Google Scholar
Rudakov, L. I., and Tsytovich, V. N. 1971. The theory of plasma turbulence for strong wave-particle interaction. Plasma Phys., 13, 213.Google Scholar
Rudakov, L. I., Mithaiwala, M., Ganguli, G., and Crabtree, C. 2011. Linear and nonlinear Landau resonance of kinetic Alfvn waves: Consequences for electron distribution and wave spectrum in the solar wind. Phys. Plasmas, 18, 012307.Google Scholar
Ryu, C.-M., Rhee, T., Umeda, T., Yoon, P. H., and Omura, Y. 2007. Turbulent acceleration of superthermal electrons. Phys. Plasmas, 14, 100701.Google Scholar
Sagdeev, R. Z., and Galeev, A. A. 1969. Nonlinear Plasma Theory. Benjamin, New York.Google Scholar
Saint-Hilaire, P., Vilmer, N., and Kerdraon, A. 2013. A decade of solar type III radio bursts observed by the Nançay radioheliograph 1998–2008. Astrophys. J., 762, 60.Google Scholar
Schlickeiser, R. 2012. Cosmic magnetization: From spontaneously emitted aperiodic turbulent to ordered equipartition fields. Phys. Rev. Lett., 109, 261101.Google Scholar
Schlickeiser, R., and Yoon, P. H. 2012. Spontaneous electromagnetic fluctuations in unmagnetized plasmas I: General theory and nonrelativistic limit. Phys. Plasmas, 19, 022105.CrossRefGoogle Scholar
Schmidt, J. M., and Cairns, I. H. 2012a. Type II radio bursts: 1. New entirely analytic formalism for the electron beams, Langmuir waves, and radio emission. J. Geophys. Res., 117, A04106.Google Scholar
Schmidt, J. M., and Cairns, I. H. 2012b. Type II radio bursts: 2. Application of the new analytic formalism. J. Geophys. Res., 117, A11104.Google Scholar
Schmidt, J. M., and Cairns, I. H. 2014. Type II solar radio bursts predicted by 3D MHD CME and kinetic radio emission simulations. J. Geophys. Res., 119, 69.CrossRefGoogle Scholar
Sentman, D. D. 1982. Thermal fluctuations and the diffuse electrostatic emissions. J. Geophys. Res., 87, 1455.Google Scholar
Sitenko, A. G. 1967. Electromagnetic Fluctuations in Plasmas. Academic Press, New York.Google Scholar
Sitenko, A. G. 1982. Fluctuations and Nonlinear Wave Interactions in Plasmas. Pergamon, New York.Google Scholar
Sitenko, A. G., and Malnev, V. 1995. Plasma Physics Theory. Chapman and Hall, New York.Google Scholar
Smerd, S. F. 1976. Fundamental and harmonic radiation in solar type III bursts. Solar Phys., 46, 493.Google Scholar
Smith, R. A., Goldstein, M. K., and Papadopoulos, K. 1979. Nonlinear stability of solar type III radio bursts. I. Theory. Astrophys. J., 234, 348.Google Scholar
Stewart, R. T. 1974. Ground-based observations of type III bursts. Page 161 of: Coronal Disturbances (ed. Newkirk, G.). Proc. IAU Symp., Vol. 57. Reidel.CrossRefGoogle Scholar
Stix, T. H. 1992. Waves in Plasmas. Springer-Verlag, New York.Google Scholar
Sturrock, P. A. 1964. Type III solar radio bursts. Page 357 of: Proc. AAS-NASA Symposium on the Physics of Solar Flares, Vol. NASA SP-50. NASA, Washington, DC.Google Scholar
Štverák, V., Maksimovic, M., Trávníček, P. M., Marsch, E., Fazakerley, A. N., and Scime, E. E. 2009. Radial evolution of nonthermal electron populations in the low-latitude solar wind: Helios, Cluster, and Ulysses Observations. J. Geophys. Res., 114, A05104.Google Scholar
Suzuki, S., and Dulk, G. A. 1985. Bursts of type III and type V. Page 289 of: in Solar Radiophysics (ed. McLean, D. J. and Labrum, N. R.). Cambridge University Press, Cambridge.Google Scholar
Swanson, D. G. 1989. Plasma Waves. Academic Press, New York.Google Scholar
Tajima, T., Cable, S., and Kulsrud, R. M. 1992. On zero-frequency magnetic fluctuations in plasmas. Phys. Fluids B, 4, 2338.Google Scholar
Takakura, T., and Shibahashi, H. 1976. Dynamics of a cloud of fast electrons travelling through the plasma. Solar Phys., 46, 323.Google Scholar
Takakura, T., and Yousef, S. 1974. The third harmonic of type III solar radio bursts. Solar Phys., 36, 451.Google Scholar
Tautz, R. C., and Schlickeiser, R. 2007. Spontaneous emission of Weibel fluctuations by anisotropic distributions. Phys. Plasmas, 14, 102102.Google Scholar
Thejappa, G., MacDowall, R. J., Bergamo, M., and Papadopoulos, K. 2012. Evidence for the oscillating two stream instability and spatial collapse of Langmuir waves in a solar type III radio bursts. Astrophys. J. Lett., 747, L1.CrossRefGoogle Scholar
Tigik, S. F., Ziebell, L. F., Yoon, P. H., and Kontar, E. P. 2016. Two-dimensional time evolution of beam-plasma instability in the presence of binary collisions. Astron. Astrophys., 586, A19.Google Scholar
Treumann, R. A. 1999a. Kinetic theoretical foundation of Lorentzian statistical mechanics. Phys. Scr., 59, 19.Google Scholar
Treumann, R. A. 1999b. Generalized-Lorentzian thermodynamics. Phys. Scr., 59, 204.Google Scholar
Treumann, R. A., and Baumjohann, W. 1997. Advanced Space Plasma Physics. Imperial College Press, London.Google Scholar
Tsallis, C. 1988. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys., 52, 479.CrossRefGoogle Scholar
Tsallis, C. 2009. Introduction to Nonextensive Statistical Mechanics. Springer, New York.Google Scholar
Tsiklauri, D. 2011. An alternative to the plasma emission model: Particle-in-cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts. Phys. Plasmas, 18, 052903.Google Scholar
Tsunoda, S. I., Doveil, F., and Malmberg, J. H. 1987. Experimental test of the quasilinear theory of the interaction between a weak warm electron beam and a spectrum of waves. Phys. Rev. Lett., 58, 1112.Google Scholar
Tsytovich, V. N. 1967. Reviews of topical problems: Nonlinear effects in a plasma. Sov. Phys. Usp., 9, 805.Google Scholar
Tsytovich, V. N. 1970. Nonlinear Effects in a Plasma. Plenum Press, New York.Google Scholar
Tsytovich, V. N. 1977a. An Introduction to the Theory of Plasma Turbulence. Pergamon, New York.Google Scholar
Tsytovich, V. N. 1977b. Theory of Turbulent Plasma. Consultants Bureau, New York.Google Scholar
Tsytovich, V. N. 1995. Lectures on Nonlinear Plasma Kinetics. Springer, Berlin.Google Scholar
Tsytovich, V. N., and Shvartsburg, A. B. 1966. Contribution to the theory of nonlinear interaction of waves in a magnetoactive anisotropic plasma. Sov. Phys. JETP, 22, 554.Google Scholar
Umeda, T. 2010. Electromagnetic plasma emission during beam-plasma interaction: Parametric decay versus induced scattering. J. Geophys. Res., 115, A01204.Google Scholar
Umeda, T., Omura, Y., Yoon, P. H., Gaelzer, R., and Matsumoto, H. 2003. Harmonic Langmuir waves: III. Vlasov simulation. Phys. Plasmas, 10, 382.Google Scholar
Vahala, G., and Montgomery, D. 1970. Discrete spectra and damped waves in quasilinear theory. J. Plasma Phys., 4, 677.Google Scholar
Vasyliunas, V. M. 1968. A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res., 73, 2839.Google Scholar
Vedenov, A. A., and Velikhov, E. P. 1962. Quasilinear approximation in the kinetic theory of a low-density plasma. Sov. Phys. JETP, 16, 682.Google Scholar
Vlasov, A. A. 1938. On vibration properties of electron gas. Zh. Eksp. Teor. Fiz., 8, 25.Google Scholar
Voshchepynets, A., and Krasnoselskikh, V. 2015. Probabilistic model of beam-plasma interaction in randomly inhomogeneous solar wind. J. Geophys. Res., 120, 10139.Google Scholar
Wang, L., Lin, R. P., Salem, C., Pulupa, M., Larson, D. E., Yoon, P. H., and Luhmann, J. G. 2012a. Quiet-time interplanetary |sim 2-20 keV superhalo electrons at solar minimum. Astrophys. J. Lett., 753, L23.CrossRefGoogle Scholar
Wang, L., Lin, R. P., Krucker, S., and Mason, G. M. 2012b. A Statistical study of solar electron events over one solar cycle. Astrophys. J. Lett., 759, 69.Google Scholar
Weibel, E. S. 1959. Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett., 2, 83.Google Scholar
Weinstock, J. 1969. Formulation of a statistical theory of strong plasma turbulence. Phys. Fluids, 12, 1045.Google Scholar
Wild, J. P. 1950. Observations of the spectrum of high-intensity solar radiation at metre wavelengths. III. Isolated bursts. Austr. J. Sci. Res. A, 3, 541.Google Scholar
Wild, J. P. 1951. Observations of the spectrum of high-intensity solar radiation at metre wavelengths. IV. Enhanced radiation. Austr. J. Sci. Res. A, 4, 36.Google Scholar
Wild, J. P., and McCready, L. L. 1950a. Observations of the spectrum of high-intensity solar radiation at metre wavelengths. I. The apparatus and spectral types of solar burst observed. Austr. J. Sci. Res. A, 3, 387.Google Scholar
Wild, J. P., and McCready, L. L. 1950b. Observations of the spectrum of high-intensity solar radiation at metre wavelengths. II. Outbursts. Austr. J. Sci. Res. A, 3, 399.Google Scholar
Wild, J. P., and Smerd, S. F. 1972. Radio bursts from the solar corona. Ann. Rev. Astron. Astrophys., 10, 159.Google Scholar
Wild, J. P., Murray, J. D., and Rowe, W. C. 1954. Harmonics in the spectra of solar radio disturbances. Austr. J. Phys., 7, 439.Google Scholar
Wild, J. P., Sheridan, K. V., and Neylan, A. A. 1959. An investigation of the speed of the solar disturbances responsible for type III radio bursts. Austr. J. Phys., 12, 369.Google Scholar
Wild, J. P., Smerd, S. F., and Weiss, A. A. 1963. Solar bursts. Ann. Rev. Astron. Astrophys., 1, 291.Google Scholar
Wu, C. S., Wang, C. B., Yoon, P. H., Zheng, H. N., and Wang, S. 2002. Generation of type III solar radio bursts in the low corona by direct amplification. Astrophys. J., 575, 1094.Google Scholar
Yoon, P. H. 2006. Statistical theory of electromagnetic weak turbulence. Phys. Plasmas, 13, 022302.Google Scholar
Yoon, P. H. 2007. Relativistic Weibel instability. Phys. Plasmas, 14, 064504.Google Scholar
Yoon, P. H. 2010. Weak turbulence theory for reactive instability. Phys. Plasmas, 17, 112316.Google Scholar
Yoon, P. H. 2014. Electron kappa distribution and quasi-thermal noise. J. Geophys. Res., 119, 70774.Google Scholar
Yoon, P. H. 2015a. Kinetic theory of turbulence for parallel propagation revisited: Formal results. Phys. Plasmas, 22, 082309.Google Scholar
Yoon, P. H. 2015b. Kinetic theory of turbulence for parallel propagation revisited: Low-to-intermediate frequency regime. Phys. Plasmas, 22, 092307.Google Scholar
Yoon, P. H. 2015c. Kinetic theory of weak turbulence in magnetized plasmas: Perpendicular propagation. Phys. Plasmas, 22, 082310.Google Scholar
Yoon, P. H., and Umeda, T. 2010. Nonlinear turbulence theory and simulation of Buneman instability. Phys. Plasmas, 17, 112317.Google Scholar
Yoon, P. H., Gaelzer, R., Umeda, T., Omura, Y., and Matsumoto, H. 2003a. Harmonic Langmuir waves: I. Nonlinear dispersion relation. Phys. Plasmas, 10, 364.CrossRefGoogle Scholar
Yoon, P. H., Ryu, C.-M., and Rhee, T. 2003b. Particle kinetic equation including weakly turbulent mode coupling. Phys. Plasmas, 10, 3881.Google Scholar
Yoon, P. H., Rhee, T., and Ryu, C.-M. 2005. Self-consistent generation of superthermal electrons by beam-plasma interaction. Phys. Rev. Lett., 95, 215003.Google Scholar
Yoon, P. H., Hong, J., Kim, S., Lee, J., Lee, J., Park, J., Park, K. S., and Seough, J. J. 2012a. Asymmetric solar wind electron distributions. Astrophys. J., 755, 112.Google Scholar
Yoon, P. H., Ziebell, L. F., Gaelzer, R., and Pavan, J. 2012b. Electromagnetic weak turbulence theory revisited. Phys. Plasmas, 19, 102303.Google Scholar
Yoon, P. H., Schlickesier, R., and Kolberg, U. 2014. Thermal fluctuation levels of magnetic and electric fields in unmagnetized plasma: The rigorous relativistic kinetic theory. Phys. Plasmas, 21, 032109.Google Scholar
Zaitsev, V. V., Mityakov, N. A., and Rappoport, V. O. 1972. A dynamic theory of type III solar radio bursts. Solar Phys., 24, 444.CrossRefGoogle Scholar
Zank, G. P. 2014. Transport Processes in Space Physics and Astrophysics. Springer, Heidelberg.Google Scholar
Zheleznyakov, V. V. 1970. Radio Emission of the Sun and Planets. Pergamon, New York.Google Scholar
Zheleznyakov, V. V., and Zaitsev, V. V. 1970a. Contribution to the theory of type III solar radio bursts. I. Sov. Astron.AJ, 14, 47.Google Scholar
Zheleznyakov, V. V., and Zaitsev, V. V. 1970b. The theory of type III solar radio bursts. II. Sov. Astron. AJ, 14, 250.Google Scholar
Zheleznyakov, V. V., and Zlotnik, E. Ya. 1974. On the third harmonic in solar radio bursts. Solar Phys., 36, 451.Google Scholar
Ziebell, L. F., Gaelzer, R., and Yoon, P. H. 2001. Nonlinear development of weak beam-plasma instability. Phys. Plasmas, 8, 3982.Google Scholar
Ziebell, L. F., Yoon, P. H., Gaelzer, R., and Pavan, J. 2008a. Langmuir condensation by spontaneous scattering off electrons in two dimensions. Plasmas Phys. Control. Fusion, 54, 055012.Google Scholar
Ziebell, L. F., Gaelzer, R., Pavan, J., and Yoon, P. H. 2008b. Two-dimensional nonlinear dynamics of beam-plasma instability. Plasmas Phys. Control. Fusion, 50, 085011.Google Scholar
Ziebell, L. F., Yoon, P. H., Gaelzer, R., and Pavan, J. 2014a. Plasma emission by weak turbulence processes. Astrophys. J. Lett., 795, L32.Google Scholar
Ziebell, L. F., Yoon, P. H., Simões, F. J. R. Jr., Gaelzer, R., and Pavan, J. 2014b. Spontaneous emission of electromagnetic radiation in turbulent plasmas. Phys. Plasmas, 21, 010701.CrossRefGoogle Scholar
Ziebell, L. F., Yoon, P. H., Petruzzellis, L. T., Gaelzer, R., and Pavan, J. 2015. Plasma emission by nonlinear electromagnetic processes. Astrophy. J., 806, 237.Google Scholar
Zlotnik, E. Ya., Klassen, A., Klein, K.-L., Aurass, H., and Mann, G. 1998. Third harmonic plasma emission in solar type II radio bursts. Astron. Astrophy., 331, 1087.Google Scholar
Zouganelis, I. 2008. Measuring suprathermal electron parameters in space plasmas: Implementation of the quasi-thermal noise spectroscopy with kappa distributions using in situ Ulysses/URAP radio measurements in the solar wind. J. Geophys. Res., 113, A08111.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Peter H. Yoon, University of Maryland, College Park
  • Book: Classical Kinetic Theory of Weakly Turbulent Nonlinear Plasma Processes
  • Online publication: 26 August 2019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Peter H. Yoon, University of Maryland, College Park
  • Book: Classical Kinetic Theory of Weakly Turbulent Nonlinear Plasma Processes
  • Online publication: 26 August 2019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Peter H. Yoon, University of Maryland, College Park
  • Book: Classical Kinetic Theory of Weakly Turbulent Nonlinear Plasma Processes
  • Online publication: 26 August 2019
Available formats
×