Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T01:04:16.359Z Has data issue: false hasContentIssue false

1 - Real numbers

Published online by Cambridge University Press:  07 May 2010

H. Salzmann
Affiliation:
Eberhard-Karls-Universität Tübingen, Germany
T. Grundhöfer
Affiliation:
Bayerische-Julius-Maximilians-Universität Würzburg, Germany
H. Hähl
Affiliation:
Universität Stuttgart
R. Löwen
Affiliation:
Technische Universität Carolo Wilhelmina zu Braunschweig, Germany
Get access

Summary

This chapter is devoted to various aspects of the structure of ℝ, the field of real numbers. Since we do not intend to give a detailed account of a construction of the real numbers from the very beginning, we need to clarify the basis of our subsequent arguments. What we shall assume about the real numbers is that they form an ordered field whose ordering is complete, in the sense that every non-empty bounded set of real numbers has a least upper bound. All these notions will be explained in due course, but presumably they are familiar to most readers. It is well known and will be proved in Section 11 that the properties just mentioned characterize the field of real numbers.

Historically, a satisfactory theory of the real numbers was obtained only at the end of the nineteenth century by work of Weierstraβ, Cantor and Dedekind (see Flegg 1983, Ehrlich 1994 and López Pellicer 1994). Starting from the rational numbers, they used different approaches, namely, Cauchy sequences on the one hand and Dedekind cuts on the other.

In Sections 42 and 44, we shall actually show how to obtain the real numbers from the rational numbers via completion. Another construction in the context of non-standard real numbers will be given in Section 23. We mention also the approach of Conway 1976, whose ‘surreal numbers’ go beyond non-standard numbers. These ideas were carried further by Gonshor 1986, Alling 1987; see also Ehrlich 1994, 2001 and Dales-Woodin 1996.

Type
Chapter
Information
The Classical Fields
Structural Features of the Real and Rational Numbers
, pp. 1 - 153
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Real numbers
  • H. Salzmann, Eberhard-Karls-Universität Tübingen, Germany, T. Grundhöfer, Bayerische-Julius-Maximilians-Universität Würzburg, Germany, H. Hähl, Universität Stuttgart, R. Löwen, Technische Universität Carolo Wilhelmina zu Braunschweig, Germany
  • Book: The Classical Fields
  • Online publication: 07 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511721502.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Real numbers
  • H. Salzmann, Eberhard-Karls-Universität Tübingen, Germany, T. Grundhöfer, Bayerische-Julius-Maximilians-Universität Würzburg, Germany, H. Hähl, Universität Stuttgart, R. Löwen, Technische Universität Carolo Wilhelmina zu Braunschweig, Germany
  • Book: The Classical Fields
  • Online publication: 07 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511721502.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Real numbers
  • H. Salzmann, Eberhard-Karls-Universität Tübingen, Germany, T. Grundhöfer, Bayerische-Julius-Maximilians-Universität Würzburg, Germany, H. Hähl, Universität Stuttgart, R. Löwen, Technische Universität Carolo Wilhelmina zu Braunschweig, Germany
  • Book: The Classical Fields
  • Online publication: 07 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511721502.002
Available formats
×