Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-23T04:11:25.578Z Has data issue: false hasContentIssue false

16 - Evaluating Non-Shock, Non-Collisional Models for Chondrule Formation

from Part II - Possible Chondrule-Forming Mechanisms

Published online by Cambridge University Press:  30 June 2018

Sara S. Russell
Affiliation:
Natural History Museum, London
Harold C. Connolly Jr.
Affiliation:
Rowan University, New Jersey
Alexander N. Krot
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Chondrule formation and meteorite parent body assembly link the historically geochemically- and petrologically-oriented field of meteoritics to the observationally- and theoretically-oriented field of astrophysics. Laboratory measurements’ high precisions and resolutions constrain planet formation on scales and in parameter spaces inaccessible to even the most powerful telescopes. The dynamic and cosmochemical canvas confronting theoretical and numerical studies of protoplanetary disks and planet formation is too daunting to face without meteoritic signposts. Conversely, with only ancient solid evidence in hand, meteoriticists need astrophysical observations and protoplanetary disk models to give context to their witch’s brew of chemical, isotopic, and petrologic constraints. The ever-increasing wealth of protoplanetary disk observations, along with major advances such as the (re)discovery of the Magneto-Rotational Instability (or MRI), numerical simulations of disk dynamics, and laboratory investigations of dust coagulation have expanded our understanding of protoplanetary disks, leaving us well positioned to review proposed chondrule formation scenarios both from the perspective of astrophysical plausibility (i.e., could they occur and produce melted grains at a meaningful rate), and from a cosmochemical and petrologic perspective (i.e., would the melted grains look like chondrules and be incorporated into chondrite-like planetesimals). In this chapter, we evaluate several chondrule formation scenarios for our own solar system, but one inherent truth in astrophysics is that the universe is large enough for almost any conceivable process to find a home. Potential chondrule-formation mechanisms that fail to make the cut here may yet be important elsewhere.

Type
Chapter
Information
Chondrules
Records of Protoplanetary Disk Processes
, pp. 400 - 427
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, C. M. O’D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. (2008). The formation conditions of chondrules and chondrites. Science, 320, 1617.CrossRefGoogle ScholarPubMed
Bai, X. -N., and Stone, J. M. (2013). Wind-driven accretion in protoplanetary disks. I. Suppression of the magnetorotational instability and launching of the magnetocentrifugal wind. Astrophys. J., 769, 76.CrossRefGoogle Scholar
Balbus, S. A., and Hawley, J. F. (1991). A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution, Astrophys. J., 376, 214.CrossRefGoogle Scholar
Balbus, S. A., and Hawley, J. F. (1998). Instability, turbulence, and enhanced transport in accretion disks, Rev. Mod. Phys., 70, 1.CrossRefGoogle Scholar
Boley, A. C., Morris, M. A., and Ford, E. B. (2014). Overcoming the meter barrier and the formation of systems with tightly packed inner planets (STIPs), Astrophys. J. Lett., 792, L27.CrossRefGoogle Scholar
Boss, A. P. (1996). A concise guide to chondrule formation models. In Hewins, R. H., Jones, R. H., and Scott, E. R. D. (Eds.), Chondrules and the Protoplanetary Disk, 257263. Cambridge, UK: Cambridge University Press.Google Scholar
Brandenburg, A. (2009). Large-scale dynamos at low magnetic prandtl numbers. Astrophys. J., 697, 1206.CrossRefGoogle Scholar
Brown, J. M., Pontoppidan, K. M., van Dishoeck, E. F., et al. (2013). VLT-CRIRES survey of rovibrational CO emission from protoplanetary disks, Astrophys. J., 770, 94.CrossRefGoogle Scholar
Budde, G., Burkhardt, C., Brennecka, G. A., et al. (2016a). Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites, Earth Planet. Sci. Lett., 454, 293.CrossRefGoogle Scholar
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., and Metzler, K. (2016b). Tungsten isotopic constraints on the age and origin of chondrules, Proc. Natl. Acad. Sci., 113, 2886.CrossRefGoogle ScholarPubMed
Cuzzi, J. N., and Alexander, C. M. O’D. (2006). Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across, Nature, 441, 483.CrossRefGoogle ScholarPubMed
Cuzzi, J. N., Hogan, R. C., and Bottke, W. F. (2010). Towards initial mass functions for asteroids and Kuiper Belt Objects, Icarus, 208, 518.CrossRefGoogle Scholar
Desch, S. J. (2007). Mass distribution and planet formation in the solar nebula, Astrophys. J., 671, 878.CrossRefGoogle Scholar
Desch, S. J., and Connolly, H. C. Jr. (2002). A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules, Meteorit. Planet. Sci., 37, 183.CrossRefGoogle Scholar
Desch, S. J., and Cuzzi, J. N. (2000). The generation of lightning in the solar nebula. Icarus, 143, 87.CrossRefGoogle Scholar
Desch, S. J., Morris, M. A., Connolly, H. C., and Boss, A. P. (2012). The importance of experiments: Constraints on chondrule formation models, Meteorit. Planet. Sci., 47, 1139.CrossRefGoogle Scholar
Desch, S. J., Morris, M. A., Connolly, H. C. Jr., and Boss, A. P. (2010). A critical examination of the X-wind model for chondrule and calcium-rich, aluminum-rich inclusion formation and radionuclide production. Astrophys. J., 725, 692.CrossRefGoogle Scholar
Ebel, D. S. (2006). Condensation of Rocky Material in Astrophysical Environments. In Lauretta, D. S. and McSween, H. Y. (Eds.), Meteorites and the Early Solar System II, 253277. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Ebel, D. S., Brunner, C., Konrad, K., et al. (2016). Abundance, major element composition and size of components and matrix in CV, CO and Acfer 094 chondrites. Geochim. Cosmochim. Acta, 172, 322.CrossRefGoogle Scholar
Ebel, D. S., and Grossman, L. (2000). Condensation in dust-enriched systems. Geochim. Cosmochim. Acta, 64, 339.CrossRefGoogle Scholar
Fessler, J. R., Kulick, J. D., and Eaton, J. K. (1994). Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids, 6, 3742.CrossRefGoogle Scholar
Flynn, G. J., Wirick, S., and Keller, L. P. (2013). Organic grain coatings in primitive interplanetary dust particles: Implications for grain sticking in the Solar Nebula. Earth, Planets Space, 65, 1159.CrossRefGoogle Scholar
Frank, J., King, A., and Raine, D. J. (2002). Accretion Power in Astrophysics: Third Edition, Cambridge UK: Cambridge University Press.CrossRefGoogle Scholar
Friedrich, J. M., Weisberg, M. K., Ebel, D. S., et al. (2015). Chondrule size and related physical properties: A compilation and evaluation of current data across all meteorite groups. Chem Erde, 75, 419.CrossRefGoogle Scholar
Fu, R. R., Lima, E. A., and Weiss, B. P. (2014). No nebular magnetization in the Allende CV carbonaceous chondrite. Earth Planet. Sci. Lett., 404, 54.CrossRefGoogle Scholar
Gammie, C. F. (1996). Layered accretion in T Tauri disks. Astrophys. J., 457, 355.CrossRefGoogle Scholar
Gibbard, S. G., Levy, E. H., and Morfill, G. E. (1997). On the possibility of lightning in the protosolar nebula. Icarus, 130, 517.CrossRefGoogle Scholar
Goldberg, A. Z., Owen, J. E., and Jacquet, E. (2015) Chondrule transport in protoplanetary discs. Mon. Notices Royal Astron. Soc., 452, 4054.CrossRefGoogle Scholar
Gounelle, M., Shu, F. H., Shang, H., et al. (2001). Extinct radioactivities and protosolar cosmic rays: self-shielding and light elements. Astrophys. J., 548, 1051.CrossRefGoogle Scholar
Greenwood, R. C., Franchi, I. A., Jambon, A., and Buchanan, P. C. (2005). Widespread magma oceans on asteroidal bodies in the early Solar System. Nature, 435, 916.CrossRefGoogle ScholarPubMed
Gressel, O., Turner, N. J., Nelson, R. P., and McNally, C. P. (2015). Global simulations of protoplanetary disks with ohmic resistivity and ambipolar diffusion. Astrophys. J., 801, 84.CrossRefGoogle Scholar
Grossman, J. N., and Wasson, J. T. (1982). Evidence for primitive nebular components in chondrules from the Chainpur chondrite. Geochim. Cosmochim. Acta, 46, 1081.CrossRefGoogle Scholar
Güttler, C., Blum, J., Zsom, A., Ormel, C. W., and Dullemond, C. P. (2010). The outcome of protoplanetary dust growth: Pebbles, boulders, or planetesimals?. I. Mapping the zoo of laboratory collision experiments. Astron. Astrophys, 513, A56.CrossRefGoogle Scholar
Hayashi, C. (1981). Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Progr. Theoret. Phys. Suppl., 70, 35.CrossRefGoogle Scholar
Herbst, W., and Greenwood, J. P. (2016). A new mechanism for chondrule formation: Radiative heating by hot planetesimals. Icarus, 267, 364.CrossRefGoogle Scholar
Hewins, R. H. (1991). Retention of sodium during chondrule melting, Geochim. Cosmochim. Acta, 55, 935.CrossRefGoogle Scholar
Hewins, R. H. (1997). Chondrules. Ann. Rev. Earth Planet. Sci., 25, 61.CrossRefGoogle Scholar
Hewins, R. H., Connolly, H. C. Jr., Lofgren, G. E., and Libourel, G. (2005). Experimental constraints on chondrule formation. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk. ASP Conf. Ser., 341, 286. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Hezel, D. C., and Palme, H. (2010). The chemical relationship between chondrules and matrix and the chondrule matrix complementarity. Earth Planet. Sci. Lett., 294, 85.CrossRefGoogle Scholar
Hill, H. G. M., and Nuth, J. A. III, (2000). Nebular hydrocarbon synthesis in the laboratory: the catalytic potential of synthetic silicate dust. Meteorit. Planet. Sci. Supp., 35, A73.Google Scholar
Hu, R. (2010). Transport of the first rocks of the solar system by X-winds. Astrophys. J., 725, 1421.CrossRefGoogle Scholar
Hubbard, A. (2013). Turbulence-induced collision velocities and rates between different sized dust grains. Mon. Notices Royal Astron. Soc., 432, 1274.CrossRefGoogle Scholar
Hubbard, A. (2016a), Ferromagnetism and particle collisions: Applications to protoplanetary disks and the meteoritical record. Astrophys. J., 826, 152.CrossRefGoogle Scholar
Hubbard, A. (2016b). Generating potassium abundance variations in the Solar Nebula. Mon. Notices Royal Astron. Soc., 460, 1163.CrossRefGoogle Scholar
Hubbard, A. (2016c). Partitioning tungsten between matrix precursors and chondrule precursors through relative settling. Astrophys. J., 826, 151.CrossRefGoogle Scholar
Hubbard, A. (2017). Making terrestrial planets: high temperatures, FU Orionis outbursts, earth, and planetary system architectures. Astrophys. J. Lett., 840, L5.CrossRefGoogle Scholar
Hubbard, A., and Ebel, D. S. (2015). Semarkona: Lessons for chondrule and chondrite formation. Icarus, 245, 32.CrossRefGoogle Scholar
Hubbard, A., Mac Low, M.-M., and Ebel, D. S. (2018). Dust concentration and chondrule formation, Meteoritics and Planetary Sciences, ArXiv e-prints arXiv:1803.10047.Google Scholar
Hubbard, A., McNally, C. P., and Mac Low, M.-M. (2012). Short circuits in thermally ionized plasmas: a mechanism for intermittent heating of protoplanetary disks. Astrophys. J., 761, 58.CrossRefGoogle Scholar
Humayun, M. (2012). Chondrule cooling rates inferred from diffusive profiles in metal lumps from the Acfer 097 CR2 chondrite. Meteorit. Planet. Sci., 47, 1191.CrossRefGoogle Scholar
Huss, G. R., and Lewis, R. S. (1994). Noble gases in presolar diamonds II: Component abundances reflect thermal processing. Meteoritics, 29, 811.CrossRefGoogle Scholar
Inutsuka, S. -i., and Sano, T. (2005). Self-sustained ionization and vanishing dead zones in protoplanetary disks. Astrophys. J. Lett., 628, L155.CrossRefGoogle Scholar
Jacquet, E. (2013). On vertical variations of gas flow in protoplanetary disks and their impact on the transport of solids. Astron. Astrophys., 551, A75.CrossRefGoogle Scholar
Jacquet, E. (2014). The quasi-universality of chondrule size as a constraint for chondrule formation models. Icarus, 232, 176.CrossRefGoogle Scholar
Jacquet, E., Alard, O., and Gounelle, M. (2015). Trace element geochemistry of ordinary chondrite chondrules: The type I/type II chondrule dichotomy. Geochim. Cosmochim. Acta, 155, 47.CrossRefGoogle Scholar
Jacquet, E., Gounelle, M., and Fromang, S. (2012). On the aerodynamic redistribution of chondrite components in protoplanetary disks. Icarus, 220, 162.CrossRefGoogle Scholar
Jacquet, E., and Thompson, C. (2014). Chondrule destruction in nebular shocks. Astrophys. J., 797, 30.CrossRefGoogle Scholar
Jones, R. H. (2012). Petrographic constraints on the diversity of chondrule reservoirs in the protoplanetary disk. Meteorit. Planet. Sci, 47, 1176.CrossRefGoogle Scholar
Joung, M. K. R., Mac Low, M. -M., and Ebel, D. S. (2004). Chondrule formation and protoplanetary disk heating by current sheets in nonideal magnetohydrodynamic turbulence. Astrophys. J., 606, 532.CrossRefGoogle Scholar
King, A. R., and Pringle, J. E. (2010). The accretion disc dynamo in the solar nebula, Mon. Notices Royal Astron. Soc.. 404, 1903.Google Scholar
Klahr, H., and Hubbard, A. (2014). Convective overstability in radially stratified accretion disks under thermal relaxation. Astrophys. J., 788, 21.CrossRefGoogle Scholar
Kley, W., and Lin, D. N. C. (1992). Two-dimensional viscous accretion disk models. I – On meridional circulations in radiative regions. Astrophys. J., 397, 600.CrossRefGoogle Scholar
Lodders, K. (2003). Solar system abundances and condensation temperatures of the elements. Astrophys. J., 591, 1220.CrossRefGoogle Scholar
Maxey, M. R. (1987). The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech., 174, 441.CrossRefGoogle Scholar
McNally, C. P., and Hubbard, A. (2015). Photophoresis in a dilute, optically thick medium and dust motion in protoplanetary disks. Astrophys. J., 814, 37.CrossRefGoogle Scholar
McNally, C. P., Hubbard, A., Mac Low, M. -M., Ebel, D. S., and D’Alessio, P. (2013). Mineral processing by short circuits in protoplanetary disks. Astrophys. J. Lett., 767, L2.CrossRefGoogle Scholar
McNally, C. P., Hubbard, A., Yang, C. -C., and Mac Low, M.-M. (2014). Temperature fluctuations driven by magnetorotational instability in protoplanetary disks. Astrophys. J., 791, 62.CrossRefGoogle Scholar
Muranushi, T. (2010). Dust-dust collisional charging and lightning in protoplanetary discs. Mon. Notices Royal Astron. Soc., 401, 2641.CrossRefGoogle Scholar
Muranushi, T., Akiyama, E., Inutsuka, S. -i., Nomura, H., and Okuzumi, S. (2015). Development of a method for the observation of lightning in protoplanetary disks using ion lines. Astrophys. J., 815, 84.CrossRefGoogle Scholar
Nelson, R. P., Gressel, O., and Umurhan, O. M. (2013). Linear and non-linear evolution of the vertical shear instability in accretion discs. Mon. Notices Royal Astron. Soc., 435, 2610.CrossRefGoogle Scholar
Oishi, J. S., and Mac Low, M. -M. (2009). On hydrodynamic motions in dead zones. Astrophys. J., 704, 1239.CrossRefGoogle Scholar
Okuzumi, S., and Inutsuka, S. -i. (2015). The nonlinear Ohm’s Law: Plasma heating by strong electric fields and its effects on the ionization balance in protoplanetary disks. Astrophys. J., 800, 47.CrossRefGoogle Scholar
Ormel, C. W., and Klahr, H. H. (2010). The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron. Astrophys., 520, A43.CrossRefGoogle Scholar
Pilipp, W., Hartquist, T. W., and Morfill, G. E. (1992). Large electric fields in acoustic waves and the stimulation of lightning discharges. Astrophys. J., 387, 364.CrossRefGoogle Scholar
Pilipp, W., Hartquist, T. W., Morfill, G. E., and Levy, E. H. (1998). Chondrule formation by lightning in the Protosolar Nebula? Astron. Astrophys., 331, 121.Google Scholar
Rubin, A. E., Sailer, A. L., and Wasson, J. T. (1999). Troilite in the chondrules of type-3 ordinary chondrites: Implications for chondrule formation. Geochim. Cosmochim. Acta, 63, 2281.CrossRefGoogle Scholar
Scherstén, A., Elliott, T., Hawkesworth, C., Russell, S., and Masarik, J. (2006). Hf W evidence for rapid differentiation of iron meteorite parent bodies. Earth Planet. Sci. Lett., 241, 530,CrossRefGoogle Scholar
Schrader, D. L., Fu, R. R., and Desch, S. J. (2016). Evaluating chondrule formation models and the protoplanetary disk background temperature with low-temperature, sub-silicate solidus chondrule cooling rates. Lunar and Planetary Science Conference XLVII, 1180.Google Scholar
Semenov, D., Henning, T., Helling, C., Ilgner, M., and Sedlmayr, E. (2003). Rosseland and Planck mean opacities for protoplanetary discs. Astron. Astrophys., 410, 611.CrossRefGoogle Scholar
Shakura, N. I., and Sunyaev, R. A. (1973). Black holes in binary systems. Observational appearance. Astron. Astrophys., 24, 337.Google Scholar
Shu, F., Najita, J., Ostriker, E., et al. (1994). Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model. Astrophys. J., 429, 781.CrossRefGoogle Scholar
Shu, F. H., Shang, H., and Lee, T. (1996). Toward an astrophysical theory of chondrites. Science, 271, 1545.CrossRefGoogle Scholar
Takeuchi, T., and Lin, D. N. C. (2002). Radial flow of dust particles in accretion disks. Astrophys. J., 581, 1344.CrossRefGoogle Scholar
Tenner, T. J., Nakashima, D., Ushikubo, T., Kita, N. T., and Weisberg, M. K. (2015). Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust enrichment and H2O during chondrule formation. Geochim. Cosmochim. Acta, 148, 228.CrossRefGoogle Scholar
Uesugi, M., Sekiya, M., and Nakamura, T. (2008). Kinetic stability of a melted iron globule during chondrule formation. I. Non-rotating model. Meteorit. Planet. Sci, 43, 717.CrossRefGoogle Scholar
Wadhwa, M., Srinivasan, G., and Carlson, R. W. (2006). Timescales of planetesimal differentiation in the early solar system, In Lauretta, D. S. and McSween, H. Y. (Eds.), Meteorites and the Early Solar System II, 715731. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Wasson, J. T. (1996). Chondrule formation: Energetics and length scales. In Hewins, R., Jones, R., and Scott, E. (Eds.), Chondrules and the Protoplanetary Disk, 4554. Cambridge, UK: Cambridge University Press.Google Scholar
Wood, J. A. (1963). On the origin of chondrules and chondrites. Icarus, 2, 152.CrossRefGoogle Scholar
Wurm, G., Trieloff, M., and Rauer, H. (2013). Photophoretic separation of metals and silicates: The formation of mercury-like planets and metal depletion in chondrites. Astrophys. J., 769, 78.CrossRefGoogle Scholar
Yu, Y., Hewins, R. H., Alexander, C. M. O’D., and Wang, J. (2003). Experimental study of evaporation and isotopic mass fractionation of potassium in silicate melts. Geochim. Cosmochim. Acta, 67, 773.CrossRefGoogle Scholar
Zanda, B., Zanetta, P. -M., Leroux, H., et al. (2017). The chondritic assemblage. LPI Contributions, 1963, 2035.Google Scholar
Zsom, A., Ormel, C. W., Güttler, C., Blum, J., and Dullemond, C. P. (2010). The outcome of protoplanetary dust growth: Pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. Astron. Astrophys., 513, A57.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×