Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T20:07:06.456Z Has data issue: false hasContentIssue false

11 - The Absolute Pb–Pb Isotope Ages of Chondrules

Insights into the Dynamics of the Solar Protoplanetary Disk

from Part I - Observations of Chondrules

Published online by Cambridge University Press:  30 June 2018

Sara S. Russell
Affiliation:
Natural History Museum, London
Harold C. Connolly Jr.
Affiliation:
Rowan University, New Jersey
Alexander N. Krot
Affiliation:
University of Hawaii, Manoa
Get access

Summary

The parent nuclides 238U and 235U decay to 206Pb and 207Pb, respectively, with half-lives that makes this system uniquely suited to define the temporal framework of the solar protoplanetary disk, including the timing and duration of chondrule formation. Lead isotope data for 22 individual nebular chondrules indicate that the oldest chondrules formed contemporaneously with CAIs and that chondrules were recycled for ~4 Myr within the protoplanetary disk. Integrating the initial Pb isotopic compositions and ages of these individually-dated chondrules reveals that they appear to have formed in two distinct epochs. A primary phase of chondrule production occurred within 1 Myr of the formation of the Sun during the most energetic phase of the protoplanetary disk when mass accretion rates were highest. This epoch of primary chondrule production transitioned into a phase dominated by the reworking of existing chondrules, which lasted for the remainder of the protoplanetary disk’s lifetime. Such a model is consistent with a transition from heating by shock waves related to gravitational instabilities during the more energetic first 1 Myr to heating by bow shocks around early formed planetesimals and planetary embyros. The age of chondrules from the CB meteorite Gujba formed from a vapor–melt plume caused by impacting planetary embyros indicates that the solar protoplanetary disk had dissipated within 4.5 Myr. The Pb–Pb ages require that any appearance of chemical or isotopic complementarity between matrix and chondrules does not imply rapid chondrule formation and accretion or that matrix and chondrules in a single chondrite group have a strict cogenetic relationship. In this view, inferences about the range of ages for chondrule formation based on a 182Hf–182W decay method and the assumption of cogenetically-formed matrix and chondrules cannot be meaningful. Finally, the preponderance of chondrules (>50%) having formed in the first 1 Myr of the protoplanetary disk lifetime is consistent with models of early, efficient growth of planetary embryos by pebble accretion.

Type
Chapter
Information
Chondrules
Records of Protoplanetary Disk Processes
, pp. 300 - 323
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, C. M. O’D. (2005). Re-examining the role of chondrules in producing the elemental fractionations in chondrites. Meteorit. Planet. Sci., 40, 943965.CrossRefGoogle Scholar
Alexander, C. M. O’D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. (2008). The formation conditions of chondrules and chondrites. Science, 320, 16171619.CrossRefGoogle ScholarPubMed
Amelin, Y. (2008). The U–Pb systematics of angrite Sahara 99555. Geochim. Cosmochim. Acta, 72, 48744885.CrossRefGoogle Scholar
Amelin, Y., Connelly, J. N., Zartman, R. E., et al. (2009). Modern U-Pb chronometry of meteorites: Advancing to higher time resolution reveals new problems. Geochim. Cosmochim. Acta, 73, 52125223.CrossRefGoogle Scholar
Amelin, Y., Kaltenbach, A., Iizuka, T., et al. (2010). U–Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Earth Planet. Sci. Lett., 300, 343350.CrossRefGoogle Scholar
Amelin, Y., and Krot, A. N. (2007). Pb isotopic age of the Allende chondrules. Meteorit. Planet. Sci., 42, 13211335.CrossRefGoogle Scholar
Amelin, Y., Krot, A. N., Hutcheon, I. D., and Ulyanov, A. A. (2002). Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science, 297, 16781683.CrossRefGoogle ScholarPubMed
Becker, M., Hezel, D. C., Schulz, T., Elfers, B. -M., and Münker, C. (2015). Formation timescales of CV chondrites from component specific Hf–W systematics. Earth Planet. Sci. Lett., 432, 472482.CrossRefGoogle Scholar
Bitsch, B., Lambrechts, M., and Johansen, A. (2015). The growth of planets by pebble accretion in evolving protoplanetary discs. Astron. Astrophys., 582, A112.CrossRefGoogle Scholar
Bizzarro, M., Baker, J. A., and Haack, H. (2004). Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions. Nature, 431, 275278.CrossRefGoogle ScholarPubMed
Bizzarro, M., Paton, C., Larsen, K., et al. (2011). High-precision Mg-isotope measurements of terrestrial and extraterrestrial material by HR-MC- ICPMS – Implications for the relative and absolute Mg-isotope composition of the bulk silicate Earth. J. Anal. At. Spectrom., 26, 565577.CrossRefGoogle Scholar
Bizzarro, M., Connelly, J.N., and Krot, A.N. (2017). Chondrules – Ubiquitous chondritic solids tracking the evolution of the solar protoplanetary disk. In Pessah, M. and Gressel, O. (Eds.), Formation, Evolution, and Dynamics of Young Solar Systems, 161195. Cham, Switzerland: Springer International.CrossRefGoogle Scholar
Bizzarro, M., Olsen, M., Itoh, S., et al. (2014). Evidence for a reduced initial abundance of 26Al in chondrule forming regions and implications for the accretion timescales of protoplanets. Meteorit. Planet. Sci, 49 (Suppl.), Abstract #A43.Google Scholar
Blundy, J., and Wood, B. (2003). Mineral-melt partitioning of uranium, thorium and their daughters. Rev. Mineral. Geochem., 52, 59123.CrossRefGoogle Scholar
Boley, A. C., and Durisen, R. H. (2008). Gravitational instabilities, chondrule formation, and the FU Orionis phenomenon. Astrophys. J., 685, 11931209.CrossRefGoogle Scholar
Boley, A. C., Morris, M. A., and Desch, S. J. (2013). High-temperature processing of solids through solar nebular bow shocks: 3D radiation hydrodynamics simulations with particles. Astrophys. J., 776, 101.CrossRefGoogle Scholar
Bollard, J., Connelly, J. N., and Bizzarro, M. (2015a). Pb–Pb dating of individual chondrules from the CBa chondrite Gujba: Assessment of the impact plume formation model. Meteorit. Planet. Sci., 50, 11971216.CrossRefGoogle ScholarPubMed
Bollard, J., Kawaski, N., Sakamoto, N., et al. (2015b). Early disk dynamics inferred from isotope systematics of individual chondrules. Meteorit. Planet. Sci., 50 (Suppl.), Abstract #5211.Google Scholar
Bollard, J., Connelly, J. N., Whitehouse, M. J., et al. (2017). Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Sci. Adv., 3 (8), e1700407.CrossRefGoogle ScholarPubMed
Boss, A. P., and Durisen, R. H. (2005). Chondrule-forming Shock Fronts in the Solar Nebula: A Possible Unified Scenario for Planet and Chondrite Formation. Astrophys. J. Lett., 621, L137L140.CrossRefGoogle Scholar
Brennecka, G. A., Weyer, S., Wadhwa, M., et al. (2010). 238U/235U variations in meteorites: extant 247Cm and implications for Pb–Pb dating. Science, 327, 449451.CrossRefGoogle ScholarPubMed
Brennecka, G. A., Budde, G., and Kleine, T. (2015). Uranium isotopic composition and absolute ages of Allende chondrules. Meteorit. Planet. Sci., 50, 19952002.CrossRefGoogle Scholar
Brennecka, G. A., and Wadhwa, M. (2012). Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System. Proc. Natl. Acad. Sci., 109, 92999303.CrossRefGoogle ScholarPubMed
Budde, G., Burkhardt, C., Brennecka, G. A., et al. (2016b). Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth Planet. Sci. Lett., 454, 293303.CrossRefGoogle Scholar
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., and Metzler, K. (2016a). Tungsten isotopic constraints on the age and origin of chondrules. Proc. Natl. Acad. Sci., 113, 28862891.CrossRefGoogle ScholarPubMed
Carporzen, L., Weiss, B. P., Elkins-Tanton, L. T., et al. (2011). Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proc. Natl. Acad. Sci., 108, 63866389.CrossRefGoogle Scholar
Carrasco-Gonzalez, C., Henning, T., Chandler, C. J., et al. (2016). The VLA view of the HL Tau Disk - Disk Mass, Grain Evolution, and Early Planet Formation. Astrophys. J., 821, L16.CrossRefGoogle Scholar
Ciesla, F. J., and Hood, L. L. (2002). The nebular shock wave model for chondrule formation: Shock processing in a particle -gas suspension. Icarus, 158, 281293.CrossRefGoogle Scholar
Connelly, J. N., Bizzarro, M., Thrane, K., and Baker, J. A. (2008). The Pb–Pb age of Angrite SAH99555 revisited. Geochim. Cosmochim. Acta, 72, 48134824.CrossRefGoogle Scholar
Connelly, J. N., and Bizzarro, M. (2009). Pb–Pb dating of chondrules from CV chondrites by progressive dissolution. Chemical Geology, 259, 143151.CrossRefGoogle Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651655.CrossRefGoogle ScholarPubMed
Connelly, J. N., Bollard, J., and Bizzarro, M. (2017). Pb–Pb chronometry and the early Solar System. Geochim. Cosmochim. Acta, 201, 345363.CrossRefGoogle Scholar
Dauphas, N., and Pourmand, A. (2011). Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489492.CrossRefGoogle ScholarPubMed
Desch, S. J., Morris, M. A., Connolly, H. C., and Boss, A. P. (2012). The importance of experiments: Constraints on chondrule formation models. Meteorit. Planet. Sci., 47, 11391156.CrossRefGoogle Scholar
Ebel, D. S., Brunner, C., Konrad, K., et al. (2016). Abundance, major element composition and size of components and matrix in CV, CO and Acfer 094 chondrites. Geochim. Cosmochim. Acta, 172, 322356.CrossRefGoogle Scholar
Evans, N. J. II, Dunham, M. M., Jørgensen, J. K., et al. (2009). The Spitzer c2d Legacy results: star formation rates and efficiencies; evolution and lifetimes. Astrophys. J. Suppl. Ser., 181, 321350.CrossRefGoogle Scholar
Goldberg, A. Z., Owen, J. E., and Jacquet, E. (2015). Chondrule transport in protoplanetary discs. Mon. Not. R. Astron. Soc., 452, 40544069.CrossRefGoogle Scholar
Goldmann, A., Brennecka, G., Noordmann, J., Weyer, S., and Wadhwa, M. (2015). The uranium isotopic composition of the Earth and the Solar System. Geochim. Cosmochim. Acta, 148, 145158.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2010). The chemical relationship between chondrules and matrix and the chondrule matrix complementarity. Earth Planet. Sci. Lett., 294, 8593.CrossRefGoogle Scholar
Holst, J. C., Olsen, M. B., Paton, C., et al. (2013). 182Hf-182W age dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System. Proc. Natl. Acad. Sci., 110, 88198823.CrossRefGoogle ScholarPubMed
Hood, L. L., Ciesla, F. J., Artemieva, N. A., Marzari, F., and Weidenschilling, S. J. (2009). Nebular shock waves generated by planetesimals passing through Jovian resonances: Possible sites for chondrule formation. Meteorit. Planet. Sci., 44, 327342.CrossRefGoogle Scholar
Hu, R. (2010). Transport of the First Rocks of the Solar System by X-winds. Astrophys. J., 725, 14211428.CrossRefGoogle Scholar
Huss, G. R., MacPherson, G. J., Wasserburg, G. J., Russell, S. S., and Srinivasan, G. (2001). Aluminum-26 in calcium-aluminum-rich inclusions and chondrules from unequilibrated ordinary chondrites. Meteorit. Planet. Sci., 36, 975997.CrossRefGoogle Scholar
Itoh, S., and Yurimoto, H. (2003). Contemporaneous formation of chondrules and refractory inclusions in the early Solar System. Nature, 423, 728731.CrossRefGoogle ScholarPubMed
Johansen, A., Low, M. -M. M., Lacerda, P., and Bizzarro, M. (2015). Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci. Adv., 1, e1500109e1500109.CrossRefGoogle ScholarPubMed
Johansen, A., Oishi, J. S., Low, M. -M. M., et al. (2007). Rapid planetesimal formation in turbulent circumstellar disks. Nature, 448, 10221025.CrossRefGoogle ScholarPubMed
Kaltenbach, A. (2012). Uranium isotopic analyses of terrestrial and extraterrestrial samples. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 174 p.Google Scholar
Krot, A. N., and Wasson, J. T. (1995). Igneous rims on low-FeO and high-FeO chondrules in ordinary chondrites. Geochim. Cosmochim. Acta, 59, 49514966.CrossRefGoogle Scholar
Krot, A. N., Libourel, G., Goodrich, C. A., and Petaev, M. I. (2004). Silica-rich igneous rims around magnesian chondrules in CR carbonaceous chondrites: Evidence for condensation origin from fractionated nebular gas. Meteorit. Planet. Sci. Arch., 39, 19311955.CrossRefGoogle Scholar
Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A. (2005a). Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature, 436, 989992.CrossRefGoogle Scholar
Krot, A. N., Yurimoto, H., Hutcheon, I. D., and MacPherson, G. J. (2005b). Chronology of the early Solar System from chondrule-bearing calcium-aluminium-rich inclusions. Nature, 434, 9981001.CrossRefGoogle ScholarPubMed
Krot, A. N., Amelin, Y., Bland, P., et al. (2009). Origin and chronology of chondritic components: A review. Geochim. Cosmochim. Acta, 73, 49634997.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., van Kooten, E. M. M., and Bizzarro, M. (2017). Calcium-aluminum-rich inclusions recycled during formation of porphyritic chondrules from CH carbonaceous chondrites. Geochim. Cosmochim. Acta, 201, 185223.CrossRefGoogle Scholar
Lambrechts, M., and Johansen, A. (2012). Rapid growth of gas-giant cores by pebble accretion. A. Astron. Astrophys., 544, A32.CrossRefGoogle Scholar
Larsen, K. K., Trinquier, A., Paton, C., et al. (2011). Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophys. J. Lett., 735, L37.CrossRefGoogle Scholar
Larsen, K. K., Schiller, M., and Bizzarro, M. (2016). Accretion timescales and style of asteroidal differentiation in an 26Al-poor protoplanetary disk. Geochim. Cosmochim. Acta, 176, 295315.CrossRefGoogle Scholar
Lodders, K. (2003). Solar System Abundances and condensation temperatures of the elements. Astrophys. J., 591, 12201247.CrossRefGoogle Scholar
Morris, M. A., Boley, A. C., Desch, S. J., and Athanassiadou, T. (2012). Chondrule formation in bow shocks around eccentric planetary embryos. Astrophys. J., 752, 27.CrossRefGoogle Scholar
Morris, M. A., Garvie, L. A. J., and Knauth, L. P. (2015). New insight into the Solar System’s transition disk phase provided by the unusual meteorite Isheyevo. Astrophys. J., 801, L22.CrossRefGoogle Scholar
Mostefaoui, S., Kita, N. T., Togashi, S., et al. (2002). The relative formation ages of ferromagnesian chondrules inferred from their initial aluminum-26/aluminum-27 ratios. Meteorit. Planet. Sci., 37, 421438.CrossRefGoogle Scholar
Moynier, F., Beck, P., Jourdan, F., et al. (2009). Isotopic fractionation of zinc in tektites. Earth Planet. Sci. Lett., 277, 482489.CrossRefGoogle Scholar
Nagashima, K., Krot, A. N., and Huss, G. R. (2014). 26Al in chondrules from CR2 chondrites. Geochem. J. 48, 561570.CrossRefGoogle Scholar
Norris, T. L., Gancarz, A. J., Rokop, D. J., and Thomas, K. W. (1983). Half-life of 26Al. J. Geophys. Res.: Solid Earth, 88, B331B333.CrossRefGoogle Scholar
Olsen, M. B., Schiller, M. Krot, A. N., and Bizzarro, M. (2013). Magnesium isotope evidence for single stage formation of CB chondrules by colliding planetesimals. Astrophys. J. Lett., 776, L1.CrossRefGoogle Scholar
Olsen, M. B., Wielandt, D., Schiller, M., Van Kooten, E. M. M. E. and Bizzarro, M. (2016). Magnesium and 54Cr isotope compositions of carbonaceous chondrite chondrules – Insights into early disk processes. Geochim. Cosmochim. Acta, 191, 118138.CrossRefGoogle ScholarPubMed
Palme, H., Hezel, D. C., and Ebel, D. S. (2015). The origin of chondrules: Constraints from matrix composition and matrix-chondrule complementarity. Earth Planet. Sci. Lett., 411, 1119.CrossRefGoogle Scholar
Pérez, L. M., Carpenter, J. M., Andrews, S. M., et al. (2016). Spiral density waves in a young protoplanetary disk. Science, 353, 15191521.CrossRefGoogle Scholar
Rudraswami, N. G., and Goswami, J. N. (2007). 26Al in chondrules from unequilibrated L chondrites: Onset and duration of chondrule formation in the early solar system. Earth Planet. Sci. Lett., 257, 231244.CrossRefGoogle Scholar
Schiller, M., Connelly, J. N., Glad, A. C., Mikouchi, T., and Bizzarro, M. (2015a). Early accretion of protoplanets inferred from a reduced inner solar system 26Al inventory. Earth Planet. Sci. Lett., 420, 4554.CrossRefGoogle ScholarPubMed
Schiller, M., Paton, C., and Bizzarro, M. (2015b). Evidence for nucleosynthetic enrichment of the protosolar molecular cloud core by multiple supernova events. Geochim. Cosmochim. Acta, 149, 88102.CrossRefGoogle ScholarPubMed
Schrader, D. L., Nagashima, K., Krot, A. N., et al. (2017). Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk. Geochim. Cosmochim. Acta, 201, 275302.CrossRefGoogle Scholar
Scott, E. R. D., and Krot, A. N. (2003). Chondrites and their Components. In Davis, A. M. (Ed.), Meteorites, Comets and Planets. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (First Edition), 1, 144200. Oxford, UK: Elsevier.Google Scholar
Scott, E. R. D. (2007). Chondrites and the Protoplanetary Disk. Annu. Rev. Earth Planet. Sci., 35, 577620.CrossRefGoogle Scholar
Scott, E. R. D., and Krot, A. N. (2005). Thermal processing of silicate dust in the solar nebula: clues from primitive chondrite matrices. Astrophys. J., 623, 571.CrossRefGoogle Scholar
Shu, F. H., Shang, H., and Lee, T. (1996). Toward an astrophysical theory of chondrites. Science, 271, 15451552.CrossRefGoogle Scholar
Steiger, R. H., and Jäger, E. (1977). Subcommission on geochronology: Convention on use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett., 36, 359362.CrossRefGoogle Scholar
Tatsumoto, M., Knight, R. J., and Allegre, C. J. (1973). Time differences in the formation of meteorites as determined from the ratio of Lead-207 to Lead-206. Science, 180, 12791283.CrossRefGoogle ScholarPubMed
Testi, L., Birnstiel, T., Ricci, L., et al. (2014). In Beuther, H., Klessen, R. S., Dullemond, C. P., and Henning, T. (Eds.), Protostars and Planets VI, 339361. Tucson, AZ: University of Arizona Press.Google Scholar
Thrane, K., Kazuhide, N., Krot, A. N., and Bizzarro, M. (2008). Discovery of a new FUN CAI from a CV carbonaceous chondrite: Evidence for multistage thermal processing in the protoplanetary disk. Astrophys. J. Lett., 680, L141L144.CrossRefGoogle Scholar
Tobin, J. J., Looney, L. W., Wilner, D. J., et al. (2015). A sub-arcsecond survey toward Class 0 protostars in Perseus: Searching for signatures of protostellar disks. Astrophys. J., 805, 125.CrossRefGoogle Scholar
Tomida, K., Okuzumi, S., and Machida, M. N. (2015). Radiation magnetohydrodynamic simulations of protostellar collapse: Nonideal magnetohydrodynamic effects and early formation of circumstellar disks. Astrophys. J., 801, 117.CrossRefGoogle Scholar
Trinquier, A., Elliott, T., Ulfbeck, D., et al. (2009). Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science, 324, 374376.CrossRefGoogle ScholarPubMed
Van Kooten, E. M. M. E., Wielandt, D., Schiller, M., et al. (2016). Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites. Proc. Natl. Acad. Sci., 113, 20112016.CrossRefGoogle ScholarPubMed
Weidenschilling, S. J. (1977). Aerodynamics of solid bodies in the solar nebula. Mon. Not. Roy. Astron. Soc., 180, 5770.CrossRefGoogle Scholar
Weiss, B. P., and Elkins-Tanton, L. T. (2013). Differentiated planetesimals and the parent bodies of chondrites. Annu. Rev. Earth Planet. Sci., 41, 529560.CrossRefGoogle Scholar
Williams, J. P., and Cieza, L. A. (2011). Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys., 49, 67117.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×