Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T03:56:45.405Z Has data issue: false hasContentIssue false

5 - The Chondritic Assemblage

Complementarity Is Not a Required Hypothesis

from Part I - Observations of Chondrules

Published online by Cambridge University Press:  30 June 2018

Sara S. Russell
Affiliation:
Natural History Museum, London
Harold C. Connolly Jr.
Affiliation:
Rowan University, New Jersey
Alexander N. Krot
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Chondrules and matrices make up most of the bulk of chondrites. Chondrites have elemental compositions close to that of the Sun except for volatility related depletions and iron fractionation relative to silicon. Being igneous, chondrules are volatile depleted, while their host matrices are considered to have assembled mostly from low-temperature (volatile-rich) material. There is an outstanding controversy as to whether (i) chondrules and matrices formed independently and subsequent mixing of these components explains the departure of chondrite compositions from solar abundances for major elements, or whether (ii) their complementary patterns imply that the two dissimilar components were formed together from a reservoir with a solar composition and accreted without being separated to maintain this solar composition. The question around which this controversy centers has important implications for our understanding of the working of the protoplanetary disk, as complementarity between chondrules and matrices would rule out some chondrite formation models, such as those that imply an origin of these components from widely separated parts of the disk. In the present paper, we discuss literature data for chondrules, matrices, and bulk carbonaceous chondrites. We point out that, except for those of the CI group, all chondrites are fractionated with respect to the Sun for all major and minor elements across the condensation temperature range. We show that bulk chondrite compositions are better reproduced by adding a generic chondrule composition to the proper amount of CI-composition matrix, rather than by combining the in situ measured compositions of their chondrules and matrices. These results indicate that chondrule and matrix compositions in any given chondrite are not genetically related to one another. We also discuss the case of moderately volatile elements, for which a similarity of patterns between chondrules and matrices has been reported, and argue that this similarity was established as a result of exchange during alteration on the chondrite parent body and does not reflect a common nebular reservoir. Last, we contend that the recently discovered tungsten and molybdenum isotopic differences between chondrules and matrices argue in favor of distinct isotopic reservoirs for these chondritic components and hence against a genetic relationship between chondrules and their host matrices. A time interval between the formation of chondrules and of matrices and long-range relative transport of these components in the disk are, therefore, not ruled out by existing chemical and isotopic constraints.

Type
Chapter
Information
Chondrules
Records of Protoplanetary Disk Processes
, pp. 122 - 150
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu, N. M., and Brearley, A. J. (2010). Early solar system processes recorded in the matrices of two highly pristine CR3 carbonaceous chondrites, MET 00426 and QUE 99177. Geochim. Cosmochim. Acta, 74(3), 11461171.CrossRefGoogle Scholar
Alexander, C. M. O’D. (2005). Re-examining the role of chondrules in producing the elemental fractionations in chondrites. Meteorit. Planet. Sci., 40(7), 943965.CrossRefGoogle Scholar
Allègre, C., Manhès, G., and Lewin, É. (2001). Chemical composition of the Earth and the volatility control on planetary genetics. Earth and Planet. Sci. Lett., 185, 4969.CrossRefGoogle Scholar
Anders, E. (1964). Origin, age, and composition of meteorites. Space Sci. Rev., 3(5–6), 583714.CrossRefGoogle Scholar
Anders, E., and Ebihara, M. (1982). Solar-system abundances of the elements. Geochim. Cosmochim. Acta, 46, 23632380.CrossRefGoogle Scholar
Anders, E., and Grevesse, N. (1989). Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta, 53, 197214.CrossRefGoogle Scholar
Barrat, J. A., Zanda, B., Moynier, F., et al. (2012). Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn isotopes. Geochim. Cosmochim. Acta, 83, 7992.CrossRefGoogle Scholar
Bland, P. A., Alard, O., Benedix, G.K., et al. (2005). Volatile fractionation in the early solar system and chondrule/matrix complementarity. Proc. Nat. Acad. Sci., 102(39), 1375513760.CrossRefGoogle ScholarPubMed
Bonal, L., Quirico, E., Bourot-Denise, M., and Montagnac, G. (2006). Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochim. Cosmochim. Acta, 70(7), 18491863.CrossRefGoogle Scholar
Bourot-Denise, M., Zanda, B., Marrocchi, Y., et al. (2010). Paris: The Slightly Altered, Slightly Metamorphosed CM that Bridges the Gap Between CMs and COs. In Lunar Planet. Sci. XLI, LPI Contribution No. 1533, p. 1683.Google Scholar
Brearley, A. J. (1993). Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307: Origins and evidence for diverse, primitive nebular dust components. Geochim. Cosmochim. Acta, 57(7), 15211550.CrossRefGoogle Scholar
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., and Metzler, K. (2016a). Tungsten isotopic constraints on the age and origin of chondrules. Proc. Nat. Acad. Sci., 113(13), 28862891.CrossRefGoogle ScholarPubMed
Budde, G., Burkhardt, C., Brennecka, G. A., et al. (2016b). Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth Planet. Sci. Lett., 454, 293303.CrossRefGoogle Scholar
Burkhardt, C., Kleine, T., Oberli, F., et al. (2011). Molybdenum isotope anomalies in meteorites: Constraints on solar nebula evolution and origin of the Earth. Earth Planet. Sci. Lett., 312(3–4), 390400.CrossRefGoogle Scholar
Burkhardt, C., and Schönbächler, M. (2015). Intrinsic W nucleosynthetic isotop variations in carbonaceous chondrites: Implications for W nucleosynthesis and nebular vs. parent body processing of presolar materials. Geochim. Cosmochim. Acta, 165, 361375.CrossRefGoogle Scholar
Cameron, A. G. W. (1982). Elemental and nuclidic abundances in the solar system. In Barnes, C. A., Clamon, D. D., and Schramm, D. N. (Eds.), Essays in Nuclear Astrophysics, 2343. New York, NY: Cambridge University Press.Google Scholar
Campbell, A. J., Simon, S. B., Humayun, M., Grossman, L. (2003). Chemical evolution of metal in refractory inclusions in CV3 chondrites. Geochim. Cosmochim. Acta, 67, 31193134.CrossRefGoogle Scholar
Diakonova, M. I., Kharitonova, V. I., and Iavnel, A. A. (1979). The Chemical Composition of Meteorites. (Book in Russian) Moscow; Russia: Izdatel’stvo Nauka, 68 p.Google Scholar
Ebel, D. S., Brunner, C., Konrad, K., et al. (2016). Abundance, major element composition and size of components and matrix in CV, CO and Acfer 094 chondrites, Geochim. et Cosmochim. Acta, 172, 322356.CrossRefGoogle Scholar
Frank, D., Zolensky, M., Martinez, J., et al. (2011). A CAI in the Ivuna CI1 Chondrite. In Lunar Planet. Sci. XLI, LPI Contribution No. 1608, p. 2785.Google Scholar
Friedheim, C. (1888). Über die chemische Zusammensetzung der Meteoriten von Alfianello und Concepcion. Sitzber. Kgl. Preuss. Akad. Wiss. z. Berlin, 1, 345367.Google Scholar
Goswami, J. N., and Macdougall, J. D. (1983). Nuclear track and compositional studies of olivines in CI and CM chondrites. In LPSC XIII Part 2, A755–A764.CrossRefGoogle Scholar
Grossman, J. N., and Brearley, A. J. (2005). The onset of metamorphism in ordinary and carbonaceous chondrites. Meteorit. Planet. Sci., 40(1), 87122.CrossRefGoogle Scholar
Grossman, J. N., and Wasson, J. T. (1985). The origin and history of the metal and sulfide components of chondrules. Geochim. Cosmochim. Acta, 49(4), 925939.CrossRefGoogle Scholar
Grossman, L., Ebel, D. S., Simon, S. B., et al. (2000). Major element chemical and isotopic compositions of refractory inclusions in C3 chondrites: The separate roles of condensation and evaporation. Geochim. Cosmochim. Acta, 64(16), 28792894.CrossRefGoogle Scholar
Haramura, H., Kushiro, I., and Yanai, K. (1983). Chemical compositions of Antarctic meteorites I. Memoirs of NIPR, Special issue 30, 109121.Google Scholar
Hezel, D.C., and Palme, H. (2008). Constraints for chondrule formation from Ca–Al distribution in carbonaceous chondrites. Earth Planet. Sci. Lett., 265(3–4), 716725.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2010). The chemical relationship between chondrules and matrix and the chondrule matrix complementarity. Earth Planet. Sci. Lett., 294(1–2), 8593.CrossRefGoogle Scholar
Hezel, D. C., Russell, S. S., Ross, A. J., and Kearsley, A. T. (2008). Modal abundances of CAIs: Implications for bulk chondrite element abundances and fractionations. Meteorit. Planet. Sci., 43(11), 18791894.CrossRefGoogle Scholar
Humayun, M., and Cassen, P. (2000). Processes determining the volatile abundances of the meteorites and terrestrial planets. In Canup, R.M. and Righter, K. (Eds.), Origin of the Earth and Moon, 323. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Humayun, M., Simon, S. B., and Grossman, L. (2007). Tungsten and hafnium distribution in calcium-aluminum inclusions (CAIs) from Allende and Efremovka. Geochim. Cosmochim. Acta, 71, 46094627.CrossRefGoogle Scholar
Jarosewich, E. (1990). Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteorit. Planet. Sci., 25(4), 323337.Google Scholar
Jarosewich, E. (2006). Chemical analyses of meteorites at the Smithsonian Institution: An update. Meteorit. Planet. Sci., 41(9), pp. 13811382.CrossRefGoogle Scholar
Jones, R. H., and Schilk, A. J. (2009). Chemistry, petrology and bulk oxygen isotope compositions of chondrules from the Mokoia CV3 carbonaceous chondrite. Geochim. Cosmochim. Acta, 73(19), 58545883.CrossRefGoogle Scholar
Jones, R. H, and Scott, E.R.D (1989). Petrology and thermal history of type IA chondrules in the Semarkona (LL3.0) chondrite. In Proc. 19th Lunar Planet. Sci. Conf., pp. 523–536.Google Scholar
Kimura, M., and Ikeda, Y. (1998). Hydrous and anhydrous alterations of chondrules in Kaba and Mokoia CV chondrites. Meteorit. Planet. Sci., 33(5), 11391146.CrossRefGoogle Scholar
Kong, P., and Palme, H. (1999). Compositional and genetic relationship between chondrules, chondrule rims, metal, and matrix in the Renazzo chondrite. Geochim. Cosmochim. Acta, 63(21), 36733682.CrossRefGoogle Scholar
Klerner, S. (2001). Materie im frühen Sonnensystem: Die entstehung von chondren, matrix, und refraktären forsteriten. Ph.D. thesis, Universität zu Köln.Google Scholar
Krot, A. N., Hutcheon, I. D., Brearley, A. J., et al. (2006). Timescales and Settings for Alteration of Chondritic Meteorites. In Lauretta, D. S. and McSween, H. Y. Jr., Meteorites and the Early Solar System II, 525553. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Krot, A. N., Petaev, M. I., and Bland, P. A. (2004). Multiple formation mechanisms of ferrous olivine in CV3 carbonaceous chondrites during fluid-assisted metamorphism. Antarct. Meteorite Res., 17, 154172.Google Scholar
Krot, A. N., Petaev, M. I., Scott, E. R. D., et al. (1998). Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration. Meteorit. Planet. Sci., 33, 10651085.CrossRefGoogle Scholar
Larimer, J. W., and Wasson, J. T. (1988). Siderophile element fractionation. In Kerridge, J. F. and Matthews, M. S. (Eds.), Meteorites and the Early Solar System, 416435. Tucson, AZ: University of Arizona Press.Google Scholar
Leshin, L. A., Rubin, A. E., and McKeegan, K. D. (1997). The oxygen isotopic composition of olivine and pyroxene from CI chondrites. Geochim. Cosmochim. Acta, 61, 835845.CrossRefGoogle Scholar
Lodders, K. (2003). Solar System Abundances and Condensation Temperatures of the Elements. Astrophys. J., 591(2), 12201247.CrossRefGoogle Scholar
Lodders, K., and Palme, H. (2009). Solar System Elemental Abundances in 2009. Suppl. to Meteorit. Planet. Sci., 44, A5154Google Scholar
Lodders, K., Palme, H., and Gail, H. -P. (2009). Abundances of the Elements in the Solar System. In Trümper, J. E. (Ed.), Landolt-Börnstein, New Series, Group VI/4B, 560630. Berlin, Germany: Springer-Verlag.Google Scholar
Lux, G., Keil, K., and Taylor, G. J. (1980). Metamorphism of the H-group chondrites - Implications from compositional and textural trends in chondrules. Geochim. Cosmochim. Acta, 44, 841855.CrossRefGoogle Scholar
Mason, B. M., and Wiik, H. B. (1962). The Renazzo Meteorite, Novitates, 2106, 111.Google Scholar
McSween, H. Y. Jr. (1977a). Carbonaceous chondrites of the Ornans type – A metamorphic sequence. Geochim. Cosmochim. Acta, 41, 477491.CrossRefGoogle Scholar
McSween, H. Y. Jr. (1977b). Petrographic variations among carbonaceous chondrites of the Vigarano type Geochim. Cosmochim. Acta, 41, 17771790.CrossRefGoogle Scholar
McSween, H. Y. Jr. (1979). Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix. Geochim. Cosmochim. Acta, 43, 17611770.CrossRefGoogle Scholar
McSween, H. Y. Jr., and Richardson, S. M. (1977). The composition of carbonaceous chondrite matrix. Geochim. Cosmochim. Acta, 41, 11451161.CrossRefGoogle Scholar
Palme, H. (2000). Are there chemical gradients in the inner Solar System? Space Sci. Rev., 92(1–2), 237262.CrossRefGoogle Scholar
Palme, H. (2001). Chemical and isotopic heterogeneity in protosolar matter in Origin and early evolution of solid matter in the Solar System. Roy. Soc. of London Phil. Trans A, 359(1787), 20612075.CrossRefGoogle Scholar
Palme, H., and Beer, H. (1993). The composition of chondritic meteorites. In Voigt, H. H. (Ed.), Landolt-Börnstein - Group VI/3A, 196221. Berlin, Germany: Springer-Verlag.Google Scholar
Palme, H., Hezel, D. C., and Ebel, D. S. (2015). The origin of chondrules: Constraints from matrix composition and matrix-chondrule complementarity. Earth Planet. Sci. Lett., 411, 1119CrossRefGoogle Scholar
Palme, H., Hutcheon, I. D., and Spettel, B. (1994). Composition and origin of refractory-metal-rich assemblages in a Ca,Al-rich Allende inclusion. Geochim. Cosmochim. Acta, 58, 495513.CrossRefGoogle Scholar
Palme, H., Larimer, J. W., and Lipschutz, M. E. (1988). Siderophile element fractionation. In Kerridge, J. F. and Matthews, M. S. (Eds.), Meteorites and the Early Solar System, 436461. Tucson, AZ: University of Arizona Press.Google Scholar
Palme, H., and Lodders, K. (2009). Metal-silicate fractionation in carbonaceous chondrites. Suppl. to Meteorit. Planet. Sci., 44, A165.Google Scholar
Palme, H., Lodders, K., and Jones, A. (2014). Solar System Abundances of the Elements. In Davis, A. M. (Ed.), Planets, Asteroids, Comets and the Solar System. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 2, 1536. Oxford, UK: Elsevier.Google Scholar
Palme, H., Spettel, B., Kurat, G., and Zinner, E. (1992). Origin of Allende chondrules. In Lunar and Planet. Sci. XXIII, pp. 1021–1022.Google Scholar
Rambaldi, E. R., and Wasson, J. T. (1981). Metal and associated phases in Bishunpur, a highly unequilibrated ordinary chondrite. Geochim. Cosmochim. Acta, 45(7), 10011015.CrossRefGoogle Scholar
Rambaldi, E. R., and Wasson, J. T. (1984). Metal and associated phases in Krymka and Chainpur: Nebular formational processes. Geochim. Cosmochim. Acta, 48(10), 18851897.CrossRefGoogle Scholar
Reid, A. M., Bass, M. N., Fujita, H., Kerridge, J. F., and Fredriksson, K. (1970). Olivine and pyroxene in the Orgueil meteorite. Geochim. Cosmochim. Acta, 34,12631255.CrossRefGoogle Scholar
Rubin, A. E., and Wasson, J. T. (1988). Chondrules and matrix in the Ornans CO3 meteorite: Possible precursor components. Geochim. Cosmochim. Acta, 52(2), 425432.CrossRefGoogle Scholar
Scott, E. R. D., and Krot, A. N. (2014). Chondrites and their components. In Davis, A. M. (Ed.), Meteorites and Cosmochemical Processes. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 1, 65137. Oxford, UK: Elsevier.Google Scholar
Sears, D. W. G., and Dodd, R. T. (1988). Overview and classification of meteorites. In Kerridge, J. F. and Matthews, M. S. (Eds.), Meteorites and the Early Solar System, 331. Tucson, AZ: University of Arizona Press.Google Scholar
Shu, F. H., Shang, H. and Lee, T. (1996). Toward an astrophysical theory of chondrites. Science, 271(5255), 15451552.CrossRefGoogle Scholar
Wai, C. M., and Wasson, J. T. (1977). Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites. Earth Planet. Sci. Lett., 36, 113.CrossRefGoogle Scholar
Warren, P. H. (1997). The unequal host-phase density effect in electron probe defocused beam analysis: an easily correctable problem. In Lunar Planet. Sci. XXVIII, p. 1406.Google Scholar
Wasson, J. T., and Chou, C. -L. (1974). Fractionation of moderately volatile elements in ordinary chondrites. Meteoritics, 9, 6984.CrossRefGoogle Scholar
Wasson, J. T., and Kallemeyn, G. W. (1988). Compositions of chondrites. Phil. Trans. Royal Society of London, Series A, Mathematical and Physical Sciences, 325(1587), 535544.Google Scholar
Wasson, J. T., and Rubin, A. E. (2009). Composition of matrix in the CR chondrite LAP 02342. Geochim. Cosmochim. Acta, 73(5), 14361460.CrossRefGoogle Scholar
Wasson, J. T., and Rubin, A. E. (2010). Matrix and whole-rock fractionations in the Acfer 094 type 3.0 ungrouped carbonaceous chondrite. Meteorit. Planet. Sci., 45(1), 7390.Google Scholar
Wiik, H. B. (1956). The chemical composition of some stony meteorites. Geochim. Cosmochim. Acta, 9(5), 279289.CrossRefGoogle Scholar
Wolf, D., and Palme, H. (2001). The solar system abundances of phosphorus and titanium and the nebular volatility of phosphorus. Meteorit. Planet. Sci., 36(4), 559571.CrossRefGoogle Scholar
Wood, J. A. (1963). On the origin of chondrules and chondrites. Icarus, 2, 152180.CrossRefGoogle Scholar
Wood, J. A. (1985). Meteoritic constraints on processes in the solar nebula. In Black, D. C. and Matthews, M. S. (Eds.), Protostars and Planets II, 687702. Tucson, AZ: University of Arizona Press.Google Scholar
Yokoyama, T., Alexander, C. M. O’D., and Walker, R. J. (2011). Assessment of nebular versus parent body processes on presolar components present in chondrites: Evidence from osmium isotopes. Earth Planet. Sci. Lett., 305(1–2), 115123.CrossRefGoogle Scholar
Zanda, B., Hewins, R. H., Bourot-Denise, M., Bland, P. A., and Albarède, F. (2006). Formation of solar nebula reservoirs by mixing chondritic components. Earth Planet. Sci. Lett., 248, 650660.CrossRefGoogle Scholar
Zanda, B., Humayun, M., Barrat, J. -A., Bourot-Denise, M., and Hewins, R. H. (2011a). Bulk and matrix composition of the Paris CM: Inferences on parent-body alteration and the origin of matrix-chondrule complementarity. In Lunar Planet. Sci. XLII, LPI Contribution No. 1608, p. 2040.Google Scholar
Zanda, B., Humayun, M., Barrat, J. -A., Bourot-Denise, M., and Hewins, R. H. (2011b). Chemistry of carbonaceous chondrites matrices: Parent-body alteration and chondrule-matrix complementarity. 74th Annual Meeting of the Meteoritical Society, London. Suppl. to Meteoritics Planet. Sci., 46, A5358.Google Scholar
Zanda, B., Humayun, M., and Hewins, R.H. (2012). Chemical composition of matrix and chondrules in carbonaceous chondrites: Implications for disk transport. In Lunar Planet. Sci. XLIII, LPI Contribution No. 1659, p. 2413.Google Scholar
Zanda, B., Le Guillou, C., and Hewins, R. H. (2009). The relationship between chondrules and matrix in chondrites. Suppl. to Meteorit. Planet. Sci., 44, A5280.Google Scholar
Zanetta, P.-M., Leroux, H., Le Guillou, C., et al. (2017). A new method for modal abundance, chemistry and density determination of fine grained matrices of primitive chondrites. Suppl. to Meteorit. Planet. Sci., 52, A6274.Google Scholar
Zolensky, M., Barrett, R., and Browning, L. (1993). Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites. Geochim. Cosmochim. Acta, 57(13), 31233148.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×