Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-08T13:55:25.359Z Has data issue: false hasContentIssue false

2 - Biophysical, Genomic, and Proteomic Analysis of Drug Targets

Published online by Cambridge University Press:  11 August 2009

Tag E. Mansour
Affiliation:
Stanford University, California
Get access

Summary

Biophysical Techniques for Studying Drug Targets

X-Ray Crystallography

Once a selective parasite target has been identified the next step is to obtain its three-dimensional (3-D) structure. Crystallography remains the most desirable method for understanding the structure of the target, its binding sites, and the chemical groups involved in electron and steric interaction with substrates or inhibitors. The initial step toward achieving this goal is the preparation of large enough crystals of the protein. In the past this has been difficult because of the scarcity of parasite material as a source of the target protein. This is now a less serious handicap because the molecular biological techniques of cloning, polymerase chain reaction PCR, and expression of target genes in bacterial or insect cells can be used. It is now possible to obtain highly purified recombinant proteins in milligram amounts. The protein is placed in a solution of ammonium sulfate, the concentration of which is gradually increased to avoid precipitation of an amorphous protein. Having patience and a “green thumb,” which may come with practice, seem to be valuable elements for preparing crystals. Although the principles of X-ray crystallography were established more than fifty years ago, there have been many improvements in X-ray generators and detector systems. The development of synchrotron radiation sources has increased the accuracy and speed of analysis of crystals (Hunter, 1997). The development of computer analysis and graphics that can display different parts of the protein molecule on a monitor is very useful.

Type
Chapter
Information
Chemotherapeutic Targets in Parasites
Contemporary Strategies
, pp. 19 - 32
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, B., Aslund, L., Tammi, M., Tran, A. N., Hoheisel, J. D. & Pettersson, U. (1998). Complete sequence of a 93.4-kb contig from chromosome 3 of Trypanosoma cruzi containing a strand-switch region. Genome Res, 8(8), 809–816CrossRefGoogle ScholarPubMed
Arevalo, J. I. & Saz, H. J(1992). Effects of cholinergic agents on the metabolism of choline in muscle from Ascaris suum. J Parasitol, 78(3), 387–392CrossRefGoogle Scholar
Ashton, P. D., Curwen, R. S & Wilson, R. A(2001). Linking proteome and genome: How to identify parasite proteins. Trends Parasitol, 17(4), 198–202CrossRefGoogle ScholarPubMed
Banks, R. E., Dunn, M. J., Hochstrasser, D. F., Sanchez, J. C., Blackstock, W., Pappin, D. J. & Selby, p. J(2000). Proteomics: New perspectives, new biomedical opportunities. Lancet, 356(9243), 1749–1756CrossRefGoogle ScholarPubMed
Blackwell, J. M & Melville, S. E(1999). Status of protozoan genome analysis: Trypanosomatids. Parasitology, 118(Suppl), S11–14CrossRefGoogle ScholarPubMed
Blaxter, M., Aslett, M., Guiliano, D. & Daub, J(1999). Parasitic helminth genomics. Filarial Genome Project. Parasitology, 118(Suppl), S39–51CrossRefGoogle ScholarPubMed
Carucci, D. J.(2000). Malaria research in the post-genomic era. Parasitol Today, 16(10), 434–438CrossRefGoogle ScholarPubMed
Cohen, F. E., Gregoret, L. M., Amiri, P., Aldape, K., Railey, J & McKerrow, J. H(1991). Arresting tissue invasion of a parasite by protease inhibitors chosen with the aid of computer modeling. Biochemistry, 30(47), 11221–11229CrossRefGoogle ScholarPubMed
Edwards, M. R., Gilroy, F. V., Jimenez, B. M & O'Sullivan, W. J(1989). Alanine is a major end product of metabolism by Giardia lamblia: A proton nuclear magnetic resonance study. Mol Biochem Parasitol, 37(1), 19–26CrossRefGoogle ScholarPubMed
Fairlamb, A. H. & Cerami, A(1985). Identification of a novel, thiol-containing co-factor essential for glutathione reductase enzyme activity in trypanosomatids. Mol Biochem Parasitol, 14(2), 187–198CrossRefGoogle ScholarPubMed
Fields, S(2001). Proteomics. Proteomics in genomeland. Science, 291(5507), 1221–1224CrossRefGoogle ScholarPubMed
Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., Bult, C. J., Tomb, J. F., Dougherty, B. A., Merrick, J. M.et al. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269(5223), 496–512. [See comments.]CrossRefGoogle ScholarPubMed
Gardner, M. J., Tettelin, H., Carucci, D. J., Cummings, L. M., Aravind, L., Koonin, E. V., Shallom, S., Mason, T., Yu, K., Fujii, C., Pederson, J., Shen, K., Jing, J., Aston, C., Lai, Z., Schwartz, D. C., Pertea, M., Salzberg, S., Zhou, L., Sutton, G. G., Clayton, R., White, O., Smith, H. O., Fraser, C. M., Hoffman, S. Let al. (1998). Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. Science, 282(5391), 1126–1132CrossRefGoogle ScholarPubMed
Geary, T. G., Winterrowd, C. A., Alexander-Bowman, S. J., Favreau, M. A., Nulf, S. C. & Klein, R. D. (1993). Ascaris suum: Cloning of a cDNA encoding phosphoenolpyruvate carboxykinase. Exp Parasitol, 77(2), 155–161CrossRefGoogle ScholarPubMed
Hoffman, S. L., Bancroft, W. H., Gottlieb, M., James, S. L., Burroughs, E. C., Stephenson}, J. R. & Morgan, M. J. (1997). Funding for malaria genome sequencing [letter; comment]. Nature, 387(6634), 647CrossRefGoogle Scholar
Horrocks, P., Bowman, S., Kyes, S., Waters, A. P. & Craig, A. (2000). Entering the post-genomic era of malaria research. Bull World Health Organ, 78(12), 1424–1437Google ScholarPubMed
Hunter, W. N. (1997). A structure-based approach to drug discovery; crystallography and implications for the development of antiparasite drugs. Parasitology, 114(Suppl), S17–29Google ScholarPubMed
Ivens, A. & Blackwell, J. (1999). The Leishmania genome comes of age. Parasitol Today, 15, 225–221CrossRefGoogle ScholarPubMed
Lashkari, D. A., DeRisi, J. L., McCusker, J. H., Namath, A. F., Gentile, C., Hwang, S. Y., Brown, P. O. & Davis, R. W. (1997). Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc Natl Acad Sci USA, 94(24), 13057–13062CrossRefGoogle ScholarPubMed
Li, C. M., Tyler, P. C., Furneaux, R. H., Kicska, G., Xu, Y., Grubmeyer, C., Girvin, M. E. & Schramm, V. L. (1999). Transition-state analogs as inhibitors of human and malarial hypoxanthine-guanine phosphoribosyltransferases. Nat Struct Biol, 6(6), 582–587. [See comments.]Google ScholarPubMed
Macreadie, I., Ginsburg, H., Sirawaraporn, W. & Tilley, L. (2000). Antimalarial drug development and new targets. Parasitol Today, 16(10), 438–444CrossRefGoogle ScholarPubMed
Mansour, T. E., Morris, P. G., Feeney, J. & Roberts, G. C. (1982). A 31P-NMR study of the intact liver fluke Fasciola hepatica. Biochim Biophys Acta, 721(4), 336–340CrossRefGoogle ScholarPubMed
Matthews, P. & Mansour, T. (Eds.). (1987). Applications of NMR to Investigation of Metabolism and Pharmacology of Parasites. In A. J. MacInnis (Ed.) Molecular Paradigms for Eradicating Helminthic Parasites. UCLA Symposium on Molecular and Cellular Biology, New Series, Vol. 60(pp. 477–492) New York: Alan R. Liss
Matthews, P. M., Shen, L. F., Foxall, D. & Mansour, T. E. (1985). 31P-NMR studies of metabolite compartmentation in Fasciola hepatica. Biochim Biophys Acta, 845(2), 178–188CrossRefGoogle ScholarPubMed
Matthews, P. M., Foxall, D., Shen, L. & Mansour, T. E. (1986). Nuclear magnetic resonance studies of carbohydrate metabolism and substrate cycling in Fasciola hepatica. Mol Pharmacol, 29(1), 65–73Google ScholarPubMed
Melville, S. (1998). The African trypanosome genome project. Focus on the future. Parasitol Today, 14, 128–130Google ScholarPubMed
Melville, S. E. (1997). Parasite genome analysis. Genome research in Trypanosoma brucei: Chromosome size polymorphism and its relevance to genome mapping and analysis. Trans R Soc Trop Med Hyg, 91(2), 116–120CrossRefGoogle ScholarPubMed
Ring, C. S., Sun, E., McKerrow, J. H., Lee, G. K., Rosenthal, P. J., Kuntz, I. D. & Cohen, F. E. (1993). Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proc Natl Acad Sci USA, 90(8), 3583–3587CrossRefGoogle ScholarPubMed
Rost, B. (1998). Marrying structure and genomics. Structure, 6(3), 259–263CrossRefGoogle ScholarPubMed
Service, R. F. (2000). Structural genomics offers high-speed look at proteins. Science, 287(5460), 1954–1956CrossRefGoogle Scholar
Thompson, S. N., Platzer, E. G. & Lee, R. W. (1987). In vivo 31P-NMR spectrum of Hymenolepis diminuta and its change on short-term exposure to mebendazole. Mol Biochem Parasitol, 22(1), 45–54CrossRefGoogle ScholarPubMed
WHO. (2000). Proteomics. Nat Biotechnol, 18 Suppl(3), IT45–46
Williams, S. A. & Johnston, D. A. (1999). Helminth genome analysis: The current status of the filarial and schistosome genome projects. Filarial Genome Project. Schistosome Genome Project. Parasitology, 118 (Suppl), S19–38CrossRefGoogle ScholarPubMed
Zarembinski, T. I., Hung, L. W., Mueller-Dieckmann, H. J., Kim, K. K., Yokota, H., Kim, R. & Kim, S. H. (1998). Structure-based assignment of the biochemical function of a hypothetical protein: A test case of structural genomics. Proc Natl Acad Sci USA, 95(26), 15189–15193CrossRefGoogle ScholarPubMed
Zurita, M., Bieber, D. & Mansour, T. E. (1989). Identification, expression and in situ hybridization of an eggshell protein gene from Fasciola hepatica. Mol Biochem Parasitol, 37(1), 11–17CrossRefGoogle ScholarPubMed
Zurita, M., Bieber, D., Ringold, G. & Mansour, T. E. (1987). Cloning and characterization of a female genital complex cDNA from the liver fluke Fasciola hepatica. Proc Natl Acad Sci USA, 84(8), 2340–2344CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×