from Part III - Simulation of Combustion and Nonequilibrium Flows in Propulsion and Power Generation Systems
Published online by Cambridge University Press: 16 August 2019
Gas–liquid reacting flows seem to be one of the most complex and, at the same time, most prevalent fields of application for mathematical simulation of high-temperature processes. Of these processes, the phenomena are fluid atomization polydispersity and droplet secondary fragmentation, droplet heating and evaporation, turbulence, reactions in the gas phase, the difference in the velocity between the gas and droplet phases (slip velocity), and the multidimensional nature of fluid flow. Such flows make the core of processes proceeding in combustion chambers of air-breathing jet engines [216, 231, 239, 240], rocket engines [160, 215, 228, 229, 241, 242], gas generator driving turbopumps, pressurization systems of the LPRE propellant tanks [160, 215, 228, 241–243], vapor-gas generators [50, 55, 56], afterburners of air-breathing jet engines [216, 231, 239, 240], and different furnaces [58].
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.