Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-23T04:04:03.221Z Has data issue: false hasContentIssue false

8 - Oxygen Isotope Characteristics of Chondrules from Recent Studies by Secondary Ion Mass Spectrometry

from Part I - Observations of Chondrules

Published online by Cambridge University Press:  30 June 2018

Sara S. Russell
Affiliation:
Natural History Museum, London
Harold C. Connolly Jr.
Affiliation:
Rowan University, New Jersey
Alexander N. Krot
Affiliation:
University of Hawaii, Manoa
Get access

Summary

We review recent chondrule oxygen isotope studies by secondary ion mass spectrometry (SIMS). We discuss primary O-isotope fractionation characteristics of chondrule phases, and how they are used to garner information related to the physicochemical environment from which they formed. This includes high temperature gas–melt interactions, sampling of common precursors among different chondrite types, and how precursor compositions influenced redox states during chondrule formation. We also explore how primary O-isotope ratios of chondrule phases are disturbed by secondary alteration.

Type
Chapter
Information
Chondrules
Records of Protoplanetary Disk Processes
, pp. 196 - 246
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, C. M. O’D. (2004). Chemical equilibrium and kinetic constraints for chondrule and CAI formation conditions. Geochim. Cosmochim. Acta 68, 39423969.CrossRefGoogle Scholar
Alexander, C. M. O’D., Barber, D. J., and Hutchison, R. (1989). The microstructure of Semarkona and Bishunpur. Geochim. Cosmochim. Acta 53, 30453057.CrossRefGoogle Scholar
Allende Prieto, C., Lambert, D. L., and Asplund, M. (2001). The forbidden abundance of oxygen in the Sun. Astrophys. J. 556, L63L66.CrossRefGoogle Scholar
Allende Prieto, C., Lambert, D. L., and Asplund, M. (2002). A reappraisal of the Solar photospheric C/O ratio. Astrophys. J. 573, L137L140.CrossRefGoogle Scholar
Anders, E., and Grevesse, N. (1989). Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 53, 197214.CrossRefGoogle Scholar
Ando, M., Nagata, T., Sato, S., et al. (2002). Near-infrared and CO (J = 1–0) observations of photodissociation regions in M17. Astrophys. J. 574, 187197.CrossRefGoogle Scholar
Asphaug, E., Jutzi, M., and Movshovitz, N. (2011). Chondrule formation during planetesimal accretion. Earth Planet. Sci. Lett. 308, 369379.CrossRefGoogle Scholar
Baertschi, P. (1976). Absolute 18O content of standard mean ocean water. Earth Planet. Sci. Lett. 31, 341344.CrossRefGoogle Scholar
Behrens, H., Zhang, Y. X., Leschik, , et al. (2007). Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts. Earth Planet. Sci. Lett. 254, 6976.CrossRefGoogle Scholar
Behrens, H., Zhang, Y. X., and Xu, Z. G. (2004). H2O diffusion in dacitic and andesitic melts. Geochim. Cosmochim. Acta 68, 51395160.CrossRefGoogle Scholar
Berlin, J. (2009). Mineralogy and bulk chemistry of chondrules and matrix in petrologic type 3 chondrites: Implications for early solar system processes. Ph.D. thesis, The University of New Mexico.Google Scholar
Binet, L., Gourier, D., Derenne, S., and Robert, F. (2002). Heterogeneous distribution of paramagnetic radicals in insoluble organic matter from the Orgueil and Murchison meteorites. Geochim. Cosmochim. Acta 66, 41774186.CrossRefGoogle Scholar
Bischoff, A., Geiger, T., Palme, , et al. (1994). Acfer 217-A new member of the Rumuruti chondrite group (R). Meteoritics 29, 264274.CrossRefGoogle Scholar
Bischoff, A., and Keil, K. (1984). Al-rich objects in ordinary chondrites: Related origin of carbonaceous and ordinary chondrites and their constituents. Geochim. Cosmochim. Acta 48, 693709.CrossRefGoogle Scholar
Bischoff, A., Vogel, N., and Roszjar, J. (2011). The Rumuruti chondrite group. Chemie der Erde 71, 101133.CrossRefGoogle Scholar
Bodénan, J. -D., Starkey, N. A., Russell, S. S., Wright, I. P., and Franchi, I. A. (2014). An oxygen isotope study of Wark-Lovering rims on type A CAIs in primitive carbonaceous chondrites. Earth Planet. Sci. Lett. 401, 327336.CrossRefGoogle Scholar
Bonal, L., Bourot-Denise, M., Quirico, E., Montagnac, G., and Lewin, E. (2007). Organic matter and metamorphic history of CO chondrites. Geochim. Cosmochim. Acta 71, 16051623.CrossRefGoogle Scholar
Brearley, A. J. (1997). Disordered biopyriboles, amphibole, and talc in the Allende meteorite: Products of nebular or parent body aqueous alteration? Science 276, 11031105.CrossRefGoogle ScholarPubMed
Bridges, J. C., Franchi, I. A., Sexton, A. S., and Pillinger, C. T. (1999). Mineralogical controls on the oxygen isotopic compositions of UOCs. Geochim. Cosmochim. Acta 63, 945951.CrossRefGoogle Scholar
Bullock, E. S., MacPherson, G. J., Nagashima, K., et al. (2012). Forsterite-bearing type B refractory inclusions from CV3 chondrites: From aggregates to volatilized melt droplets. Meteorit. Planet. Sci. 47, 21282147.CrossRefGoogle Scholar
Cassen, P. (2001). Nebular thermal evolution and the properties of primitive planetary materials. Meteorit. Planet. Sci. 36, 671700.CrossRefGoogle Scholar
Chakraborty, S. (2010). Diffusion coefficients in olivine, wadsleyite, and ringwoodite. In Zhang, Y. and Cherniak, D. J. (Eds.), Reviews in Mineralogy and Geochemistry 72, 603639. Washington D.C.: Mineralogical Society of America.Google Scholar
Chaussidon, M., Libourel, G., and Krot, A. N. (2008). Oxygen isotopic constraints on the origin of magnesian chondrules and on the gaseous reservoirs in the early Solar System. Geochim. Cosmochim. Acta 72, 19241938.CrossRefGoogle Scholar
Choi, B. -G., Krot, A. N., and Wasson, J. T. (2000). Oxygen isotopes in magnetite and fayalite in CV chondrites Kaba and Mokoia. Meteorit. Planet. Sci. 35, 12391248.CrossRefGoogle Scholar
Choi, B. -G., McKeegan, K. D., Krot, A. N., and Wasson, J. T. (1998). Extreme oxygen-isotope compositions in magnetite from unequilibrated ordinary chondrites. Nature 392, 577579.CrossRefGoogle Scholar
Choi, B. -G., McKeegan, K. D., Leshin, L. A., and Wasson, J. T. (1997). Origin of magnetite in oxidized CV chondrites: In situ measurement of oxygen isotope compositions of Allende magnetite and olivine. Earth Planet. Sci. Lett. 146, 337349.CrossRefGoogle ScholarPubMed
Ciesla, F. J., and Cuzzi, J. N. (2006). The evolution of the water distribution in a viscous protoplanetary disk. Icarus 181, 178204.CrossRefGoogle Scholar
Clayton, R. N. (1993). Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115149.CrossRefGoogle Scholar
Clayton, R. N. (2003). Oxygen isotopes in meteorites. In Davis, A.M. (Ed.), Meteorites, Comets, and Planets. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (First Edition) 1, 129142. Oxford, UK: Elsevier-Pergamon.Google Scholar
Clayton, R. N., Grossman, L., and Mayeda, T. K. (1973). A component of primitive nuclear composition in carbonaceous meteorites. Science 182, 485488.CrossRefGoogle ScholarPubMed
Clayton, R. N., and Kieffer, S. W. (1991). Oxygen isotopic thermometer calibrations. In Taylor, H. P. Jr., O’Neil, J. R., and Kaplan, I. R. (Eds.), Stable Isotope Geochemistry: A Tribute to Samuel Epstein, 310. Special Publication, 3. San Antonio, TX: Geochemical Society.Google Scholar
Clayton, R. N., and Mayeda, T. K. (1983). Oxygen isotopes in eucrites, shergottites, nakhlites, and chassignites. Earth Planet. Sci. Lett. 62, 16.CrossRefGoogle Scholar
Clayton, R. N., and Mayeda, T. K. (1984). Oxygen isotopic compositions of enstatite chondrites and aubrites. J. Geophys. Res. 89, C245C249.CrossRefGoogle Scholar
Clayton, R. N., Mayeda, T. K., Goswami, J. N., and Olsen, E. J. (1991). Oxygen isotope studies of ordinary chondrites. Geochim. Cosmochim. Acta 55, 23172337.CrossRefGoogle Scholar
Clayton, R. N., Onuma, N., Grossman, L., and Mayeda, T. K. (1977). Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth Planet. Sci. Lett. 34, 209224.CrossRefGoogle Scholar
Connolly, H. C. Jr., and Huss, G. R. (2010). Compositional evolution of the protoplanetary disk: Oxygen isotopes of type II chondrules from CR2 chondrites. Geochim. Cosmochim. Acta 74, 24732483.CrossRefGoogle Scholar
Cuzzi, J. N., Hogan, R. C., Paque, J. M., and Dobrovolskis, A. R. (2001). Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence. Astrophys. J. 546, 496508.CrossRefGoogle Scholar
Davidson, J., Krot, A. N., Nagashima, K., Hellebrand, E., and Lauretta, D. S. (2014). Oxygen isotope and chemical compositions of magnetite and olivine in the anomalous CK3 Watson 002 and ungrouped Asuka-881595 carbonaceous chondrites: effects of parent body thermal metamorphism. Meteorit. Planet. Sci. 49, 14561474.CrossRefGoogle Scholar
Desch, S. J., Morris, M. A., Connolly, H. C. Jr., and Boss, A. P. (2012). The importance of experiments: Constraints on chondrule formation models. Meteorit. Planet. Sci. 47, 11391156.CrossRefGoogle Scholar
Di Rocco, T., and Pack, A. (2015). Triple oxygen isotope exchange between chondrule melt and water vapor: an experimental study. Geochim. Cosmochim. Acta 55, 23172337.Google Scholar
Dohmen, R., Becker, H. -W., and Chakraborty, S. (2007). Fe-Mg diffusion in olivine I: Experimental determination between 700 and 1200°C as a function of composition, crystal orientation and oxygen fugacity. Phys. Chem. Minerals 34, 389407.CrossRefGoogle Scholar
Dominguez, G. (2010). A heterogeneous chemical origin for the 16O-enriched and 16O-depleted reservoirs of the early solar system. Astrophys. J. Lett. 713, L59L63.CrossRefGoogle Scholar
Doyle, P. M., Jogo, K., Nagashima, K., et al. (2015). Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nat. Commun. 6, 110.CrossRefGoogle ScholarPubMed
Ebel, D. S., and Grossman, L. (2000). Condensation in dust-enriched systems. Geochim. Cosmochim. Acta 64, 339366.CrossRefGoogle Scholar
Eiler, J. M. (2001). Oxygen isotope variations of basaltic lavas and upper mantle rocks. In Valley, J. W. and Cole, D. R. (Eds.), Reviews in Mineralogy and Geochemistry 43, 319364. Washington, D.C.: Mineralogical Society of America.Google Scholar
Farver, J. R. (2010). Oxygen and hydrogen diffusion in minerals. In Zhang, Y. and Cherniak, D. J. (Eds.), Reviews in Mineralogy and Geochemistry 72, 447507. Washington D.C.: Mineralogical Society of America.Google Scholar
Fedkin, A. V., and Grossman, L. (2006). The fayalite content of chondritic olivine: Obstacle to understanding the condensation of rocky material. In Lauretta, D. S. and McSween, H. Y. (Eds.), Meteorites and the Early Solar System II, 279294. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Fedkin, A. V., and Grossman, L. (2016). Effects of dust enrichment on oxygen fugacity of cosmic gases. Meteorit. Planet. Sci. 51, 843850.CrossRefGoogle Scholar
Fegley, B. (2000). Kinetics of gas-grain reactions in the solar nebula. Space Sci. Rev. 92, 177200.CrossRefGoogle Scholar
Franchi, I. A. (2008). Oxygen isotopes in asteroidal materials. In MacPherson, G. J. (Ed.), Reviews in Mineralogy and Geochemistry 68, 345397. Washington D.C.: Mineralogical Society of America.Google Scholar
Friend, P., Hezel, D. C., and Mucerschi, D. (2016). The conditions of chondrule formation, Part II: Open system. Geochim. Cosmochim. Acta 173, 198209.CrossRefGoogle Scholar
Ganguly, J., and Tazzoli, V. (1994). Fe2+-Mg interdiffusion in orthopyroxene: Retrieval from the data on intracrystalline exchange reaction. Am. Mineral. 79, 930937.Google Scholar
Gao, H., Song, Y., Chang, Y. -C., et al. (2013). Branching ratio measurements for vacuum ultraviolet photodissociation of 12C16O. J. Phys. Chem. 117, 61856195.CrossRefGoogle ScholarPubMed
Gerard, O., and Jaoul, O. (1989). Oxygen diffusion in San Carlos olivine. J. Geophys. Res. 94, 41194128.CrossRefGoogle Scholar
Gerber, S., Burkhardt, C., Budde, G., Metzler, K., and Kleine, T. (2017). Mixing and transport of dust in the early solar nebula as inferred from titanium isotope variations among chondrules. Astrophys. J. Lett. 841, L17 (7 pp).CrossRefGoogle Scholar
Giletti, B. J., Semet, M. P., and Yund, R. A. (1978). Studies in diffusion-III. Oxygen in feldspars: An ion microprobe determination. Geochim. Cosmochim. Acta 42, 4557.CrossRefGoogle Scholar
Gounelle, M., Young, E. D., Shahar, A., Tonui, E., and Kearsley, A. (2007). Magnesium isotopic constraints on the origin of CBb chondrites. Earth Planet. Sci. Lett. 256, 521533.CrossRefGoogle Scholar
Gounelle, M., Krot, A. N., Nagashima, K., and Kearsley, A. (2009). Extreme 16O enrichment in calcium-aluminum-rich inclusions from the Isheyevo (CH/CB) chondrite. Astrophys. J. 698, L18L22.CrossRefGoogle Scholar
Greenwood, J. P., Rubin, A. E., and Wasson, J. T. (2000). Oxygen isotopes in R-chondrite magnetite and olivine: Links between R chondrites and ordinary chondrites. Geochim. Cosmochim. Acta 64, 38973911.CrossRefGoogle Scholar
Greenwood, R. C., Burbine, T. H., Miller, M. F., and Franchi, I. A. (2017). Melting and differentiation of early-formed asteroids: The perspective from high-precision oxygen isotope studies. Chemie der Erde 77, 143.CrossRefGoogle Scholar
Grossman, J. N., Alexander, C. M. O’D., Wang, J., and Brearley, A. J. (2002). Zoned chondrules in Semarkona: Evidence for high- and low-temperature processing. Meteorit. Planet. Sci. 37, 4973.CrossRefGoogle Scholar
Grossman, J. N., and Brearley, A. J. (2005). The onset of metamorphism in ordinary and carbonaceous chondrites. Meteorit. Planet. Sci. 40, 87122.CrossRefGoogle Scholar
Grossman, J. N., Rubin, A. E., Nagahara, H., and King, E. A. (1988). Properties of chondrules. In Kerridge, J. and Shapley Matthews, M. (Eds.), Meteorites and the Early Solar System, 619659. Tucson, AZ: University of Arizona Press.Google Scholar
Grossman, L., Beckett, J. R., Fedkin, A. V., Simon, S. B., and Ciesla, F. J. (2008). Redox conditions in the solar nebula: Observational, experimental, and theoretical constraints. In MacPherson, G. J. (Ed.), Reviews in Mineralogy and Geochemistry 68, 93140. Washington D.C.: Mineralogical Society of America.Google Scholar
Guan, Y., Huss, G. R., Leshin, L. A., MacPherson, G. J., and McKeegan, K. D. (2006). Oxygen isotope and 26Al-26Mg systematics of aluminum-rich chondrules from unequilibrated enstatite chondrites. Meteorit. Planet. Sci. 41, 3347.CrossRefGoogle Scholar
Harju, E. R., Rubin, A. E., Ahn, , et al. (2014). Progressive alteration of CR carbonaceous chondrites. Geochim. Cosmochim. Acta 139, 267292.CrossRefGoogle Scholar
Hashizume, K., Takahata, N., Naraoka, H., and Sano, Y. (2011). Extreme oxygen isotope anomaly with a solar origin detected in meteoritic organics. Nature Geosci. 4, 165168.CrossRefGoogle Scholar
Hewins, R. H., Connolly, H. C. Jr., Lofgren, G. E., and Libourel, G. (2005). Experimental constraints on chondrule formation. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrules and the Protoplanetary Disk, 286316. ASP Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Hewins, R. H., and Radomsky, P. M. (1990). Temperature conditions for chondrule formation. Meteoritics 25, 309318.CrossRefGoogle Scholar
Howard, K. T., Alexander, C. M. O’D., Schrader, D. L., and Dyl, K. A. (2015). Classification of hydrous meteorites (CR, CM and C2 ungrouped) by phyllosilicate fraction: PSD-XRD modal mineralogy and planetesimal environments. Geochim. Cosmochim. Acta 149, 206222.CrossRefGoogle Scholar
Huss, G. R., and Lewis, R. S. (1994). Noble gases in presolar diamonds II: Component abundances reflect thermal processing. Meteoritics 29, 811829.CrossRefGoogle Scholar
Huss, G. R., Rubin, A. E., and Grossman, J. N. (2006). Thermal metamorphism in chondrites. In Lauretta, D. S. and McSween, H. Y. (Eds.), Meteorites and the Early Solar System II, 567586. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Ichimura, S., Seto, Y., and Tomeoka, K. (2017). Nepheline formation in chondrite parent bodies: Verification through experiments. Geochim. et Cosmochim. Acta 210, 114131.CrossRefGoogle Scholar
Isa, J., Rubin, A. E., Marin-Carbonne, J., McKeegan, K. D., and Wasson, J. T. (2011). Oxygen-isotopic compositions of R-chondrite chondrules. LPSC XLII, #2623.Google Scholar
Isa, J., Rubin, A. E., and Wasson, J. T. (2014). R-chondrite bulk-chemical compositions and diverse oxides: Implications for parent-body processes. Geochim. Cosmochim. Acta 124, 131151.CrossRefGoogle Scholar
Javoy, M., Balan, E., Méhut, M., Blanchard, M., and Lazzeri, M. (2012). First-principles investigation of equilibrium isotopic fractionation of O- and Si-isotopes between refractory solids and gases in the solar nebula. Earth Planet. Sci. Lett. 319–320, 118127.CrossRefGoogle Scholar
Jiang, Y., Hsu, W., Guan, Y., and Wang, Y. (2015). In situ SIMS oxygen isotope analyses: Evidence for the formation of aluminum-rich chondrules from ordinary chondrites. Science China 58, 17481757.CrossRefGoogle Scholar
Johnson, B. C., Minton, D. A., Melosh, H. J., and Zuber, M. T. (2015). Impact jetting as the origin of chondrules. Nature 517, 339341.CrossRefGoogle ScholarPubMed
Jones, R. H. (1992). On the relationship between isolated and chondrule olivine grains in the carbonaceous chondrite ALHA77307. Geochim. Cosmochim. Acta 56, 467482.CrossRefGoogle Scholar
Jones, R. H., Leshin, L. A., Guan, , et al. (2004). Oxygen isotope heterogeneity in chondrules from the Mokoia CV3 carbonaceous chondrite. Geochim. Cosmochim. Acta 68, 34233438.CrossRefGoogle Scholar
Jones, R. H., Saxton, J. M., Lyon, I. C., and Turner, G. (2000). Oxygen isotopes in chondrule olivine and isolated olivine grains from the CO3 chondrite Allan Hills A77307. Meteorit. Planet. Sci. 35, 849857.CrossRefGoogle Scholar
Kallemeyn, G. W., Rubin, A. E., and Wasson, J. T. (1996). The compositional classification of chondrites: VII. The R chondrite group. Geochim. Cosmochim. Acta 60, 22432256.CrossRefGoogle Scholar
Kimura, M., Barrat, J. A., Weisberg, , et al. (2014). Petrology and bulk chemistry of Yamato-82094, a new type of carbonaceous chondrite. Meteorit. Planet. Sci. 49, 346357.CrossRefGoogle Scholar
Kimura, M., Grossman, J. N., and Weisberg, M. K. (2008). Fe-Ni metal in primitive chondrites: Indicators of classification and metamorphic conditions for ordinary and CO chondrites. Meteorit. Planet. Sci. 43, 11611177.CrossRefGoogle Scholar
Kimura, M., and Ikeda, Y. (1995). Anhydrous alteration of Allende chondrules in the solar nebula II: Alkali-Ca exchange reactions and formation of nepheline, sodalite and Ca-rich phases in chondrules. Proc. NIPR Symp. Antarctic Meteorites 8, 123138.Google Scholar
Kimura, M., and Ikeda, Y. (1997). Comparative study of anhydrous alteration of chondrules in reduced and oxidized CV chondrites. Antarctic Meteorite Res. 10, 191202.Google Scholar
Kimura, M., Nakajima, H., Hiyagon, H., and Weisberg, M. K. (2006). Spinel group minerals in LL3.00–6 chondrites: Indicators of nebular and parent body processes. Geochim. Cosmochim. Acta 70, 56345650.CrossRefGoogle Scholar
Kita, N. T., and Ushikubo, T. (2012). Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules. Meteorit. Planet. Sci. 47, 11081119.CrossRefGoogle Scholar
Kita, N. T., Nagahara, H., Tachibana, , et al. (2010). High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: Role of ambient gas during chondrule formation. Geochim. Cosmochim. Acta 74, 66106635.CrossRefGoogle Scholar
Kita, N. T., Tenner, T. J., Defouilloy, , et al. (2015). Oxygen isotope systematics of chondrules in R3 clasts: A genetic link to ordinary chondrites. LPSC XLVI, #2053.Google Scholar
Kita, N. T., Tenner, T. J., Ushikubo, , et al. (2016). Internal homogeneity of oxygen isotope ratios in chondrules. LPSC XLVII, #2375.Google Scholar
Kobayashi, S., Imai, H., and Yurimoto, H. (2003). New extreme 16O-rich reservoir in the early solar system. Geochem. J. 37, 663669.CrossRefGoogle Scholar
Kööp, L., Davis, A. M., Nakashima, , et al. (2016). A link between oxygen, calcium and titanium isotopes in 26Al-poor hibonite-rich CAIs from Murchison and implications for the heterogeneity of dust reservoirs in the solar nebula. Geochim. Cosmochim. Acta 189, 7095.CrossRefGoogle Scholar
Kring, D. A. (1988). The petrology of meteoritic chondrules: Evidence for fluctuating conditions in the solar nebula. PhD thesis, Harvard University.Google Scholar
Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A. (2005). Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature 436, 989992.CrossRefGoogle Scholar
Krot, A. N., Hutcheon, I. D., and Keil, K. (2002). Plagioclase-rich chondrules in the reduced CV chondrites: Evidence for complex formation history and genetic links between calcium-aluminum-rich inclusions and ferromagnesian chondrules. Meteorit. Planet. Sci. 37, 155182.CrossRefGoogle Scholar
Krot, A. N., Libourel, G., and Chaussidon, M. (2006b). Oxygen isotope compositions of chondrules in CR chondrites. Geochim. Cosmochim. Acta 70, 767779.CrossRefGoogle Scholar
Krot, A. N., McKeegan, K. D., Huss, , et al. (2006c). Aluminum-magnesium and oxygen isotope study of relict Ca-Al-rich inclusions in chondrules. Astrohys. J. 639, 12271237.CrossRefGoogle Scholar
Krot, A. N., and Nagashima, K. (2016). Evidence for oxygen-isotope exchange in chondrules and refractory inclusions during fluid-rock interaction on the CV chondrite parent body. Meteorit. Planet. Sci. 51 (Suppl.), A392 (abstr.).Google Scholar
Krot, A. N., and Nagashima, K. (2017). Constraints on mechanisms of chondrule formation from chondrule precursors and chronology of transient heating events in the protoplanetary disk. Geochem. J. 51, 4568.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., Ciesla, F. J., et al. (2010a). Oxygen isotopic composition of the Sun and mean osygen isotopic composition of the protosolar silicate dust: Evidence from refractory inclusions. Astrophys. J. 713, 11591166.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., Huss, G. R., et al. (2007). Relict refractory inclusions in magnesian porphyritic chondrules from the CH and CH/CB carbonaceous chondrites. Meteorit. Planet. Sci. 42 (Suppl.), A90 (abstr.).Google Scholar
Krot, A. N., Nagashima, K., van Kooten, E. M. M., and Bizzarro, M. (2017). Calcium-aluminum-rich inclusions recycled during formation of porphyritic chondrules from CH carbonaceous chondrites. Geochim. Cosmochim. Acta 201, 185223.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., Yoshitake, M., and Yurimoto, H. (2010b). Oxygen isotopic compositions of chondrules from the metal-rich chondrites Isheyevo (CH/CBb), MAC 02675 (CBb) and QUE 94627 (CBb). Geochim. Cosmochim. Acta 74, 21902211.CrossRefGoogle Scholar
Krot, A. N., Petaev, M. I., Scott, E. R., et al. (1998). Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration. Meteorit. Planet. Sci. 33, 10651085.CrossRefGoogle Scholar
Krot, A. N., Yurimoto, H., McKeegan, K. D., et al. (2006a). Oxygen isotopic compositions of chondrules: Implication for evolution of oxygen isotopic reservoirs in the early solar nebula. Chemie der Erde 66, 249276.CrossRefGoogle Scholar
Krot, A. N., Zolensky, M. E., Wasson, J. T., et al. (1997). Carbide-magnetite-bearing type 3 ordinary chondrites. Geochim. Cosmochim. Acta 61, 219237.CrossRefGoogle Scholar
Kunihiro, T., Rubin, A. E., McKeegan, K. D., and Wasson, J. T. (2004). Oxygen-isotopic compositions of relict and host grains in chondrules in the Yamato 81020 CO3.0 chondrite. Geochim. Cosmochim. Acta 68, 35993606.CrossRefGoogle Scholar
Kunihiro, T., Rubin, A. E., and Wasson, J. T. (2005). Oxygen-isotopic composition of low-FeO relicts in high FeO-host chondrules in Acfer 094, a type 3.0 carbonaceous chondrite closely related to CM. Geochim. Cosmochim. Acta 69, 38313840.CrossRefGoogle Scholar
Libourel, G., and Chaussidon, M. (2011). Oxygen isotopic constraints on the origin of Mg-rich olivines from chondritic meteorites. Earth Planet. Sci. Lett. 301, 921.CrossRefGoogle Scholar
Lodders, K. (2003). Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 12201247.CrossRefGoogle Scholar
Lofgren, G. E. and Le, L. (2000). Experimental evidence for a partial melting origin for most porphyritic chondrules. LPSC XXXI, #1809.Google Scholar
Lugaro, M., Liffman, K., Ireland, T. R., and Maddison, S. T. (2012). Can galactic chemical evolution explain the oxygen isotopic variations in the solar system? Astrophys, J. 759, 1.CrossRefGoogle Scholar
Luz, B., and Barkan, E. (2010). Variations of 17O/16O and 18O/16O in meteoritic waters. Geochim. Cosmochim. Acta 74, 62766286.CrossRefGoogle Scholar
Lyons, J. R., and Young, E. D. (2005). CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature 435, 317320.CrossRefGoogle ScholarPubMed
Ma, C., Beckett, J. R., Connolly, H. C. Jr., and Rossman, G. R. (2008). Aluminous spinels in ferromagnesian chondrules from Allende. LPSC XXXIX, #2030.Google Scholar
Makide, K., Nagashima, J., Krot, A. N., et al. (2009). Oxygen- and magnesium-isotope compositions of calcium-aluminum-rich inclusions from CR2 carbonaceous chondrites. Geochim. Cosmochim. Acta 73, 50185050.CrossRefGoogle Scholar
Marrocchi, Y., and Chaussidon, M. (2015). A systematic for oxygen isotopic variation in meteoritic chondrules. Earth Planet. Sci. Lett. 430, 308315.CrossRefGoogle Scholar
Marrocchi, Y., and Libourel, G. (2013). Sulfur and sulfides in chondrules. Geochim. Cosmochim. Acta 119, 117136.CrossRefGoogle Scholar
Maruyama, S., Yurimoto, H., and Sueno, S. (1999). Oxygen isotope evidence regarding the formation of spinel-bearing chondrules. Earth Planet. Sci. Lett. 169, 165171.CrossRefGoogle Scholar
Matthews, A., Palin, J. M., Epstein, S., and Stolper, E. M. (1994). Experimental study of 18O/16O partitioning between crystalline albite, albitic glass, and CO2 gas. Geochim. Cosmochim. Acta 58, 52555266.CrossRefGoogle Scholar
McKeegan, K. D., Kallio, A. P. A., Heber, V. S., et al. (2011). The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332, 15281532.CrossRefGoogle ScholarPubMed
Merigoux, H. (1968). Etude de la mobilite d l’oxygen dans the feldspaths alcalins. Bull. Soc. Fr Mineral. Crystallogr. 91, 5164.Google Scholar
Miller, K. E., Lauretta, D. S., Connolly, H. C. Jr., et al. (2017). Formation of unequilibrated R chondrite chondrules and opaque phases. Geochim. Cosmochim. Acta 209, 2450.CrossRefGoogle Scholar
Miller, M. F., Franchi, I. A., Sexton, A. S., and Pillinger, C. T. (1999). High precision δ17O isotope measurements of oxygen from silicates and other oxides: methods and applications. Rapid Comm. Mass Spectrom. 13, 12111217.3.0.CO;2-M>CrossRefGoogle Scholar
Morris, M. A., Weidenschilling, S. J., and Desch, S. J. (2016). The effect of multiple particle sizes on cooling rates produced in large-scale shocks in the solar nebula. Meteorit. Planet. Sci. 51, 870883.CrossRefGoogle Scholar
Nagahara, H. (1981). Evidence for secondary origin of chondrules. Nature 292, 135136.CrossRefGoogle Scholar
Nagahara, H., Kita, N. T., Ozawa, K., and Morishita, Y. (2008). Condensation of major elements during chondrule formation and its implication to the origin of chondrules. Geochim. Cosmochim. Acta 72, 14421465.CrossRefGoogle Scholar
Nagahara, H., and Ozawa, K. (2012). The role of exchange reactions in oxygen isotope fractionation during CAI and chondrule formation. Meteorit. Planet. Sci. 47, 12091228.CrossRefGoogle Scholar
Nagashima, K., Krot, A. N., and Huss, G. R. (2015). Oxygen-isotope compositions of chondrule phenocrysts and matrix grains in Kakangari K-grouplet chondrite: Implication to a chondrule-matrix genetic relationship. Geochim. Cosmochim. Acta 151, 4967.CrossRefGoogle Scholar
Nakashima, D., Ushikubo, T., Gowda, R. N., et al. (2011). Ion microprobe analyses of oxygen three-isotope ratios of chondrules from the Sayh al Uhaymir 290 CH chondrite using a multiple-hole disk. Meteorit. Planet. Sci. 46, 857874.CrossRefGoogle Scholar
Newton, J., Bischoff, A., Arden, J. W., et al. (1995). Acfer 094, a uniquely primitive carbonaceous chondrite from the Sahara. Meteoritics 30, 4756.CrossRefGoogle Scholar
Onuma, N, Clayton, R. N., and Mayeda, T. K. (1972). Oxygen isotope geothermometer. Geochim. Cosmochim. Acta 36, 169188.CrossRefGoogle Scholar
Pacaud, L., Ingrin, J., and Jaoul, O. (1999). High-temperature diffusion of oxygen in synthetic diopside measured by nuclear reaction analysis. Miner. Mag. 63, 673686.CrossRefGoogle Scholar
Pack, A., Yurimoto, H., and Palme, H. (2004). Petrographic and oxygen-isotopic study of refractory forsterites from R-chondrite Dar al Gani 013 (R3.5–6), unequilibrated ordinary and carbonaceous chondrites. Geochim. Cosmochim. Acta 68, 11351157.CrossRefGoogle Scholar
Prinz, M., Weisberg, M. K., Neru, C. E., et al. (1989). Petrologic and stable isotope study of the Kakangari (K-group) chondrite: Chondrules, matrix, and CAI’s. Lunar Planet. Sci. 20, 870871 (abstr.).Google Scholar
Rambaldi, E. R. (1981). Relict grains in chondrules. Nature 293, 558561.CrossRefGoogle Scholar
Remusat, L., Robert, F., and Derenne, S. (2007). The insoluble organic matter in carbonaceous chondrites: Chemical structure, isotopic composition and origin. C.R. Geosci. 339, 895906.CrossRefGoogle Scholar
Richet, P., Bottinga, Y., and Javoy, M. (1977). Review of hydrogen, carbon, nitrogen, oxygen, sulfur, and chlorine stable isotope fractionation among gaseous molecules. Annu. Rev. Earth Planet. Sci. 5, 65110.CrossRefGoogle Scholar
Rosman, J. J. R., and Taylor, P. D. P. (1998). Isotopic compositions of the elements 1997. Pure Appl. Chem. 70, 217236.CrossRefGoogle Scholar
Rubin, A. E., Wasson, J. T., Clayton, R. N., and Mayeda, T. K. (1990). Oxygen isotopes in chondrules and coarse-grained chondrule rims from the Allende meteorite. Earth Planet. Sci. Lett. 96, 247255.CrossRefGoogle Scholar
Rudraswami, N. G., Ushikubo, T., Nakashima, D, and Kita, N. T. (2011). Oxygen isotope systematics of chondrules in the Allende CV3 chondrite: High precision ion microprobe studies. Geochim. Cosmochim. Acta 75, 75967611.CrossRefGoogle Scholar
Russell, S. S., MacPherson, G. J., Leshin, L. A., and McKeegan, K. D. (2000). 16O enrichments in aluminum-rich chondrules from ordinary chondrites. Earth Planet. Sci. Lett. 184, 5774.CrossRefGoogle Scholar
Ruzicka, A., Hiyagon, H., Hutson, M., and Floss, C. (2007). Relict olivine, chondrule recycling, and the evolution of nebular reservoirs. Earth Planet. Sci. Lett. 257, 274289.CrossRefGoogle Scholar
Ryerson, F. J., Durham, W. B., Cherniak, D. J., and Lanford, W. A. (1989). Oxygen diffusion in olivine: Effect of oxygen fugacity and implications for creep. J. Geophys. Res. 94, 41054118.CrossRefGoogle Scholar
Ryerson, F. J., and McKeegan, K. D. (1994). Determination of oxygen self-diffusion in akermanite, anorthite, diopside, and spinel: Implications for oxygen isotopic anomalies and the thermal histories of Ca-Al rich inclusions. Geochim. Cosmochim. Acta 58, 37133734.CrossRefGoogle Scholar
Sakamoto, N., Seto, Y., Itoh, S., et al. (2007). Remnants of the early solar system water enriched in heavy oxygen isotopes. Science 317, 231233.CrossRefGoogle ScholarPubMed
Sanders, I. S., and Scott, E. R. D. (2012). The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteorit. Planet. Sci. 47, 21702192.CrossRefGoogle Scholar
Schrader, D. L., Connolly, H. C. Jr., Lauretta, D. S., et al. (2013). The formation and alteration of the Renazzo-like carbonaceous chondrites II: Linking O-isotope composition and oxidation state of chondrule olivine. Geochim. Cosmochim. Acta 101, 302327.CrossRefGoogle Scholar
Schrader, D. L., Connolly, H. C. Jr., Lauretta, D. S., et al. (2015). The formation and alteration of the Renazzo-like carbonaceous chondrites III: Towards understanding the genesis of ferromagnesian chondrules. Meteorit. Planet. Sci. 50, 1550.CrossRefGoogle Scholar
Schrader, D. L., Davidson, J., Greenwood, R. C., Franchi, I. A., and Gibson, J. M. (2014b). A water-ice rich minor body from the early Solar System: The CR chondrite parent asteroid. Earth Planet. Sci. Lett. 407, 4860.CrossRefGoogle Scholar
Schrader, D. L., Franchi, I. A., Connolly, H. C. Jr., et al. (2011). The formation and alteration of the Renazzo-like carbonaceous chondrites I: Implications of bulk-oxygen isotopic composition. Geochim. Cosmochim. Acta 75, 308325.CrossRefGoogle Scholar
Schrader, D. L., Nagashima, D., Krot, A. N., Ogliore, R. C., and Hellebrand, E. (2014a). Variations in the O-isotope composition of gas during the formation of chondrules from CR chondrites. Geochim. Cosmochim. Acta 132, 5074.CrossRefGoogle Scholar
Schrader, D. L., Nagashima, K., Krot, A. N., et al. (2017). Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk. Geochim. Cosmochim. Acta. 201, 275302.CrossRefGoogle Scholar
Scott, E. R. D., and Krot, A. N. (2014). Chondrites and their components. In Davis, A. M. (Ed.), Meteorites, Comets and Planets. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 1, 143200. Oxford, UK: Elsevier.Google Scholar
Scott, E. R. D., Love, S. G., and Krot, A. N. (1996). Formation of chondrules and chondrites in the protoplanetary nebula. In Hewins, R. H., Jones, R. H., and Scott, E. R. D. (Eds.), Chondrules and the Protoplanetary Disk, 8796. Cambridge, UK: Cambridge University Press.Google Scholar
Scott, E. R. D., and Taylor, J. G. (1983). Chondrules and other components in C, O, and E chondrites: Similarities in their properties and origins. Proceedings, 14th Lunar and Planetary Science Conference, Part 1. J. Geophys. Res. (Suppl.) 88, B275B286.CrossRefGoogle Scholar
Seto, Y., Sakamoto, N., Fujino, K., et al. (2008). Mineralogical characterization of a unique material having heavy oxygen isotope anomaly in matrix of the primitive carbonaceous chondrite Acfer 094. Geochim. Cosmochim. Acta 72, 27232734.CrossRefGoogle Scholar
Sheffer, Y., Lambert, D. L., and Federman, S. R. (2002). Ultraviolet detection of interstellar 12C17O and the CO isotopometric ratios toward X Persei. Astrophys. J. 547, L171L174.CrossRefGoogle Scholar
Shi, X., Yin, Q. -Z., Luo, Z., Huang, H., and Ng, C. -Y. (2011). Testing “self-shielding” model with laboratory experiment for the oxygen isotope evolution in the early solar nebula – A progress report. LPSC XLII #2705.Google Scholar
Soulié, C., Libourel, G., and Tissandier, L. (2017). Olivine dissolution in molten silicates: An experimental study with application to chondrule formation. Meteorit. Planet. Sci. 52, 225250.CrossRefGoogle Scholar
Spicuzza, M. J., Day, J. M. D., Taylor, L. A., and Valley, J. W. (2007). Oxygen isotope constraints on the origin and differentiation of the Moon. Earth Planet. Sci. Lett. 253, 254265.CrossRefGoogle Scholar
Tachibana, S., Nagahara, H., Mostefaoui, S., and Kita, N. T. (2003). Correlation between relative ages inferred from 26Al and bulk compositions of ferromagnesian chondrules in least equilibrated ordinary chondrites. Meteorit. Planet. Sci. 38, 939962.CrossRefGoogle Scholar
Tenner, T. J., Ushikubo, T., Kurahashi, E., Kita, N. T., and Nagahara, H. (2013). Oxygen isotope systematics of chondrule phenocrysts from the CO3.0 chondrite Yamato 81020: Evidence for two distinct oxygen isotope reservoirs. Geochim. Cosmochim. Acta 102, 226245.CrossRefGoogle Scholar
Tenner, T. J., Nakashima, D., Ushikubo, T., Kita, N. T., and Weisberg, M. K. (2015). Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust enrichment and H2O during chondrule formation. Geochim. Cosmochim. Acta 148, 228250.CrossRefGoogle Scholar
Tenner, T. J., Kimura, M., and Kita, N. T. (2017). Oxygen isotope characteristics of chondrules from the Yamato-82094 ungrouped carbonaceous chondrite: Further evidence for common O-isotope environments sampled among carbonaceous chondrites. Meteorit. Planet. Sci. 52, 268294.CrossRefGoogle Scholar
Thiemens, M. H., and Heidenreich, J. E. (1983). The mass-independent fractionation of oxygen: A novel isotope effect and its possible cosmochemical implications. Science 219, 10731075.CrossRefGoogle ScholarPubMed
Tissandier, L., Libourel, G., and Robert, F. (2002). Gas–melt interactions and their bearing on chondrule formation. Meteorit. Planet. Sci. 37, 13771389.CrossRefGoogle Scholar
Ushikubo, T., Kimura, M., Kita, N. T., and Valley, J. W. (2012). Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite. Geochim. Cosmochim. Acta 90, 242264.CrossRefGoogle Scholar
Ushikubo, T., Tenner, T. J., Hiyagon, H., and Kita, N. T. (2017). A long duration of the 16O-rich reservoirs in the solar nebula, as recorded in fine-grained refractory inclusions from the least metamorphosed carbonaceous chondrites. Geochim. Cosmochim. Acta 201, 103122.CrossRefGoogle Scholar
Ustunisik, G., Ebel, D. S., Walker, D., and Boesenberg, J. S. (2014). Experimental investigation of condensation predictions for dust-enriched systems. Geochim. Cosmochim. Acta 142, 2738.CrossRefGoogle Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., and Mandell, A. M. (2011). A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206209.CrossRefGoogle ScholarPubMed
Warren, P. H. (2011). Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93100.CrossRefGoogle Scholar
Weichert, U., Halliday, A. N., Lee, D. -C., et al. (2001). Oxygen isotopes and the Moon-forming giant impact. Science 294, 345348.CrossRefGoogle Scholar
Weisberg, M. K., Boesenberg, J. S., Kozhusko, G., et al. (1995). EH3 and EL3 chondrites: A petrologic-oxygen isotopic study. Lunar. Planet. Sci. XXVI, 14811482.Google Scholar
Weisberg, M. K., Ebel, D. S., Connolly, H. C. Jr., Kita, N. T., and Ushikubo, T. (2011). Petrology and oxygen isotope compositions of chondrules in E3 chondrites. Geochim. Cosmochim. Acta 75, 65566569.CrossRefGoogle Scholar
Weisberg, M. K., Ebel, D. S., Nakashima, D., Kita, N. T., and Humayun, M. (2015). Petrology and geochemistry of chondrules and metal in NWA 5492 and GRO 95551: A new type of metal-rich chondrite. Geochim. Cosmochim. Acta 167, 269285.CrossRefGoogle Scholar
Weisberg, M. K., Prinz, M., Clayton, R. N., and Mayeda, T. K. (1993). The CR (Renazzo-type) carbonaceous chondrite group and its implications. Geochim. Cosmochim. Acta 57, 15671586.CrossRefGoogle Scholar
Weisberg, M. K., Prinz, M., Clayton, R. N., et al. (1996). The K (Kakangari) chondrite grouplet. Geochim. Cosmochim. Acta 60, 42534263.CrossRefGoogle Scholar
Weisberg, M. K., Prinz, M., Kojima, H., et al. (1991). The Carlisle Lakes-type chondrites: A new grouplet with high Δ17O and evidence for nebular oxidation. Geochim. Cosmochim. Acta 55, 26572669.CrossRefGoogle Scholar
Wick, M. J., and Jones, R. H. (2012). Formation conditions of plagioclase-bearing type I chondrules in CO chondrites: A study of natural samples and experimental analogs. Geochim. Cosmochim. Acta 98, 140159.CrossRefGoogle Scholar
Young, E. D. (2007). Time-dependent oxygen isotopic effects of CO self shielding across the solar protoplanetary disk. Earth Planet. Sci. Lett. 262, 468483.CrossRefGoogle Scholar
Young, E. D., Ash, R. D., Galy, A., and Belshaw, N. S. (2002). Mg isotope heterogeneity in the Allende meteorite measured by UV laser ablation-MC-ICPMS and comparisons with O-isotopes. Geochim. Cosmochim. Acta 66, 683698.CrossRefGoogle Scholar
Young, E. D., and Russell, S. S. (1998). Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science 282, 452455.CrossRefGoogle ScholarPubMed
Yu, Y., Hewins, R. H., Clayton, R. C., and Mayeda, T. K. (1995). Experimental study of high temperature oxygen isotope exchange during chondrule formation. Geochim. Cosmochim. Acta 59, 20952104.CrossRefGoogle Scholar
Yurimoto, H., Krot, A. N., Choi, B. -G., et al. (2008). Oxygen isotopes of chondritic components. In MacPherson, G. J. (Ed.), Reviews in Mineralogy and Geochemistry, 68, 141186. Washington D.C.: Mineralogical Society of America.Google Scholar
Yurimoto, H., and Kuramoto, K. (2004). Molecular cloud origin for the oxygen isotope heterogeneity in the solar system. Science 305, 17631766.CrossRefGoogle ScholarPubMed
Zhang, A. -C., Itoh, S., Sakamoto, N., Wang, R. -C., and Yurimoto, H. (2014). Origins of Al-rich chondrules: Clues from a compound Al-rich chondrule in the Dar al Gani 978 carbonaceous chondrite. Geochim. Cosmochim. Acta 130, 7892.CrossRefGoogle Scholar
Zhang, A. -C., and Yurimoto, H. (2013). Petrography and mineralogy of the ungrouped type 3 carbonaceous chondrite Dar al Gani 978. Meteorit. Planet. Sci. 48, 16511677.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×