Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T16:00:23.497Z Has data issue: false hasContentIssue false

6 - Vapor–Melt Exchange

Constraints on Chondrite Formation Conditions and Processes

from Part I - Observations of Chondrules

Published online by Cambridge University Press:  30 June 2018

Sara S. Russell
Affiliation:
Natural History Museum, London
Harold C. Connolly Jr.
Affiliation:
Rowan University, New Jersey
Alexander N. Krot
Affiliation:
University of Hawaii, Manoa
Get access

Summary

The bulk volatile contents of chondritic meteorites provide clues to their origins. Matrix and chondrules carry differing abundances of moderately volatile elements, with chondrules carrying a refractory signature. At the high temperatures of chondrule formation and the low pressures of the solar nebula, many elements, including Na and Fe, should have been volatile. Yet the evidence is that even at peak temperatures, at or near the liquidus, Na and Fe (as FeO and Fe-metal) were present in about their current abundances in molten chondrules. This seems to require very high solid densities during chondrule formation to prevent significant evaporation. Evaporation should also be accompanied by isotopic mass fractionation. Evidence from a wide range of isotopic systems indicates only slight isotopic mass fractionations of moderately volatile elements, further supporting high solid densities. However, olivine-rich, FeO-poor chondrules commonly have pyroxene-dominated outer zones that have been interpreted as the products of late condensation of SiO2 into chondrule melts. Late condensation of more refractory SiO2 is inconsistent with the apparent abundances of more volatile Na, FeO and Fe-metal in many chondrules. Despite significant recent experimental work bearing on this problem, the conditions under which chondrules behaved as open systems remain enigmatic.

Type
Chapter
Information
Chondrules
Records of Protoplanetary Disk Processes
, pp. 151 - 174
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, C. M. O’D. (2004). Chemical equilibrium and kinetic constraints for chondrule and CAI formation conditions. Geochim. Cosmochim. Acta, 68, 39433969.CrossRefGoogle Scholar
Alexander, C. M. O’D. (2005). Re-examining the role of chondrules in producing the elemental fractionations in chondrites. Meteorit. Planet. Sci., 40, 943965.CrossRefGoogle Scholar
Alexander, C. M. O’D., and Ebel, D. S. (2012). Questions, questions: Can the contradictions between the petrologic, isotopic, thermodynamic, and astrophysical constraints on chondrule formation be resolved? Meteorit. Planet. Sci., 47, 11571175.CrossRefGoogle Scholar
Alexander, C. M. O’D., and Grossman, J. N. (2005). Alkali elemental and potassium isotopic compositions of Semarkona chondrules. Meteorit. Planet. Sci. 40, 541556.Google Scholar
Alexander, C. M. O’D., and Wang, J. (2001). Iron isotopes in chondrules: Implications for the role of evaporation during chondrule formation. Meteorit. Planet. Sci. 36: 419428.CrossRefGoogle Scholar
Alexander, C. M. O’D., Grossman, J. N., Wang, J., et al. (2000). The lack of potassium-isotopic fractionation in Bishunpur chondrules. Meteorit. Planet. Sci. 35, 859868.CrossRefGoogle Scholar
Alexander, C. M. O’D., Taylor, S., Delaney, J. S., Ma, P., and Herzog, G. F. (2002). Mass-dependent fractionation of Mg, Si, and Fe isotopes in five stony cosmic spherules. Geochim. Cosmochim. Acta, 66, 173183.CrossRefGoogle Scholar
Alexander, C. M. O’D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. (2008). The formation conditions of chondrules and chondrites. Science, 320, 16171619.CrossRefGoogle ScholarPubMed
Anders, E. (1964). Origin, age and composition of meteorites. Space Sci. Rev., 3, 583714.CrossRefGoogle Scholar
Anders, E. (1977). Critique of “Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites” by Chien M. Wai and John T. Wasson. Earth Planet. Sci. Lett., 36, 1420.CrossRefGoogle Scholar
Armytage, R. M. G. (2011). The Silicon Isotopic Composition of Inner Solar System Materials. Ph.D. Dissertation. University of Oxford, 230pp.Google Scholar
Barrat, J. A., Zanda, B., Moynier, F., et al. (2012). Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn isotopes. Geochim. Cosmochim. Acta, 83, 7992.CrossRefGoogle Scholar
Bayron, J. M., Erb, I. R., Ebel, D. S., Wallace, S., and Connolly, H. C. Jr. (2014). Modal abundances and chemistry of clasts in the Renazzo (CR2) chondrite by x-ray map analysis. LPSC #45, abstract 1225.Google Scholar
Berlin, J. (2010). Mineralogy and Bulk Chemistry of Chondrules and Matrix in Petrologic Type 3 Chondrites: Implications for Early Solar System Processes. Ph.D. Dissertation. Free University, Berlin, 233pp.Google Scholar
Bischoff, A., Wurm, G., Chaussidon, M., et al. (2017). The Allende multicompound chondrule (ACC) – Chondrule formation in a local super-dense region of the early solar system. Meteorit. Planet. Sci., 52, 906924.CrossRefGoogle Scholar
Bland, P. A., Alard, O., Benedix, G. K., et al. (2005). Volatile fractionation in the early solar system and chondrule/matrix complementarity. Proc. Natl. Acad. Sci., 102, 1375513760.CrossRefGoogle ScholarPubMed
Borisov, A., Pack, A., Kropf, A., and Palme, H. (2008). Partitioning of Na between olivine and melt: An experimental study with application to the formation of meteoritic Na2O-rich chondrule glass and refractory forsterite grains. Geochim. Cosmochim. Acta, 72, 55585573.CrossRefGoogle Scholar
Bouvier, A., Wadhwa, M., Simon, S. B., and Grossman, L. (2013). Magnesium isotopic fractionation in chondrules from the Murchison and Murray CM2 carbonaceous chondrites. Meteorit. Planet. Sci., 48, 339353.CrossRefGoogle Scholar
Chaussidon, M., Libourel, G., and Krot, A. N. (2008). Oxygen isotopic constraints on the origin of magnesian chondrules and on the gaseous reservoirs in the early Solar System. Geochim. Cosmochim. Acta, 72, 192419382.CrossRefGoogle Scholar
Ciesla, F. J., Lauretta, D. S., and Hood, L. L. (2004). The frequency of compound chondrules and implications for chondrule formation. Meteorit. Planet. Sci., 39, 531544.CrossRefGoogle Scholar
Campbell, A. J., Zanda, B., Perron, C., Meibom, A., and Petaev, M. I. (2005). Origin and thermal history of Fe-Ni metal in primitive chondrites. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 407431. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Clayton, R. N., Mayeda, T. K., Goswami, J. N., and Olsen, E. J. (1991). Oxygen isotope studies of ordinary chondrites. Geochim. Cosmochim. Acta, 55, 23172337.CrossRefGoogle Scholar
Connolly, H. C. Jr., Huss, G. R., and Wasserburg, G. J. (2001). On the formation of Fe-Ni metal in Renazzo-like carbonaceous chondrites. Geochim. Cosmochim. Acta, 65, 45674588.CrossRefGoogle Scholar
Connolly, H. C. Jr., and Jones, R. H. (2016). Chondrules: The canonical and noncanonical views. J. Geophys. Res. Planets, 121, 18851899.CrossRefGoogle Scholar
Cuzzi, J. N., and Alexander, C. M. O‘D. (2006). Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across. Nature, 441, 483485.CrossRefGoogle ScholarPubMed
Cuzzi, J. N., Hogan, R. C., and Shariff, K. (2008). Toward planetesimals: Dense chondrule clumps in the protoplanetary nebula. Astrophys. J., 687, 14321447.CrossRefGoogle Scholar
D’Alessio, P., Calvet, N., and Woolum, D. S. (2005). Thermal structure of protoplanetary disks. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 353372. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.,Google Scholar
Davidson, J., Busemann, H., Nittler, L. R., et al. (2014). Abundances of presolar silicon carbide grains in primitive meteorites determined by NanoSIMS. Geochim. Cosmochim. Acta, 139, 248266.CrossRefGoogle Scholar
Davis, A. M., Hashimoto, A., Clayton, R. N., and Mayeda, T. K. (1990). Isotope mass fractionation during evaporation of Mg2SiO4. Nature, 347, 655658.CrossRefGoogle Scholar
Davis, A. M., Alexander, C. M. O‘D., Nagahara, H., and Richter, F. M. (2005). Evaporation and condensation during CAI and chondrule formation. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 432455. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Davis, A. M., and Richter, F. M. (2014). Condensation and evaporation of solar system materials. In Davis, A. M. (Ed.), Meteorites and Cosmochemical Processes. In Holland, H. D. and Turekian, K. (Eds.), Treatise on Geochemistry (Second Edition)., 1, 335360. Oxford, UK: Elsevier.Google Scholar
Day, J. M., and Moynier, F. (2014). Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon. Phil. Trans. Roy. Soc. London A., 372, 20130259.Google ScholarPubMed
Deng, Z., Ebel, D. S., Gemma, M., Moynier, F., and Chaussidon, M. (2017). Contrasting Mg isotopic signatures in Leoville (CV3r) chondrules. Meteorit. Planet. Sci. Suppl. 52, abstract 6403.Google Scholar
Ebel, D. S. (2006). Condensaton of rocky material in astrophysical environments. In Lauretta, D. and McSween, H. Y. Jr. (Eds.), Meteorites and the Early Solar System II, 253277. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Ebel, D. S., and Alexander, C. M. O’D. (2011). Equilibrium condensation from chondritic porous IDP enriched vapor: Implications for mercury and enstatite chondrite origins. Planet. Space. Sci., 59, 18881894.CrossRefGoogle Scholar
Ebel, D.S., and Grossman, L. (2000). Condensation in dust-enriched systems. Geochim. Cosmochim. Acta, 64, 339366.CrossRefGoogle Scholar
Ebel, D. S., and Sack, R. O. (2013). Djerfisherite: Nebular source of refractory potassium. Contrib. Mineral. Petrol., 166, 923934.CrossRefGoogle Scholar
Ebel, D. S., Weisberg, M. K., Hertz, J., and Campbell, A. J. (2008). Shape, metal abundance, chemistry and origin of chondrules in the Renazzo (CR) chondrite.Meteorit. Planet. Sci., 43: 17251740.CrossRefGoogle Scholar
Ebel, D. S., Brunner, C., Leftwich, K., et al. (2016). Abundance, composition and size of inclusions and matrix in CV and CO chondrites. Geochim. Cosmochim. Acta, 172, 322356.CrossRefGoogle Scholar
Esat, T. M., and Taylor, S. R. (1990). Mg isotopic composition of chondrules from the unequilibrated ordinary chondrite Semarkona. Lunar Planet. Sci., 21, 333334.Google Scholar
Fedkin, A. V., and Grossman, L. (2013). Vapor saturation of sodium: Key to unlocking the origin of chondrules. Geochim. Cosmochim. Acta, 112, 226250.CrossRefGoogle Scholar
Fitoussi, C., Bourdon, B., Kleine, T., Oberli, F., and Reynolds, B. C. (2009). Si isotope systematics of meteorites and terrestrial peridotites: Implications for Mg/Si fractionation in the solar nebula and for Si in the Earth’s core. Earth Planet. Sci. Lett., 287, 7785.CrossRefGoogle Scholar
Florentin, L., Faure., F., Deloule, E., et al. (2017). Origin of Na in glass inclusions hosted in olivine from Allende CV3 and Jbilet Winselwan CM2: Implications for chondrule formation. Earth Planet. Sci. Lett., 474, 160171.CrossRefGoogle Scholar
Floss, C., El Goresy, A., Zinner, E., et al. (1996). Elemental and isotopic fractionations produced through evaporation of the Allende CV chondrite: Implications for the origin of the HAL-type hibonite inclusions. Geochim. Cosmochim. Acta, 60, 19751998.CrossRefGoogle Scholar
Friedrich, J. M., Wang, M. -S., and Lipschutz, M. E. (2003). Chemical studies of L chondrites. V: Compositional patterns for forty-nine trace elements in fourteen L4–6 and seven LL4–6 falls. Geochim. Cosmochim. Acta, 67, 24672479.CrossRefGoogle Scholar
Friend, P., Hezel, D. C., and Mucerschi, D. (2016). The conditions of chondrule formation, Part II: Open system. Geochim. Cosmochim. Acta, 173, 198209.CrossRefGoogle Scholar
Galy, A., Young, E. D., Ash, R. D., and O’Nions, R. K. (2000). The formation of chondrules at high gas pressures in the solar nebula. Science, 290, 17511754.CrossRefGoogle ScholarPubMed
Georg, R. B., Halliday, A. N., Schauble, E. A., and Reynolds, B. C. (2007). Silicon in the Earth’s core. Nature, 447, 11021106.CrossRefGoogle ScholarPubMed
Grossman, J. N. (1988). Formation of chondrules. In Kerridge, J. F. and Matthews, M. S. (Eds.), Meteorites and the Early Solar System, 680696. Tucson, AZ: University of Arizona Press.Google Scholar
Grossman, J. N. (1996). Chemical fractionations of chondrites: Signatures of events before chondrule formation. In Hewins, R., Jones, R. H., and Scott, E. R. D. (Eds.), Chondrules and the Protoplanetary Disk, 243253. Cambridge, UK: Cambridge University Press.Google Scholar
Grossman, J. N., Alexander, C. M. O’D., Wang, J., and Brearley, A. J. (2002). Zoned chondrules in Semarkona: Evidence for high-and low-temperature processing. Meteorit. Planet. Sci., 37, 4974.CrossRefGoogle Scholar
Grossman, L., Ebel, D. S., Simon, S. B., et al. (2000). Major element chemical and isotopic compositions of refractory inclusions in C3 chondrites: The separate roles of condensation and evaporation. Geochim. Cosmochim. Acta, 64, 28792894.CrossRefGoogle Scholar
Grossman, L., Ebel, D. S., and Simon, S. B. (2002). Formation of refractory inclusions by evaporation of condensate precursors. Geochim. Cosmochim. Acta 66: 145161.CrossRefGoogle Scholar
Hashimoto, A. (1983). Evaporation metamorphism in the early solar nebula – Evaporation experiments on the melt FeO-MgO-SiO2-CaO-Al2O3 and chemical fractionations of primitive materials. Geochem. J., 17, 111145.CrossRefGoogle Scholar
Harju, E. R., Kohl, I. E., Rubin, A. E., and Young, E. D. (2015). Silicon isotope condensation in type IAB chondrules at near equilibrium conditions. LPSC #46, abstract 2658.Google Scholar
Hewins, R. H., and Radomsky, P. M. (1990). Temperature conditions for chondrule formation. Meteoritics, 25, 309318.CrossRefGoogle Scholar
Hewins, R. H., and Zanda, B. (2012). Chondrules: Precursors and interactions with the nebular gas. Meteorit. Planet. Sci., 47, 11201138.CrossRefGoogle Scholar
Hewins, R. H., Yu, Y., Zanda, B., and Bourot-Denise, M. (1997). Do nebular fractionations, evaporative losses, or both, influence chondrule compositions? Proc. NIPR Symp. Ant. Meteorit., 10, 275298.Google Scholar
Hewins, R. H., Connolly, H. C. Jr., Lofgren, G. E., and Libourel, G. (2005). Experimental constraints on chondrule formation. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the protoplanetary disk, 286316. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Hewins, R. H., Zanda, B., and Bendersky, C. (2012). Evaporation and recondensation of sodium in Semarkona Type II chondrules. Geochim. Cosmochim. Acta, 78, 117.CrossRefGoogle Scholar
Hezel, D. C., Palme, H., Nasdala, L., and Brenker, F. E. (2006). Origin of SiO2-rich components in ordinary chondrites. Geochim. Cosmochim. Acta, 70, 15481564.CrossRefGoogle Scholar
Hezel, D. C., Needham, A. W., Armytage, R., et al. (2010). A nebula setting as the origin for bulk chondrule Fe isotope variations in CV chondrites. Earth Planet. Sci. Lett., 296, 423433.CrossRefGoogle Scholar
Hobart, K. K., Crapster-Pregont, E. J., and Ebel, D. S. (2015). Decoding the history of a layered chondrule through olivine grain orientation measurements using EBSD. LPSC #46, abstract 1978.Google Scholar
Hubbard, A., and Ebel, D. S. (2015). Semarkona: Lessons for chondrule and chondrite formation. Icarus, 245, 3237.CrossRefGoogle Scholar
Humayun, M., and Clayton, R. N. (1995). Potassium isotope cosmochemistry: Genetic implications of volatile element depletion. Geochim. Cosmochim. Acta, 59, 21312148.CrossRefGoogle Scholar
Humayun, M., Campbell, A. J., Zanda, B., and Bourot-Denise, M. (2002). Formation of Renazzo chondrule metal inferred from siderophile elements. LPSC #33, abstract 1965.Google Scholar
Humayun, M., Connolly, H. C. Jr., Rubin, A. E., and Wasson, J. T. (2010). Elemental distribution in metal from the CR chondrites Acfer 059 and PCA 91082. LPSC #41, abstract 1840.Google Scholar
Huss, G. R. (1990). Ubiquitous interstellar diamond and SiC in primitive chondrites: Abundances reflect metamorphism. Nature, 347, 159162.CrossRefGoogle Scholar
Huss, G. R., and Lewis, R. S. (1995). Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type. Geochim. Cosmochim. Acta, 59, 115160.CrossRefGoogle Scholar
Huss, G. R., Alexander, C. M. O’D., Palme, P., Bland, P. A., and Wasson, J. T. (2005). Genetic relationships between chondrules, fine-grained rims, and interchondrule matrix. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 701731. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Imae, N., and Isobe, H. (2017). An experimental study of chondrule formation from chondritic precursors via evaporation and condensation in Knudsen cell: Shock heating model of dust aggregates. Earth Planet. Sci. Lett., 473, 256268.CrossRefGoogle Scholar
Jarosewich, E., Clarke, R. S., and Barrows, J. N. (1987). The Allende meteorite reference sample. Smithson. Contrib. Earth Sci., 27, 49 pp.Google Scholar
Jones, R. H. (1990). Petrology and mineralogy of type II, FeO-rich chondrules in Semarkona (LL3.0): Origin by closed-system fractional crystallization, with evidence for supercooling. Geochim. Cosmochim. Acta, 54, 17851802.CrossRefGoogle Scholar
Jones, R. H. (1996). FeO-rich porphyritic pyroxene chondrules in unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta, 60, 31153138.CrossRefGoogle Scholar
Jones, R. H. (2012). Petrographic constraints on the diversity of chondrule reservoirs in the protoplanetary disk. Meteorit. Planet. Sci., 47, 11761190.CrossRefGoogle Scholar
Jones, R. H., Grossman, J. N., and Rubin, A. E. (2005). Chemical, mineralogical and isotopic properties of chondrules: Clues to their origin. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 251285. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Kehm, K., Hauri, E. H., Alexander, C. M. O’D., and Carlson, R. W. (2003). High precision iron isotope measurements of meteoritic material by cold plasma ICP-MS, Geochim. Cosmochim. Acta, 67, 28792891.CrossRefGoogle Scholar
Kong, P., Ebihara, M., and Palme, H. (1999). Distribution of siderophile elements in CR chondrites: Evidence for evaporation and recondensation during chondrule formation. Geochim. Cosmochim. Acta, 63, 26372652.CrossRefGoogle Scholar
Kropf, A., and Libourel, G. (2011). Gas-melt interaction experiments at high temperature and high SiO(g) partial pressure – Implication of melt composition to chondrule formation. LPSC #42, abstract 1160.Google Scholar
Kropf, A., and Pack, A. (2008). Closed system behavior of chondrules – New constraints for the chondrule forming process. LPSC #39, abstract 2222.Google Scholar
Kropf, A., Huss, G. R., Krot, A. N., and Pack, A. (2009). Closed system behavior of alkalis in type-1 chondrules – Understanding chondrules as igneous systems. LPSC #40, abstract 2464.Google Scholar
Krot, A. N., Libourel, G., Goodrich, C. A., and Petaev, M. I. (2004). Silica-rich igneous rims around magnesian chondrules in CR carbonaceous chondrites: Evidence for condensation origin from fractionated nebular gas. Meteorit. Planet. Sci., 39, 19311955.CrossRefGoogle Scholar
Kühne, P., Kadlag, Y., Tatzel, M., Frick, D. A., and Becker, H. (2017). Constraints on chondrule-matrix complementarity from silicon isotope compositions of components of the Allende CV3 meteorite. 80th Annual Meeting of the Meteoritical Society, abstract 6245.Google Scholar
Kuroda, D., and Hashimoto, A. (2002). The reaction of forsterite with hydrogen – its apparent and real temperature dependence. Antarctic Meteorit. Res., 15, 152164.Google Scholar
Lauretta, D. S., Lodders, K., Fegley, B., and Kremser, D. T. (1997). The origin of sulfide-rimmed metal grains in ordinary chondrites. Earth Planet. Sci. Lett., 151, 289301.CrossRefGoogle Scholar
Lehner, S. W., Petaev, M. I., Zolotov, M. Y., and Buseck, P. R. (2013). Formation of niningerite by silicate sulfidation in EH3 enstatite chondrites. Geochim. Cosmochim. Acta, 101, 3456.CrossRefGoogle Scholar
Lewis, R. D., Lofgren, G. E., Franzen, H. F., and Windom, K. E. (1993). The effect of Na vapor on the Na content of chondrules. Meteoritics, 28, 622628.CrossRefGoogle Scholar
Libourel, G., Krot, A. N., and Tissandier, L. (2003). Evidence for high temperature condensation of moderately-volatile elements during chondrule formation. LPSC #34, abstract 1558.Google Scholar
Libourel, G., Krot, A. N., and Tissandier, L. (2006). Role of gas–melt interaction during chondrule formation. Earth Planet. Sci. Lett., 251, 232240.CrossRefGoogle Scholar
Lobo, A., Wallace, S., and Ebel, D. S. (2014). Modal abundances, chemistry, and sizes of clasts in the Semarkona (LL3.0) chondrite by x-ray map analysis. LPSC #45, abstract 1423.Google Scholar
Lodders, K. (2003). Solar system abundances and condensation temperatures of the elements. Astrophys. J., 591, 12201247.CrossRefGoogle Scholar
Lodders, K., and Fegley, B. Jr. (1998). The Planetary Scientist’s Companion. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Lodders, K., Palme, H., and Gail, H. P. (2009). Abundances of the elements in the solar system. In Trümper, J. E. (Ed.), Landolt-Börnstein, New Series, Vol. VI/4B, 560630. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Love, S. G., and Brownlee, D. E. (1991). Heating and thermal transformation of micrometeoroids entering the Earth’s atmosphere. Icarus, 89, 2643.CrossRefGoogle Scholar
Luck, J. -M., Ben Othman, D., and Albarède, F. (2005). Zn and Cu isotopic variations in chondrites and iron meteorites: Early solar nebula reservoirs and parent-body processes. Geochim. Cosmochim. Acta, 69, 53515363.CrossRefGoogle Scholar
Makishima, A., and Nakamura, E. (2006). Determination of major, minor and trace elements in silicate samples by ICP-QMS and ICP-SFMS applying isotope dilution-internal standardisation (ID-IS) and multi-stage internal standardisation. Geostand. Geoanalytical Res., 30, 245271.CrossRefGoogle Scholar
Marrocchi, Y., and Libourel, G. (2013). Sulfur and sulfides in chondrules. Geochim. Cosmochim. Acta, 119, 117136.CrossRefGoogle Scholar
Mathieu, R., Khedim, H., Libourel, G., et al. (2008). Control of alkali-metal oxide activity in molten silicates. J. Non-Cryst. Solids 354, 50795083.CrossRefGoogle Scholar
Mathieu, R., Libourel, G., Deloule, E., et al. (2011). Na2O solublity in CaO-MgO-SiO2 melts. Geochim. Cosmochim. Acta, 57, 608628.CrossRefGoogle Scholar
Matsunami, S., Ninagawa, K., Nishimura, S., et al. (1993). Thermoluminescence and compositional zoning in the mesostasis of a Semarkona group A1 chondrule and new insights into the chondrule-forming process. Geochim. Cosmochim. Acta., 57, 21012110.CrossRefGoogle Scholar
McDonough, W. F. (2014). Compositional model for the Earth’s core. In Carlson, R. W. (Ed.), The Mantle and Core. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 3, 559577. Oxford, UK: Elsevier.Google Scholar
Metzler, K. (2012). Ultrarapid chondrite formation by hot chondrule accretion? Evidence from unequilibrated ordinary chondrites. Meteorit. Planet. Sci., 47, 21932217.CrossRefGoogle Scholar
Metzler, K., and Pack, A. (2016). Chemistry and oxygen isotopic composition of cluster chondrite clasts and their components in LL3 chondrites. Meteorit. Planet. Sci., 51, 276302.CrossRefGoogle Scholar
Molini-Velsko, C., Mayeda, T. K., and Clayton, R. N. (1986). Isotopic composition of silicon in meteorites. Geochim. Cosmochim. Acta, 50, 27192726.CrossRefGoogle Scholar
Moynier, F., Dauphas, N., and Podosek, F. A. (2009). Search for 70Zn anomalies in meteorites. Astrophys. J. Lett., 700, L92L95.CrossRefGoogle Scholar
Moynier, F., Vance, D., Fujii, T., and Savage, P. S. (2017). The isotope geochemistry of zinc and copper. Reviews in Mineralogy and Geochemistry, 82, 543600. Washington, DC: Mineralogical Society of America.Google Scholar
Mullane, E., Russell, S. S., and Gounelle, M. (2005). Nebular and asteroidal modification of the iron isotope composition of chondritic components. Earth Planet. Sci. Lett., 239, 203218.CrossRefGoogle Scholar
Nagahara, H., and Ozawa, Z. (1996). Evaporation of forsterite in H2 gas. Geochim. Cosmochim. Acta, 60, 14451459.CrossRefGoogle Scholar
Needham, A. W., Porcelli, D., and Russell, S. S. (2009). An Fe isotope study of ordinary chondrites. Geochim. Cosmochim. Acta, 73, 73997413.CrossRefGoogle Scholar
Palme, H., Larimer, J. W., and Lipschutz, M. E. (1988). Moderately volatile elements. In Kerridge, J. F. and Matthews, M. S. (Eds.), Meteorites and the Early Solar System, 436461. Tucson, AZ: University of Arizona Press.Google Scholar
Palme, H., Hezel, D. C., and Ebel, D. S. (2014). Matrix chondrule relationship and the origin of chondrules. Earth Planet. Sci. Lett., 411: 1119.CrossRefGoogle Scholar
Piani, L., Marrocchi, Y., Libourel, G., and Tissandier, L. (2016). Magmatic sulfides in the porphyritic chondrules of EH enstatite chondrites. Geochim. Cosmochim. Acta, 195, 8499.CrossRefGoogle Scholar
Poitrasson, F., Levasseur, S., and Teutsch, N. (2005). Significance of iron isotope mineral fractionation in pallasites and iron meteorites for the core-mantle differentiation of terrestrial planets. Earth Planet. Sci. Lett., 234, 151164.CrossRefGoogle Scholar
Pringle, E. A., Moynier, F., Beck, P., Paniello, R., and Hezel, D. C. (2017). The origin of volatile element depletion in early solar system material: Clues from Zn isotopes in chondrules. Earth Planet. Sci. Lett., 468, 6271.CrossRefGoogle Scholar
Richter, F. M., Davis, A. M., Ebel, D. S., and Hashimoto, A. (2002). Elemental and isotopic fractionation of Type B calcium-, aluminum-rich inclusions: Experiments, theoretical considerations, and constraints on their evolution. Geochim. Cosmochim. Acta, 66, 521540.CrossRefGoogle Scholar
Richter, F. M., Janney, P. E., Mendybaev, R. A., Davis, A. M., and Wadhwa, M. (2007). Elemental and isotopic fractionation of Type B CAI-like liquids by evaporation. Geochim. Cosmochim. Acta, 71, 55445564CrossRefGoogle Scholar
Richter, F. M., Mendybaev, R. A., Christensen, J. N., Ebel, D., and Gaffney, A. (2011). Laboratory experiments bearing on the origin and evolution of olivine-rich chondrules. Meteorit. Planet. Sci., 46, 11521178.CrossRefGoogle Scholar
Rubin, A. E., and Wasson, J. T. (2005). Non-spherical lobate chondrules in CO3.0 Y-81020: General implications for the formation of low-FeO porphyritic chondrules in CO chondrites. Geochim. Cosmochim. Acta, 69, 211220.CrossRefGoogle Scholar
Rubin, A. E., Sailer, A. L., and Wasson, J. T. (1999). Troilite in the chondrules of type-3 ordinary chondrites: Implications for chondrule formation. Geochim. Cosmochim. Acta, 63, 22812298.CrossRefGoogle Scholar
Russell, S., Zhu, X., Guo, Y., et al. (2003). Copper and zinc isotope composition of Cr, CB and CH-like meteorites. EGS-AGU-EUG Joint Assembly, abstract #11331.Google Scholar
Scott, E. R. D., and Taylor, G. J. (1983). Chondrules and other components in C, O, and E chondrites: Similarities in their properties and origins. Proc. Lunar Planet. Sci., 14, J. Geophys. Res. Suppl., 88, B275B286.Google Scholar
Sears, D. W. G., Huang, S., and Benoit, P. H. (1996). Open-system behaviour during chondrule formation. In Hewins, R., Jones, R. H., and Scott, E. R. D. (Eds.), Chondrules and the Protoplanetary Disk, 221232. Cambridge, UK: Cambridge University Press.Google Scholar
Soulié, C., Libourel, G., and Tissandier, L. (2017). Olivine dissolution in molten silicates: An experimental study with application to chondrule formation. Meteorit. Planet. Sci., 46, 126.Google Scholar
Stolper, E. (1982). Crystallization sequences of Ca-Al-rich inclusions from Allende: An experimental study. Geochim. Cosmochim. Acta, 52, 225250.Google Scholar
Stolper, E., and Paque, J. (1986). Crystallization sequences of Ca-Al-rich inclusions from Allende: The effects of cooling rate and maximum temperature. Geochim. Cosmochim. Acta, 50, 17851806.CrossRefGoogle Scholar
Stracke, A., Palme, H., Gellissen, M., et al. (2012). Refractory element fractionation in the Allende meteorite: Implications for solar nebula condensation and the chondritic composition of planetary bodies. Geochim. Cosmochim. Acta, 85, 114141.CrossRefGoogle Scholar
Tachibana, S., and Huss, G. R. (2005). Sulfur isotope composition of putative primary troilite in chondrules from Bishunpur and Semarkona. Geochim. Cosmochim. Acta, 69, 30753097.CrossRefGoogle Scholar
Tachibana, S., Nagahara, H., Ozawa, K., et al. (2015). Kinetic condensation and evaporation of metallic iron and implications for metallic iron dust formation. Astrophys. J., 736, 1624.CrossRefGoogle Scholar
Taylor, G. J., Scott, E. R. D., and Keil, K. (1983). Cosmic setting for chondrule formation. In King, E. A. (Ed.), Chondrules and their Origins, 262278. Houston, TX: Lunar and Planetary Institute.Google Scholar
Taylor, S., Alexander, C. M. O‘D., Delaney, J. S., et al. (2005). Isotopic fractionation of iron, potassium, and oxygen in stony cosmic spherules: Implications for heating histories and sources. Geochim. Cosmochim. Acta, 69, 26472662.CrossRefGoogle Scholar
Tenner, T. J., Nakashima, D., Ushikubo, T., Kita, N. T., and Weisberg, M. K. (2015). Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust enrichment and H2O during chondrule formation. Geochim. Cosmochim. Acta, 148, 228250.CrossRefGoogle Scholar
Tissandier, L., Libourel, G., and Robert, F. (2002). Gas-melt interactions and their bearing on chondrule formation. Meteorit. Planet. Sci., 37, 13771389.CrossRefGoogle Scholar
Villeneuve, J., Libourel, G., and Soulié, C. (2015). Relationships between type I and type II chondrules: Implications on chondrule formation processes. Geochim. Cosmochim. Acta, 160, 277305.CrossRefGoogle Scholar
Walsh, T. M., and Lipschutz, M. E. (1982). Chemical studies of L chondrites–II. Shock-induced trace element mobilization. Geochim. Cosmochim. Acta, 46, 24912500.CrossRefGoogle Scholar
Wai, C. M., and Wasson, J. T. (1977). Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites. Earth Planet. Sci. Lett., 36, 113.CrossRefGoogle Scholar
Wang, K. (2013). Iron Isotope Cosmochemistry. PhD Dissertation. Washington University, Saint Louis, 254pp.Google Scholar
Wang, J., Davis, A. M., Clayton, R. N., Mayeda, T. K., and Hashimoto, A. (2001). Chemical and isotopic fractionation during the evaporation of the FeO-MgO-SiO2-CaO-Al2O3-TiO2 rare earth element melt system. Geochim. Cosmochim. Acta, 65, 479494.CrossRefGoogle Scholar
Wasson, J. T. (1977). Reply to Edward Anders: A discussion of alternative models for explaining the distribution of moderately volatile elements in ordinary chondrites. Earth Planet. Sci. Lett., 36, 2128.CrossRefGoogle Scholar
Wasson, J. T., and Kallemeyn, G. W. (1988). Composition of chondrites. Phil. Trans. Roy. Soc. London A, 325, 535544.Google Scholar
Wasson, J. T., and Rubin, A. E. (2002). Ubiquitous relict grains in type-II chondrules, narrow overgrowths, and chondrule cooling rates following the last melting event. LPSC #33, abstract 1141.Google Scholar
Weisberg, M. K., McCoy, T. J., and Krot, A. N. (2006). Systematics and evaluation of meteorite classification. In Lauretta, D. and McSween, H. Y. Jr. (Eds.), Meteorites and the Early Solar System II, 1952. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Wombacher, F., Rehkämper, M., Mezger, K., and Münker, C. (2003). Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICPMS. Geochim. Cosmochim. Acta, 67, 46394654.CrossRefGoogle Scholar
Wombacher, F., Rehkämper, M., Mezger, K., Bischoff, A., and Münker, C. (2008). Cadmium stable isotope cosmochemistry. Geochim. Cosmochim. Acta, 72, 646667.CrossRefGoogle Scholar
Wood, J. A. (1996). Unresolved issues in the formation of chondrules and chondrites. In Hewins, R., Jones, R. H., and Scott, E. R. D. (Eds.), Chondrules and the Protoplanetary Disk, 5570. Cambridge, UK: Cambridge University Press.Google Scholar
Wood, J.A. (2001). Chondrites: Tight-lipped witnesses to the beginning. unpublished Mazursky Lecture, 12 pp.Google Scholar
Young, E. D., and Galy, A. (2004). The isotope geochemistry and cosmochemistry of magnesium. Reviews in Mineralogy and Geochemistry, 55, 197230. Washington, DC: Mineralogical Society of America.Google Scholar
Young, E. D., Ash, R. D., Galy, A., and Belshaw, N. S. (2002). Mg isotope heterogeneity in the Allende meteorite measured by UV laser ablation-MC-ICPMS and comparisons with O isotopes. Geochim. Cosmochim. Acta, 66, 683698.CrossRefGoogle Scholar
Yu, Y., Hewins, R. H., Alexander, C. M. O‘D., and Wang, J. (2003). Experimental study of evaporation and isotopic mass fractionation of potassium in silicate melts. Geochim. Cosmochim. Acta, 67, 773786.CrossRefGoogle Scholar
Zanda, B. (2004). Chondrules. Earth Planet. Sci. Lett., 224, 117.CrossRefGoogle Scholar
Zanda, B., Bourot-Denise, M., Perron, C., and Hewins, R. H. (1994). Origin and metamorphic redistribution of silicon, chromium and phosphorus in the metal of chondrites. Science, 265, 18461849.CrossRefGoogle ScholarPubMed
Zhu, X. K., Guo, Y., O’Nions, R. K., Young, E. D., and Ash, R. D. (2001). Isotopic homogeneity of iron in the early solar nebula. Nature, 412, 311312.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×