Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-07T02:08:06.787Z Has data issue: false hasContentIssue false

12 - Records of Magnetic Fields in the Chondrule Formation Environment

from Part I - Observations of Chondrules

Published online by Cambridge University Press:  30 June 2018

Sara S. Russell
Affiliation:
Natural History Museum, London
Harold C. Connolly Jr.
Affiliation:
Rowan University, New Jersey
Alexander N. Krot
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Chondrules contain ferromagnetic minerals that may retain a record of the magnetic field environments in which they cooled. Paleomagnetic experiments on separated chondrules can potentially reveal the presence of remanent magnetization from the time of chondrule formation. The existence of such a magnetization places quantitative bounds on the frequency of interchondrule collisions, while the intensity of magnetization may be used to infer the strength of nebular magnetic fields and thereby constrain the mechanism of chondrule formation. Recent advances in laboratory instrumentation and techniques have permitted the isolation of nebular remanent magnetization in chondrules, providing the potential basis to probe the formation environments of chondrules from a range of chondrite classes.

Type
Chapter
Information
Chondrules
Records of Protoplanetary Disk Processes
, pp. 324 - 340
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, C. M. O’D., Barber, D. J., and Hutchison, R. (1989). The microstructure of Semarkona and Bishunpur. Geochim. Cosmochim. Acta 53, 30453057.CrossRefGoogle Scholar
Alexander, C. M. O’D., and Ebel, D. S. (2012). Questions, questions: Can the contradictions between the petrologic, isotopic, thermodynamic, and astrophysical constraints on chondrule formation be resolved? Meteorit. Planet. Sci. 47, 11571175.CrossRefGoogle Scholar
Asphaug, E., Jutzi, M., and Movshovitz, N. (2011). Chondrule formation during planetesimal accretion. Earth Planet. Sci. Lett. 308, 369379.CrossRefGoogle Scholar
Bai, X. -N. (2016). Towards a global evolutionary model of protoplanetary disks. Astrophys. J. 821, 80.CrossRefGoogle Scholar
Bai, X. -N. (2015). Hall effect controlled gas dynamics in protoplanetary disks. II. Full 3D simulations toward the outer disk. Astrophys. J. 798, 84.CrossRefGoogle Scholar
Bai, X. -N. (2014). Hall-effect-controlled gas dynamics in protoplanetary disks. I. Wind solutions at the inner disk. Astrophys. J. 791, 137.CrossRefGoogle Scholar
Bai, X. -N. (2011). Magnetorotational-instability-driven accretion in protoplanetary disks. Astrophys. J. 739, 119.CrossRefGoogle Scholar
Bai, X. -N., and Goodman, J. (2009). Heat and dust in active layers of protostellar disks. Astrophys. J. 701, 737755.CrossRefGoogle Scholar
Balbus, S. A. (2003). Enhanced angular momentum transport in accretion disks. Annu. Rev. Astron. Astrophys. 41, 555597.CrossRefGoogle Scholar
Bitsch, B., Johansen, A., Lambrechts, M., and Morbidelli, A. (2015). The structure of protoplanetary discs around evolving young stars. Astron. Astrophys. 575, A28.CrossRefGoogle Scholar
Brearley, A. J., and Krot, A. N. (2012). Metasomatism in the early solar system: The record from chondritic meteorites, in: Harlov, D.E. and Austrheim, H. (Eds.), Metasomatism and the Chemical Transformation of Rock., 659789. Berlin: Springer-Verlag.Google Scholar
Carporzen, L., Weiss, B. P., Elkins-Tanton, L. T., et al. (2011). Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proc. Natl. Acad. Sci. USA 108, 63866389.CrossRefGoogle Scholar
Carrera, D., Johansen, A., and Davies, M. B. (2015). How to form planetesimals from mm-sized chondrules and chondrule aggregates. Astron. Astrophys. 579, A43.CrossRefGoogle Scholar
Ciesla, F. J., Lauretta, D. S., and Hood, L. L. (2004). The frequency of compound chondrules and implications of chondrule formation. Meteorit. Planet. Sci. 39, 531544.CrossRefGoogle Scholar
Cuzzi, J. N., and Hogan, R. C. (2003). Blowing in the wind I. Velocities of chondrule-sized particles in a turbulent protoplanetary nebula. Icarus 164, 127138.CrossRefGoogle Scholar
Desch, S. J., and Connolly, H. C. (2002). A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteorit. Planet. Sci. 37, 183207.CrossRefGoogle Scholar
Desch, S. J., and Mouschovias, T. C. (2001). The magnetic decoupling of star formation. Astrophys. J. 550, 314333.CrossRefGoogle Scholar
Flock, M., Ruge, J. P., Dzyurkevich, N., et al. (2015). Gaps, rings, and non-axisymmetric structures in protoplanetary disks – From simulations to ALMA observations. Astron. Astrophys. 574, A68.CrossRefGoogle Scholar
Fu, R. R., Lima, E. A., and Weiss, B. P. (2014a). No nebular magnetization in the Allende CV carbonaceous chondrite. Earth Planet. Sci. Lett. 404, 5466.CrossRefGoogle Scholar
Fu, R. R., and Weiss, B. P. (2012). Detrital remanent magnetization in the solar nebula. J. Geophys. Res. 117, E02003.CrossRefGoogle Scholar
Fu, R. R., Weiss, B. P., Lima, E. A., et al. (2014b). Solar nebula magnetic fields recorded in the Semarkona meteorite. Science. 346, 10891092.CrossRefGoogle ScholarPubMed
Fu, R. R., Weiss, B. P., Lima, E. A., et al. (2017). Evaluating the paleomagnetic potential of single zircon crystals using Bishop Tuff zircons. Earth Planet. Sci. Lett. 458, 113.CrossRefGoogle Scholar
Gammie, C. F. (1996). Layered accretion in T Tauri disks. Astrophys. J. 457, 355362.CrossRefGoogle Scholar
Garrick-Bethell, I., and Weiss, B. P. (2010). Kamacite blocking temperatures and applications to lunar magnetism. Earth Planet. Sci. Lett. 294, 17.CrossRefGoogle Scholar
Glenn, D. R., Fu, R. R., Kehayias, P., et al. (2017). Micrometer-scale magnetic imaging of geological samples using quantum diamond microscopy. Geochem. Geophys. Geosyst. 18, 32543267.CrossRefGoogle Scholar
Guilet, J., and Ogilvie, G. I. (2014). Global evolution of the magnetic field in a thin disc and its consequences for protoplanetary systems. Mon. Not. R. Astr. Soc. 441, 852868.CrossRefGoogle Scholar
Hayashi, C. (1981). Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Sup. Prog. Theor. Phys. 70, 3553.CrossRefGoogle Scholar
Hewins, R. H., Connolly, H. C., Lofgren, G. E., and Libourel, G. (2005). Experimental constraints on chondrule formation. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk. ASP Conference Series, 341, 286316. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Johansen, A. (2009). The role of magnetic fields for planetary formation. In Strassmeier, K. G., Kosovichev, A. G., and Beckman, J. E. (Eds.), Cosmic Magnetic Fields: From Planets, to Stars and Galaxies. Proc. IAU Symp. 259, 119128. Cambridge, UK: Cambridge University Press.Google Scholar
Johnson, B. C., Minton, D. A., Melosh, H. J., and Zuber, M. T. (2015). Impact jetting as the origin of chondrules. Nature 517, 339341.CrossRefGoogle ScholarPubMed
Jones, R. H., and Danielson, L. R. (1997). A chondrule origin for dusty relict olivine in unequilibrated chondrites. Meteorit. Planet. Sci. 32, 753760.CrossRefGoogle Scholar
Kimura, M., Grossman, J. N., and Weisberg, M. K. (2008). Fe-Ni metal in primitive chondrites: Indicators of classification and metamorphic conditions for ordinary and CO chondrites. Meteorit. Planet. Sci. 43, 11611177.CrossRefGoogle Scholar
Kita, N. T., and Ushikubo, T. (2012). Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules. Meteorit. Planet. Sci. 47, 11081109.CrossRefGoogle Scholar
Kita, N. T., Yin, Q. -Z., MacPherson, G. J., et al. (2013). 26Al-26Mg isotope systematics of the first solids in the early solar system. Meteorit. Planet. Sci. 48, 118.CrossRefGoogle Scholar
Krot, A. N., Petaev, M. I., Scott, E. R. D., et al. (1998). Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration. Meteorit. Planet. Sci. 33, 10651085.CrossRefGoogle Scholar
Lanoix, M., Strangway, D. W., and Pearce, G. W. (1978). The primordial magnetic field preserved in chondrules of the Allende meteorite. Geophys. Res. Lett. 5, 7376.CrossRefGoogle Scholar
Lappe, S. -C. L. L., Harrison, R. J., Feinberg, J. M., and Muxworthy, A. (2013). Comparison and calibration of nonheating paleointensity methods: A case study using dusty olivine. Geochem. Geophys. Geosyst. 14, 116.CrossRefGoogle Scholar
Leroux, H., Libourel, G., Lemelle, L., and Guyot, F. (2003). Experimental study and TEM characterization of dusty olivines in chondrites: Evidence for formation by in situ reduction. Meteorit. Planet. Sci. 38, 8194.CrossRefGoogle Scholar
Lesur, G., Kunz, M. W., and Fromang, S. (2014). Thanatology in protoplanetary discs: The combined influence of Ohmic, Hall, and ambipolar diffusion on dead zones. Astron. Astrophys. 566, A56.CrossRefGoogle Scholar
Levy, E. H., and Araki, S. (1989). Magnetic reconnection flares in the protoplanetary nebula and the possible origin of meteorite chondrules. Icarus 81, 7491.CrossRefGoogle Scholar
Levy, E. H., and Sonett, C. P. (1978). Meteorite magnetism and early solar system magnetic fields. In Gehrels, T. (Ed.), Protostars and Planets: Studies of Star Formation and of the Origin of the Solar System., 516532. Tucson, AZ: University of Arizona Press.Google Scholar
McNally, C. P., Hubbard, A., Mac Low, M. -M., Ebel, D. S., and D’Alessio, P. (2013). Mineral processing by short circuits in protoplanetary disks. Astrophys. J. 767, L2.CrossRefGoogle Scholar
Miura, H., Nakamoto, T., and Doi, M. (2008). Origin of three-dimensional shapes of chondrules: I. Hydrodynamics simulations of rotating droplet exposed to high-velocity rarefied gas flow. Icarus 197, 269281.CrossRefGoogle Scholar
Nübold, H., and Glassmeier, K. -H. (2000). Accretional remanence of magnetized dust in the solar nebula. Icarus 144, 149159.CrossRefGoogle Scholar
Okuzumi, S., Takeuchi, T., and Muto, T. (2014). Radial transport of large-scale magnetic fields in accretion disks. I. Steady solutions and an upper limit on the vertical field strength. Astrophys. J. 785, 127.CrossRefGoogle Scholar
Schrader, D. L., Connolly, H. C., Lauretta, D. S., et al. (2015). The formation and alteration of the Renazzo-like carbonaceous chondrites III: Toward understanding the genesis of ferromagnesian chondrules. Meteor. Planet. Sci. 50, 1550.CrossRefGoogle Scholar
Schrader, D. L., Davidson, J., and McCoy, T. J. (2016a). Widespread evidence for high-temperature formation of pentlandite in chondrites. Geochim. Cosmochim. Acta 189, 359376.CrossRefGoogle Scholar
Schrader, D. L., Fu, R. R., and Desch, S. J. (2016b). Evaluating chondrule formation models and the protoplanetary disk background temperature with low-temperature, sub-silicate solidus chondrule cooling rates. Lunar Planet. Sci. Conf. XLVII, 1180.Google Scholar
Schrader, D. L., Nagashima, K., Krot, A. N., et al. (2017). Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk. Geochim. Cosmochim. Acta 201, 375302.CrossRefGoogle Scholar
Shah, J., Bates, H. C., Muxworthy, A. R., et al. (2017). Long-lived magnetism on chondrite parent bodies. Earth Planet. Sci. Lett. 475, 106118.CrossRefGoogle Scholar
Shu, F. H., Shang, H., Glassgold, A. E., and Lee, T. (1997). X-rays and fluctuating x-winds from protostars. Science. 277, 14751479.CrossRefGoogle Scholar
Shu, F. H., Shang, H., and Lee, T. (1996). Toward an astrophysical theory of chondrites. Science. 271, 15451552.CrossRefGoogle Scholar
Stepinski, T. F. (1992). Generation of dynamo magnetic fields in the primordial solar nebula. Icarus 97, 130141.CrossRefGoogle Scholar
Sugiura, N., Lanoix, M., Strangway, D. W., (1979). Magnetic fields of the solar nebula as recorded in chondrules from the Allende meteorite. Phys. Earth Planet. Inter. 20, 342349.CrossRefGoogle Scholar
Sugiura, N., and Strangway, D. W. (1985). NRM directions around a centimeter-sized dark inclusion in Allende. Proc. Lunar Planet. Sci. Conf. XV, C729–C738.Google Scholar
Swartzendruber, L. J., Itkin, V. P., and Alcock, C. B. (1991). The Fe-Ni (iron-nickel) system. J. Phase Equilibria 12, 288312.CrossRefGoogle Scholar
Tachibana, S., Nagahara, H., and Mizuno, K. (2006). Constraints on cooling rates of chondrules from metal-troilite assemblages. Lunar Planet. Sci. Conf. XXXVII.Google Scholar
Takac, M., and Kletetschka, G. (2015). Meteorite movement during deceleration studied analogically with magnetic remanence in the bullet. In AGU Fall Meeting. Abstract # GP43B-1244.Google Scholar
Tauxe, L. (2010). Essentials of Paleomagnetism. Berkeley, CA: University of California Press.CrossRefGoogle Scholar
Tsuchiyama, A., Shigeyoshi, R., Kawabata, T., et al. (2003). Three-dimensional structures of chondrules and their high-speed rotation. Lunar Planet. Sci. Conf. XXXIV.Google Scholar
Turner, N. J., and Sano, T. (2008). Dead zone accretion flows in protostellar disks. Astrophys. J. Lett. 679, L131L134.CrossRefGoogle Scholar
Uehara, M., Gattacceca, J., Leroux, H., Jacob, D., and van der Beek, C. J. (2011). Magnetic microstructures of metal grains in equilibrated ordinary chondrites and implications of paleomagnetism of meteorites. Earth Planet. Sci. Lett. 306, 241252.CrossRefGoogle Scholar
Uehara, M., and Nakamura, N. (2006). Experimental constraints on magnetic stability of chondrules and the paleomagnetic significance of dusty olivines. Earth Planet. Sci. Lett. 250, 292305.CrossRefGoogle Scholar
van der Marel, N., van Dishoeck, E. F., Bruderer, S., et al. (2013). A major asymmetric dust trap in a transition disk. Science. 340, 11991202.CrossRefGoogle Scholar
Villeneuve, J., Chaussidon, M., and Libourel, G. (2009). Homogeneous distribution of 26Al in the Solar System from the Mg isotopic composition of chondrules. Science. 325, 985988.CrossRefGoogle ScholarPubMed
Wang, H., Weiss, B. P., Bai, X. -N., et al. (2017). Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science. 355, 623627.CrossRefGoogle ScholarPubMed
Wardle, M. (2007). Magnetic fields in protoplanetary disks. Astrophys. Sp. Sci. 311, 3545.CrossRefGoogle Scholar
Wasilewski, P. (1981). New magnetic results from Allende C3(V). Phys. Earth Planet. Inter. 26, 134148.CrossRefGoogle Scholar
Wasilewski, P. J., and O’Bryan, M. V. (1994). Chondrule magnetic properties. Lunar Planet. Sci. Conf. XXV, 1467.Google Scholar
Weiss, B. P., and Elkins-Tanton, L. T. (2013). Differentiated planetesimals and the parent bodies of chondrites. Annu. Rev. Earth Planet. Sci. 41, 21.CrossRefGoogle Scholar
Weiss, B. P., Gattacceca, J., Stanley, S., Rochette, P., and Christensen, U. R. (2010). Paleomagnetic records of meteorites and early planetesimal differentiation. Sp. Sci. Rev. 152, 341390.CrossRefGoogle Scholar
Weiss, B. P., and Tikoo, S. M. (2014). The lunar dynamo. Science. 346, 1246753–1.CrossRefGoogle ScholarPubMed
Zhu, Z., Stone, J. M., and Rafikov, R. R. (2013). Low-mass planets in protoplanetary disks with net vertical magnetic fields: The planetary wake and gap opening. Astrophys. J. 768, 143.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×