Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-16T17:18:19.390Z Has data issue: false hasContentIssue false

13 - Beyond Classification: How to Study Phylogeny

from Part V - Beyond Classification

Published online by Cambridge University Press:  20 July 2020

David M. Williams
Affiliation:
Natural History Museum, London
Malte C. Ebach
Affiliation:
University of New South Wales, Sydney
Get access

Summary

Haeckel’s genealogical project began in 1866 with his monumental two-volume Generelle Morphologie der Organismen (Haeckel 1866), written partly under the influence of Darwin’s Origin of Species (Darwin 1859), terminating some 30 years later with another equally exhaustive survey – this time in three volumes: Systematische Phylogenie: Entwurf eines natürlichen Systems der Organismen auf Grund ihrer Stammesgeschichte (Haeckel 1894–18961).

Type
Chapter
Information
Cladistics
A Guide to Biological Classification
, pp. 353 - 368
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alibardi, L. & Rogers, G. 2015. Observations on fur development in echidna (Monotremata, Mammalia) indicate that spines precede hairs in ontogeny. Anatomical Record 298: 6170.Google Scholar
Avise, JC. & Robinson, TJ. 2008. Hemiplasy: a new term in the lexicon of phylogenetics. Systematic Biology 57: 503507.Google Scholar
Brundin, L. 1966. Transantarctic relationships and their significance as evidenced by midges. Kungliga Svenska Vetenskapsakademiens Handlinger 11 (Series 4):, 1472.Google Scholar
Carr, EH. 1961, What is History? University of Cambridge Press, Cambridge, UK.Google Scholar
Currie, A. 2012. Convergence as evidence. The British Journal for the Philosophy of Science 64: 763786.Google Scholar
Darwin, C. 1859. On the Origin of Species by Means of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life. John Murray, London.Google Scholar
Ebach, MC. & Edgecombe, GD. 1999. The Devonian trilobite Cordania from Australia. Journal of Paleontology 73: 431436.Google Scholar
Ebach, MC., Morrone, JJ. & Williams, DM. 2006. Getting rid of origins. Rivista di Biologia 99: 360-365.Google ScholarPubMed
Escapa, IH. & Catalano, SA. 2013. Phylogenetic analysis of Araucariaceae: integrating molecules, morphology, and fossils. International Journal of Plant Sciences 174: 11531170.Google Scholar
Escapa, IH., Iglesias, A., Wilf, P., Catalano, SA., Caraballo-Ortiz, MA. & Rubén Cúneo, N. 2018. Agathis trees of Patagonia’s Cretaceous-Paleogene death landscapes and their evolutionary significance. American Journal of Botany 105: 13451368.CrossRefGoogle ScholarPubMed
Fara, E. 2001. What are Lazarus taxa? Geological Journal 36: 291303.CrossRefGoogle Scholar
Flessa, KW. & Jablonski, D. 1983. Extinction is here to stay. Paleobiology 9: 315321.Google Scholar
Gilmore, S. & Hill, KD. 1997. Relationships of the Wollemi pine (Wollemia nobilis) and a molecular phylogeny of the Araucariaceae. Telopea 7: 275e291.Google Scholar
Haeckel, EHPA. 1866. Generelle Morphologie der Organismen: allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie. G. Reimer, Berlin.Google Scholar
Haeckel, EHPA. 1894–1896. Systematische Phylogenie: Entwurf eines natürlichen Systems der Organismen auf Grund ihrer Stammesgeschichte. G. Reimer, Berlin.Google Scholar
Haeckel, EHPA. 1909. Charles Darwin as an anthropologist. In: Seward, AC (ed.), Darwin and Modern Science. Cambridge University Press, Cambridge, pp. 137151.Google Scholar
Jansson, J. & Sung, WK. 2016. Algorithms for combining rooted triplets into a galled phylogenetic network. In: Kao, MY. (eds) Encyclopedia of Algorithms, 2nd ed. Springer, New York, NY, pp. 4852.Google Scholar
Jansson, J., Nguyen, NB. & Sung, W-K. 2006. Algorithms for combining rooted triplets into a galled phylogenetic network. SIAM Journal on Computing 35(5): 10981121.Google Scholar
Matthew, WD. 1915. Climate and evolution. Annals of the New York Academy of Sciences 24: 171318.Google Scholar
Matz, MV., Treml, EA., Aglyamova, GV. & Bay, LK. 2018. Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. PLOS Genetics 14(4): e1007220.Google Scholar
Mindell, DP. & Meyer, A. 2001. Homology evolving. Trends in Ecology & Evolution 16: 434440.Google Scholar
Nelson, GJ. 1978. Ontogeny, phylogeny, paleontology and the biogenetic law. Systematic Zoology 27: 324345.Google Scholar
Nelson, GJ. & Ladiges, PY. 1996. Paralogy in cladistic biogeography and analysis of paralogy-free subtrees. American Museum Novitates 3167.Google Scholar
Nelson, GJ. & Platnick, NI. 1981. Systematics and Biogeography: Cladistics and Vicariance. Columbia University Press, New York.Google Scholar
Norell, MA. 1993. Tree-based approaches to understanding history; comments on ranks, rules and the quality of the fossil record. American Journal of Science 293-A: 407417.Google Scholar
Novacek, MJ. & Wheeler, QD. 1992. Extinction and Phylogeny. Columbia University Press, New York.Google Scholar
Ochoterena, H., Vrijdaghs, A., Smets, E. & Claβen-Bockhoffs, R. 2019. The search for common origin: homology revisited. Systematic Biology 68: 767780.Google Scholar
Olson, LE. 2013. Tenrecs. Current Biology 23: R5R8.Google Scholar
O’Neil, C. 2016. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown, New York.Google Scholar
Parenti, LR. & Ebach, MC. 2009. Comparative Biogeography: Discovering and Classifying Biogeographical Patterns of a Dynamic Earth. University of California Press, Berkeley, CA.Google Scholar
Powell, R. 2007. Is convergence more than an analogy? Homoplasy and its implications for macroevolutionary predictability. Biology and Philosophy 22: 565-578.Google Scholar
Rickards, RB. & Wright, AJ. 2002. Lazarus taxa, refugia and relict faunas: evidence from graptolites. Journal of the Geological Society 159(1): 14.Google Scholar
Smith, JLB. 1939. A living fish of Mesozoic type. Nature 143: 455456.CrossRefGoogle Scholar
Stockey, RA. 1990. Antarctic and Gondwanan conifers. In: Taylor, TN. & Taylor, EL. (eds) Antarctic Palaeobiology. Springer, New York, pp. 179191.CrossRefGoogle Scholar
Stockey, RA. 1994. Mesozoic Araucariaceae: morphology and systematic relationships. Journal of Plant Research 107: 493502.CrossRefGoogle Scholar
Turner, S., Bean, LB., Dettmann, M., McKellar, JL., McLoughlin, S. & Thulborn, T. 2009. Australian Jurassic sedimentary and fossil successions: current work and future prospects for marine and non-marine correlation. GFF 131: 4970.CrossRefGoogle Scholar
Vajda, V. & McLoughlin, ST. 2005. A new Maastrichtian-Paleocene Azolla species from of Bolivia, with a comparison of the global record of coeval Azolla microfossils. Alcheringa 29: 305329.Google Scholar
Walkom, AB. 1921. Mesozoic Floras of New South Wales Part 1: fossil plants from Cockabutta Mountain and Talbragar. Memoirs of the Geological Survey of New South Wales. Memoir Palaeontology 12. W.A. Gullick, Government Printer, Sydney.Google Scholar
Weisbecker, V. & Beck, RMD. 2015. Marsupial and monotreme evolution and biogeography. In: Klieve, A., Hogan, L., Johnston, S. & Murray, P. (eds), Marsupials and Monotremes. Nova Science Publishers, Inc., New York, pp. 131.Google Scholar
White, ME. 1981. Revision of the Talbragar Fish Bed Flora (Jurassic) of New South Wales. Records of the Australian Museum 33: 695721.Google Scholar
Wilf, P., Escapa, IH., Cúneo, NR., Kooyman, RM., Johnson, KR. & Iglesias, A. 2014. First South American Agathis (Araucariaceae), Eocene of Patagonia. American Journal of Botany 101: 156179.CrossRefGoogle ScholarPubMed
Williams, DM. 2007. Classification and diatom systematics: the past, the present and the future. In: Brodie, J. & Lewis, J. (eds), Unravelling the Algae. CRC Press, Boca Raton, FL, pp. 5791.Google Scholar
Williams, DM. & Ebach, MC. 2008. Foundations of Systematics and Biogeography. Springer-Verlag New York Inc., New York.Google Scholar
Zaragüeta i Bagils, R., Lelièvre, H. & Tassy, P. 2004. Temporal paralogy, cladograms, and the quality of the fossil record. Geodiversitas 26: 381389.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×