Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T18:02:50.223Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  25 February 2022

Kevin E. Trenberth
Affiliation:
National Center for Atmospheric Research
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliography

At the end of each entry, in red, the chapter(s) where the material in the reference was used is given.

Abraham, J. P., Baringer, M., Bindoff, N. L., et al., 2013: A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Reviews of Geophysics, 51, 450483. https://doi.org/10.1002/rog.20022. [14]Google Scholar
Allan, R. P., Liu, C., Zahn, M., et al., 2014: Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surveys in Geophysics, 35, 533552. https://doi.org/10.1007/s10712–012-9213-z. [10]CrossRefGoogle Scholar
Balmaseda, M. A., Trenberth, K. E., and Källén, E., 2013: Distinctive climate signals in reanalysis of global ocean heat content, Geophysical Research Letters, 40, 17541759. https://doi.org/10.1002/grl.50382. [14]CrossRefGoogle Scholar
Beltrami, H., 2002: Climate from borehole data: energy fluxes and temperatures since 1500. Geophysical Research Letters, 29, 2111. https://doi.org/10.1029/2002GL015702. [14]Google Scholar
Biskaborn, B. K., Smith, S. L., Noetzli, J., et al., 2019: Permafrost is warming at a global scale. Nature Communications, 10, 264. https://doi.org/10.1038/s41467–018-08240-4. [14]Google Scholar
Blunden, J. and Arndt, D. S., eds., 2020: State of the climate in 2019. Bulletin of the American Meteorological Society, 101, SiS429 https://doi.org/10.1175/2020BAMSStateoftheClimate.1 [2] [18]Google Scholar
Bosson, J.‐B, Huss, M., and Osipova, E., 2019: Disappearing World Heritage glaciers as a keystone of nature conservation in a changing climate. Earth’s Future, 7. https://doi.org/10.1029/2018EF001139. [14]CrossRefGoogle Scholar
Brodribb, T. J., Powers, J., Cochard, H., and Choat, B., 2020: Hanging by a thread? Forests and drought. Science, 368, 261266. https://doi.org/10.1126/science.aat7631. [2]CrossRefGoogle ScholarPubMed
Broecker, W., 1975: Climatic change: are we on the brink of a pronounced global warming? Science, 189, 460463. [2]Google Scholar
Bronseleiaer, B., and Zanna, L., 2020: Heat and carbon coupling reveals ocean warming due to circulation changes. Nature, 584, 227233. https://doi.org/10.1038/s41586-020-2573-5. [8]CrossRefGoogle Scholar
Carbone, R. E., and Tuttle, J. D., 2008: Rainfall occurrence in the U.S. warm season: the diurnal cycle. Journal of Climate, 21, 41324146. https://doi.org/10.1175/2008JCLI2275.1. [7]Google Scholar
Carbone, R. E., Wilson, J. W., Keenan, T. D., and Hacker, J. M., 2000: Tropical island convection in the absence of significant topography. Pt I: Lifecycle of diurnally forced convection. Monthly Weather Review, 128, 34593480. https://doi.org/10.1175/1520-0493(2000)128<3459:TICITA>2.0.CO;2. [7]2.0.CO;2>CrossRefGoogle Scholar
Cazenave, A., Dieng, H.-B., Meyssignac, B., von Shuckmann, K., Decharme, B., and Berthier, E., 2014: The rate of sea-level rise. Nature Climate Change, 4, 358361. https://doi.org/10.1038/nclimate2159. [14]CrossRefGoogle Scholar
Cazenave, A., Meyssignac, B., Ablain, M., et al., 2018: Global sea-level budget 1993–present. Earth System Science Data, 10, 15511590. https://doi.org/10.5194/essd-10-1551-2018. [14]Google Scholar
Charney, J. G., Stevens, B., Held, I. H., et al., 1979: Carbon Dioxide and Climate: A Scientific Assessment. Washington, DC: US National Academy of Sciences. [13]Google Scholar
Cheng, L., and Zhu, J., 2014: Uncertainties of the Ocean Heat Content estimation induced by insufficient vertical resolution of historical ocean subsurface observations. Journal of Atmospheric and Oceanic Technology, 31(6), 13831396. https://doi.org/10.1175/JTECH-D-13-00220.1. [6]CrossRefGoogle Scholar
Cheng, L., Zhu, J., and Sriver, R. L., 2015: Global representation of tropical cyclone-induced short-term ocean thermal changes using Argo data. Ocean Science, 11, 719741. https://doi.org/10.5194/os-11-719-2015. [7]Google Scholar
Cheng, L., Trenberth, K., Fasullo, J., Boyer, T., Abraham, J., and Zhu, J., 2017: Improved estimates of ocean heat content from 1960–2015. Science Advances, 3(3), e1601545. https://doi.org/10.1126/sciadv.1601545. http://advances.sciencemag.org/content/3/3/e1601545. [8] [11] [12] [14]CrossRefGoogle Scholar
Cheng, L., Abraham, J., Hausfather, Z., and Trenberth, K. E., 2019a: How fast are the oceans warming? Observational records of ocean heat content show that ocean warming is accelerating. Science, 363, 128129. https://doi.org/10.1126/science.aav7619. [14]CrossRefGoogle Scholar
Cheng, L., Trenberth, K. E., Fasullo, J., Mayer, M., Balmaseda, M., and Zhu, J., 2019b: Evolution of ocean heat content related to ENSO. Journal of Climate, 32, 35293556. https://doi.org/10.1175/JCLI-D-18-0607.1. [12]CrossRefGoogle Scholar
Cheng, L., Trenberth, K. E., Gruber, N., et al., 2020a: Improved estimates of changes in upper ocean salinity and the hydrological cycle. Journal of Climate, 33. https://doi.org/10.1175/JCLI-D-20-0366.1. [8] [10] [14]CrossRefGoogle Scholar
Cheng, L., Abraham, J. P., Zhu, J., et al., 2020b: Record-setting ocean warmth continued in 2019. Advances in Atmospheric Science, 37, 137142. https://doi.org/10.1007/s00376-020-9283-7. [14]CrossRefGoogle Scholar
Church, J. A., and White, N. J., 2011: Sea-level rise from the late 19th to the early 21st Century. Surveys in Geophysics, 32(4–5), 585602. http://doi.org/10.1007/s10712–011-9119-1. [14]CrossRefGoogle Scholar
Coddington, O., Lean, J. L., Pilewskie, P., Snow, M., and Lindholm, D., 2016: A solar irradiance climate data record. Bulletin of the American Meteorological Society, 97, 12651282. https://doi.org/10.1175/BAMS-D-14-00265.1. [4]CrossRefGoogle Scholar
Cook, E. R., Seager, R., Cane, M. A., and Stahle, D. W., 2007: North American drought: reconstructions, causes, and consequences. Earth Science Reviews, 81, 93134. https://doi.org/10.1016/j.earsciReview2006.12.002. [10]CrossRefGoogle Scholar
Cornwall, W., 2019: In hot water. Science, 363, 442445. https://doi.org/10.1126/science.363.6426.442. [8]CrossRefGoogle Scholar
Covey, C., Gleckler, P. J., Doutriaux, C., et al., 2016: Metrics for the diurnal cycle of precipitation: toward routine benchmarks for climate models. Journal of Climate, 29, 44614471. https://doi.org/10.1175/JCLI-D-15-0664.1. [7]Google Scholar
Cowtan, K., Hausfather, Z., Hawkins, E., et al., 2015: Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures. Geophysical Research Letters, 42, 65266534. https://doi.org/10.1002/2015GL064888. [2]CrossRefGoogle Scholar
Dai, A., 2011a: Characteristics and trends in various forms of the Palmer Drought Severity Index (PDSI) during 1900–2008, Journal of Geophysical Research, 116, D12115. https://doi.org/10.1029/2010JD015541. [10]Google Scholar
Dai, A., 2011b: Drought under global warming: a review. WIREs Climate Change, 2, 4565. https://doi.org/10.1002/wcc.81. [10]Google Scholar
Dai, A., Qian, T., Trenberth, K. E., and Milliman, J. D., 2009: Changes in continental freshwater discharge from 1949–2004. Journal of Climate, 22, 27732791. [10]CrossRefGoogle Scholar
de Boisseson, E., Balmaseda, M., and Mayer, M., 2018: Ocean heat content variability in an ensemble of twentieth century ocean reanalyses. Climate Dynamics, 50, 37833798. https://doi.org/10.1007/s00382-017-3845-0. [14]CrossRefGoogle Scholar
Deser, C., Phillips, A. S., and Hurrell, J. W., 2004: Pacific interdecadal climate variability: linkages between the tropics and the north Pacific during boreal winter since 1900. Journal of Climate, 17, 31093124. [11] [12]2.0.CO;2>CrossRefGoogle Scholar
Deser, C., Simpson, I. R., McKinnon, K. A., and Phillips, A. S., 2017: The Northern Hemisphere extratropical atmospheric circulation response to ENSO: how well do we know it and how do we evaluate models accordingly? Journal of Climate, 30, 50595082. [12]Google Scholar
Dessler, A. E., 2020: Potential problems measuring climate sensitivity from the historical record. Journal of Climate, 33, 22372248. [13]Google Scholar
Dessler, A. E., and Forster, P. M., 2018: An estimate of equilibrium climate sensitivity from interannual variability. Journal of Geophysical Research: Atmospheres, 123, 86348645. https://doi.org/10.1029/2018JD028481. [13]CrossRefGoogle Scholar
Dessler, A. E., Mauritsen, T., and Stevens, B., 2018: The influence of internal variability on Earth’s energy balance framework and implications for estimating climate sensitivity. Atmospheric Chemistry and Physics, 18, 51475155. https://doi.org/10.5194/acp-18-5147-2018. [13]Google Scholar
Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686. https://doi.org/10.1038/nature03906. [7]Google Scholar
Ezer, T., Atkinson, L. P., Corlett, W. B., and Blanco, J. L., 2013: Gulf Stream’s induced sea level rise and variability along the U.S. mid-Atlantic coast. Journal of Geophysical Research: Oceans, 118, 685697. https://doi.org/10.1002/jgrc.20091. [8]CrossRefGoogle Scholar
Frederikse, T., Landerer, F., Caron, L., et al., 2020: The causes of sea-level rise since 1900. Nature, 584, 393397. https://doi.org.cuucar.idm.oclc.org/10.1038/s41586–020-2591-3. [14]Google Scholar
Friedlingstein, P., Jones, M. W., O’Sullivan, M., et al., 2019: Global carbon budget 2019. Earth System Science Data, 11, 17831838. https://doi.org/10.5194/essd-11-1783-2019. [2]Google Scholar
Goddard, L., 2016: From science to service. Science, 353, 13661367. https://doi.org/10.1126/science.aag3087. [17]CrossRefGoogle ScholarPubMed
Gregory, J. M., and Andrews, T., 2016: Variation in climate sensitivity and feedback parameters during the historical period. Geophysical Research Letters, 43, 39113920. [13]Google Scholar
Horel, J. D., and Wallace, J. M., 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Monthly Weather Review, 109, 813829. [11]2.0.CO;2>CrossRefGoogle Scholar
Hoskins, B. J., and Karoly, D. J., 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. Journal of the Atmospheric Sciences, 38, 11791196. [11]Google Scholar
Hu, D., Wu, L., Cai, W., Gupta, A. S., et al., 2015: Pacific western boundary currents and their roles in climate. Nature, 522, 299308. https://doi.org/10.1038/nature14504. [11]Google Scholar
Huang, S., 2006: 1851–2004 annual heat budget of the continental landmasses. Geophysical Research Letters, 33, L04707. https://doi.org/10.1029/2005GL025300. [14]Google Scholar
Huffman, G. J., Adler, R. F., Bolvin, D. T., and Gu, G., 2009: Improving the global precipitation record: GPCP version 2.1. Geophysical Research Letters, 36, L17808. https://doi.org/10.1029/2009GL040000. [5] [10]Google Scholar
Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation and relationships to regional temperature and precipitation. Science, 269, 676679. [11]CrossRefGoogle Scholar
Hurrell, J. W., and Deser, C., 2009: Atlantic climate variability. Journal of Marine Systems, 78, 2841. https://doi.org/10.1016/j.jmarsys.2008.11.026. [11]CrossRefGoogle Scholar
Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M., 2003: An overview of the North Atlantic Oscillation. In: Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M., eds. The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Geophysical Monograph 134, 135. Washington, DC: American Geophysical Union. [11]Google Scholar
IMBIE Team, 2018: Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558, 219222. [14]Google Scholar
IMBIE Team, 2020: Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature, 579, 233239. [14]CrossRefGoogle Scholar
IPCC: Intergovernmental Panel on Climate Change, 2013 : Climate Change 2013. The Physical Science Basis, ed. Stocker, T.F., et al. Cambridge:Cambridge University Press. [1] [11] [14] [16]Google Scholar
Jones, P. D., New, M., Parker, D. E., Martin, S., and Rigor, I. G., 1999: Surface air temperature and its changes over the past 150 years. Reviews in Geophysics, 37, 173199. [5]CrossRefGoogle Scholar
Karl, T. R., and Trenberth, K. E., 2003: Modern global climate change. Science, 302, 17191723. https://doi.org/10.1126/science.1090228. [1]Google Scholar
Kennedy, J. J., Rayner, N. A., Atkinson, C. P., and Killick, R. E., 2019: An ensemble data set of sea surface temperature change from 1850: the Met Office Hadley Centre HadSST.4.0.0.0 data set. Journal of Geophysical Research: Atmospheres, 124. https://doi.org/10.1029/2018JD029867. [2]Google Scholar
Kiehl, J. T., and Trenberth, K. E., 1997: Earth’s annual global mean energy budget. Bulletin of the American Meteorological Society, 78, 197208. [3]Google Scholar
Kopp, G., 2016: Magnitudes and timescales of total solar irradiance variability. Journal of Space Weather and Space Climate, 6, A30. https://doi.org/10.1051/swsc/2016025. [4]CrossRefGoogle Scholar
Kosaka, Y., and Xie, S-P., 2016: The tropical Pacific as a key pacemaker of the variable rates of global warming. Nature Geoscience, 9, 669673. https://doi.org/10.1038/NGEO2770. [12]Google Scholar
Kwok, R., 2018: Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018). Environmental Research Letters, 13, 105005. https://doi.org/10.1088/1748-9326/aae3ec. [14]Google Scholar
Kwok, R., and Comiso, J. C., 2002: Spatial patterns of variability in Antarctic surface temperature: connections to the Southern Hemisphere Annular Mode and the Southern Oscillation. Geophysical Research Letters, 29, 1705. https://doi.org/10.1029/2002GL015415. [11]CrossRefGoogle Scholar
Lacis, A. A., Schmidt, G. A., Rind, D., and Ruedy, R. A., 2010: Atmospheric CO2: principal control knob governing Earth’s temperature. Science, 330, 356359. www.sciencemag.org/cgi/content/full/330/6002/356/DC1. [3]Google Scholar
Lee, S.-K., Park, W., Baringer, M. O., Gordon, A. L., Huber, B., and Liu, Y., 2015: Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nature Geoscience, 8, 445449. https://doi.org/10.1038/ngeo2438. [12]CrossRefGoogle Scholar
Li, G., Cheng, L., Zhu, J., Abraham, J., Trenberth, K. E. and Mann, M. E., 2020: Increasing ocean stratification over the past half century. Nature Climate Change, 10. https://doi.org/10.1038/s41558–020-00918-2. [8] [14]Google Scholar
Li, Y., Han, W., Hu, A., Meehl, G. A., and Wang, F., 2018: Multidecadal changes of the upper Indian Ocean heat content during 1965–2016. Journal of Climate, 31, 78637884. https://doi.org/10.1175/JCLI-D-18-0116.1. [11]Google Scholar
Loeb, N. G., Wielicki, B. A., Doelling, D. R., et al., 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. Journal of Climate, 22, 748766. https://doi.org/10.1175/2008jcli2637.1. [4]Google Scholar
Lorenz, E. N., 1967: The Nature and Theory of the General Circulation of the Atmosphere. Vol 218. Geneva: World Meteorological Organization.161pp. [1]Google Scholar
Lumpkin, R., and Johnson, G. C., 2013: Global ocean surface velocities from drifters: mean, variance, El Nino–Southern Oscillation response, and seasonal cycle, Journal of Geophysical Research: Oceans, 118, 29923006. https://doi.org/10.1002/jgrc.20210. [8]CrossRefGoogle Scholar
Mann, M. E., 2012: The Hockey Stick and the Climate Wars. New York: Columbia University Press, 448pp. [18]CrossRefGoogle Scholar
Mantua, N. J., Hare, S., Zhang, Y., et al., 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American. Meteorological Society, 78, 10691079. [11]Google Scholar
Marshall, G. J., 2003: Trends in the Southern Annular Mode from observations and reanalyses. Journal of Climate, 16, 41344143. https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2. [11]2.0.CO;2>CrossRefGoogle Scholar
Marzeion, B., Jarosch, A. H., and Hofer, M., 2012: Past and future sea-level change from the surface mass balance of glaciers. The Cryosphere, 6, 12951322. https://doi.org/10.5194/tc-6-1295-2012. [14]Google Scholar
Marzeion, B., Leclercq, P. W., Cogley, J. G., and Jarosch, A. H., 2015: Global reconstructions of glacier mass change during the 20th century are consistent. The Cryosphere, 9(6), 23992404. [14]Google Scholar
Mayer, M., Haimberger, L., and Balmaseda, M. A., 2014: On the energy exchange between tropical ocean basins related to ENSO. Journal of Climate, 27, 63936403. https://doi.org/10.1175/JCLI-D-14-00123.1. [12]CrossRefGoogle Scholar
McCoy, I. L., McCoy, D. T., Wood, R., et al., 2020: The hemispheric contrast in cloud microphysical properties constrains aerosol forcing. Proceedings of the National Academy of Sciences USA, 117(32),1899819006. https://doi.org/10.1073/pnas.1922502117. [13]CrossRefGoogle ScholarPubMed
McKibben, W., 2018: How extreme weather is shrinking the planet. New Yorker, November 26, 2018. www.newyorker.com/magazine/2018/11/26/how-extreme-weather-is-shrinking-the-planet?utm_medium=email&utm_source=actionkit [18]Google Scholar
McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophysical Research Letters, 39, 9706. https://doi.org/10.1029/2012GL051826. [12]Google Scholar
McPhaden, M. J., Lee, T., and McClurg, D., 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophysical Research Letters, 38, L15709. https://doi.org/10.1029/2011GL048275. [12]CrossRefGoogle Scholar
Meehl, G. A., Arblaster, J., Fasullo, J., Hu, A., and Trenberth, K., 2011: Model-based evidence of deep-ocean heat uptake during surface temperature hiatus periods. Nature Climate Change. 1, 360364. https://doi.org/10.1038/nclimate1229. [15]Google Scholar
Meehl, G. A., Hu, A., Arblaster, J., Fasullo, J. T., and Trenberth, K. E., 2013: Externally forced and internally generated decadal climate variability in the Pacific. Journal of Climate, 26, 72987310. https://doi.org/10.1175/JCLI-D-12-00548.1. [15]Google Scholar
Meehl, G. A., Senior, C. A., Eyring, V., et al., 2020: Context for interpreting equilibrium climate sensitivity and transient climate. Science Advances, 6. https://doi.org/10.1126/sciadv.aba1981. [13]Google Scholar
Meyssignac, B., Boyer, T., Zhao, Z., et al., 2019: Measuring global ocean heat content to estimate the Earth energy imbalance. Frontiers in Marine Science, 6, 432. https://doi.org/10.3389/fmars.2019.00432. [14]CrossRefGoogle Scholar
National Academy of Sciences and The Royal Society, 2020: Climate Change: Evidence and Causes: Update 2020. 36pp. https://doi.org/10.17226/25733. [1] [17] [18]Google Scholar
National Research Council, 2015a: Climate Intervention: Reflecting Sunlight to Cool Earth. Washington, DC: The National Academies Press. https://doi.org/10.17226/18988. [17]Google Scholar
National Research Council, 2015b: Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration. Washington, DC: The National Academies Press. https://doi.org/10.17226/18805. [17]Google Scholar
National Research Council, 2016: Attribution of Extreme Weather Events in the Context of Climate Change. Washington, DC: The National Academies Press, 165pp. https://doi.org/10.17226/21852. [15]Google Scholar
Nerem, R. S., Beckley, B. D., Fasullo, J. T., et al., 2018: Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proceedings of the National Academy of Sciences USA, 115, 20222025. [14]Google Scholar
Newman, M., Alexander, M. A., Ault, T. R., et al., 2016: The Pacific Decadal Oscillation, revisited. Journal of Climate, 29, 43994427. https://doi.org/10.1175/JCLI-D-15-0508.1. [11] [12]Google Scholar
Newman, M., Wittenberg, A. T., Cheng, L., Compo, G. P., and Smith, C. A., 2018: The extreme 2015/16 El Niño, in the context of historical climate variability and change. Bulletin of the American Meteorological Society, 99, S16S20. [12]Google Scholar
O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., et al., 2016: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscience Model Development, 9, 34613482. https://doi.org/10.5194/gmd-9-3461-2016. [16]Google Scholar
Oort, A. H., 1971: The observed annual cycle in the meridional transport of atmospheric energy. Journal of the Atmospheric Sciences, 28, 325339. [9]Google Scholar
Oort, A. H, and Vonder Haar, T., 1976: On the observed annual cycle in the ocean–atmosphere heat balance over the Northern Hemisphere. Journal of Physical Oceanography, 6, 781800. [9]Google Scholar
Oreskes, N., and Conway, E. M., 2010: Merchants of Doubt. London: Bloomsbury Press, 355pp. [1]Google ScholarPubMed
Pall, P., Patricola, C. M., Wehner, M., et al., 2017: Diagnosing conditional anthropogenic contributions to heavy Colorado rainfall in September 2013. Weather Climate Extremes, 17, 16. https://doi.org/10.1016/j.wace.2017.03.004. [10] [15]CrossRefGoogle Scholar
Palmer, W. C., 1965: Meteorological drought. Report 45, US Department of Commerce, Washington, DC, 58pp. www.ncdc.noaa.gov/oa/climate/research/drought/palmer.pdf. [10]Google Scholar
Paolo, F., Fricker, H., and Padman, L., 2015: Volume loss from Antarctic ice shelves is accelerating. Science, 348, 327331. https://doi.org/10.1126/science.aaa0940. [14]Google Scholar
Parkinson, C., 2019: A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proceedings of the National Academy of Sciences USA, 116, 1441414423. www.pnas.org/cgi/doi/10.1073/pnas.1906556116. [14]Google Scholar
Peixoto, J. P., and Oort, A. H., 1992: Physics of Climate.New York: American Institute of Physics, 520pp. [9] [10]Google Scholar
Riser, S. C., Freeland, H. J., Roemmich, D., et al., 2016: Fifteen years of ocean observations with the global Argo array. Nature Climate Change, 6(2), 145153. https://doi.org/10.1038/nclimate2872. [14]Google Scholar
Ruppert, J. H., Jr., and Chen, X., 2020: Island rainfall enhancement in the maritime continent. Geophysical Research Letters, 47, e2019GL086545. https://doi.org/10.1029/2019GL086545. [7]Google Scholar
Santoso, A., McPhaden, M. J., and Cai, W., 2017: The defining characteristics of ENSO extremes and the strong 2015/16 El Niño. Review of Geophysics, 55, 10791129. https://doi.org/10.1002/2017RG000560. [12]Google Scholar
Schär, C., Arteaga, A., Ban, C.C.N, et al., 2020: Kilometer-scale climate models: prospects and challenges. Bulletin of the American Meteorological Society, 101. https://doi.org/10.1175/BAMS-D-18-0167.2. [1]CrossRefGoogle Scholar
Schlosser, C. A., Strzepek, K., Gao, X., et al., 2014: The future of global water stress: an integrated assessment. Earth’s Future, 2, 341361. https://doi.org/10.1002/2014EF000238. [10]CrossRefGoogle Scholar
Schmidt, A., Mills, M. J., Ghan, S., et al., 2018: Volcanic radiative forcing from 1979 to 2015. Journal of Geophysical Research: Atmospheres.123, 12491-412508. [14]Google Scholar
Schmidt, G. A., Ruedy, R. A., Miller, R. L., and Lacis, A. A., 2010: Attribution of the present‐day total greenhouse effect. Journal of Geophysical Research, 115, D20106. https://doi.org/10.1029/2010JD014287. [3]Google Scholar
Schneider, A. M., Friedl, A., and Potere, D., 2009: A new map of global urban extent from MODIS satellite data. Environmental Research Letters, 4, 044003. https://doi.org/10.1088/1748-9326/4/4/044003. [6]Google Scholar
Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R., 2011: Uncertainty in modeled Arctic sea ice volume. Journal of Geophysical Research, 116, C00D06. https://doi.org/10.1029/ 2011JC007084. [14]Google Scholar
Shepherd, A., Gilbert, L., Muir, A. S., et al., 2019: Trends in Antarctic Ice Sheet elevation and mass. Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL082182. [14]CrossRefGoogle ScholarPubMed
Shepherd, T. G., Boyd, E., Calel, R. A., et al., 2018: Storylines: an alternative approach to representing uncertainty in climate change. Climatic Change, 151, 555571. https://doi10.1007/s10584–018-2317-9. [15]Google Scholar
Sherwood, S., Webb, M. J., Annan, J. D., et al., 2020: An assessment of Earth’s climate sensitivity using multiple lines of evidence. Review of Geophysics. https://doi.org/10.1029/2019RG000678. [13]Google Scholar
Shindell, D. T., Faluvegi, G., and Schmidt, G. A., 2020: Influences of solar forcing at ultraviolet and longer wavelengths on climate. Journal of Geophysical Research: Atmospheres, 124. https://doi.org/10.1029/2019JD031640. [4]Google Scholar
Silverman, J., 2013: Opening Heaven’s Floodgates: The Genesis Flood Narrative, Its Context, and Reception. Piscataway, NJ: Gorgias Press, 548pp. [5]Google Scholar
Smith, B., Fricker, H. A., Gardner, A. S., et al., 2020: Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science, 368, 12391242. https://doi.org/10.1126/science.aaz5845. [14]Google Scholar
Solomon, S., Plattner, G.-K., Knutti, R., and Friedlingstein, P., 2009: Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences USA, 106, 17041709. https://doi.org/10.1073/pnas.0812721106. [17]Google Scholar
Song, X.-P., Hansen, M. C., Stehman, S. V., et al., 2018: Global land change from 1982 to 2016. Nature, 560, 639643. https://doi.org/10.1038/s41586-018-0411-9. [14]Google Scholar
Stoerk, T., Wagner, G., and Ward, R. E. T., 2018: Policy brief. Recommendations for improving the treatment of risk and uncertainty in economic estimates of climate impacts in the Sixth Intergovernmental Panel on Climate Change Assessment Report. Reviews of Environmental Economics Policy, 12, 371376. https://doi.org/10.1093/reep/rey005. [18]CrossRefGoogle Scholar
Storto, A., Alvera-Azcárate, A., Balmaseda, M., et al., 2019: Ocean reanalyses: recent advances and unsolved challenges. Frontiers in Marine Science, 6, 418. https://doi.org/10.3389/fmars.2019.00418. [14]Google Scholar
Sun, Q., Miao, C., Duan, Q., et al., 2018: A review of global precipitation data sets: data sources, estimation, and intercomparisons. Reviews of Geophysics, 56, 79107. https://doi.org/10.1002/. [5]Google Scholar
Swart, N. C., Fyfe, J. C., Gillett, N., and Marshall, G. J., 2015: Comparing trends in the Southern Annular Mode and surface westerly jet. Journal of Climate, 28, 88408855. https://doi.org/10.1175/JCLI-D-15-0334.1. [11]Google Scholar
Thompson, D. W. J., and Wallace, J. M., 2000: Annular modes in the extratropical circulation, Pt I: Month-to-month variability. Journal of Climate, 13, 10001016. [11]Google Scholar
Thompson, D. W. J., Wallace, J. M., and Hegerl, G. C., 2000: Annular modes in the extratropical circulation. Part II: Trends. Journal of Climate, 13, 10181036. [11]Google Scholar
Thompson, D. W. J., Baldwin, M. P., and Wallace, J. M., 2002: Stratospheric connection to Northern Hemisphere wintertime weather: implications for prediction. Journal of Climate, 15, 14211428. [11]Google Scholar
Tollefson, J., 2020: Can the world slow global warming.? Nature, 573, 324327. https://nature.us17.list-manage.com/track/click?u=2c6057c528fdc6f73fa196d9d&id=731f36c0aa&e=3cdb1f115b. [17]Google Scholar
Trenberth, K. E., 1976: Spatial and temporal variations of the Southern Oscillation. Quarterly Journal of the Royal Meteorological Society, 102, 639653. [12]Google Scholar
Trenberth, K. E., 1983: What are the seasons? Bulletin of the American Meteorological Society, 64, 12761282. [5] [6]Google Scholar
Trenberth, K. E., 1984: Signal versus noise in the Southern Oscillation. Monthly Weather Review, 112, 326332. [12]Google Scholar
Trenberth, K. E., 1990: Recent observed interdecadal climate changes in the Northern Hemisphere. Bulletin of the American Meteorological Society, 71, 988993. [11] [12]2.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E., ed., 1992: Climate System Modeling. Cambridge: Cambridge University Press, 788pp. [1][16]Google Scholar
Trenberth, K. E., 1994: The different flavors of El Niño. 18th Annual Climate Diagnostics Workshop, November 1–5, 1993, Boulder, CO, 50–53. [12]Google Scholar
Trenberth, K. E., 1997a: The definition of El Niño. Bulletin of the American Meteorological Society, 78, 27712777. [12]Google Scholar
Trenberth, K. E., 1997b: The use and abuse of climate models in climate change research. Nature, 386, 131133. [1] [2]Google Scholar
Trenberth, K. E., 1998: Atmospheric moisture residence times and cycling: implications for rainfall rates with climate change. Climatic Change, 39, 667694. [5] [10]Google Scholar
Trenberth, K. E., 1999a: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42, 327339. [5]CrossRefGoogle Scholar
Trenberth, K. E., 1999b: Atmospheric moisture recycling: role of advection and local evaporation. Journal of Climate, 12, 13681381. [10]2.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E., 2001: Stronger evidence for human influences on climate: the 2001 IPCC Assessment. Environment, 43(4), 819. [1]Google Scholar
Trenberth, K. E., 2007: Warmer oceans, stronger hurricanes. Scientific American, July, 45−51. [7]Google Scholar
Trenberth, K. E., 2008: Observational needs for climate prediction and adaptation. WMO Bulletin, 57 (1), 1721. [17]Google Scholar
Trenberth, K. E., 2009: An imperative for adapting to climate change: tracking Earth’s global energy. Current Opinion on Environmental Sustainability, 1, 1927. https://doi.org/10.1016/j.cosust.2009.06.001. [14]Google Scholar
Trenberth, K. E., 2011a: Attribution of climate variations and trends to human influences and natural variability. WIREs Climate Change, 2, 925930. https://doi.org/10.1002/wcc.142;http://doi.wiley.com/10.1002/wcc.142. [15]Google Scholar
Trenberth, K. E., 2011b: Changes in precipitation with climate change. Climate Research, 47, 123138. https://doi.org/10.3354/cr00953. [5] [10]Google Scholar
Trenberth, K. E., 2012: Framing the way to relate climate extremes to climate change. Climatic Change, 115, 283290, https://doi.org/10.1007/s10584-012-0441-5. [15]Google Scholar
Trenberth, K. E., 2015a: Has there been a hiatus? Science, 349(2649), 691692. https://doi.org/10.1126/science.aac9225. [11] [15]Google Scholar
Trenberth, K. E., 2015b: Intergovernmental Panel on Climate Change. In: North, G. R. (ed.-in-chief), Pyle, J., and Zhang, F., eds., Encyclopedia of Atmospheric Sciences, 2nd ed., vol. 2. London: Academic Press, 9094. [16]Google Scholar
Trenberth, K. E., 2018: Climate change caused by human activities is happening and it already has major consequences. Journal of Energy Water Resources Law, 36, 463481. https://doi.org/10.1080/02646811.2018.1450895. [1]Google Scholar
Trenberth, K. E., 2020: Understanding climate change through Earth’s Energy Flows. Journal of the Royal Society New Zealand, 50, 331347. NZJR-2020-0003, https://doi.org/10.1080/03036758.2020.1741404. [1]Google Scholar
Trenberth, K. E., and Caron, J. M., 2000: The Southern Oscillation revisited: sea level pressures, surface temperatures and precipitation. Journal of Climate, 13, 43584365. [12]Google Scholar
Trenberth, K. E., and Caron, J. M., 2001: Estimates of meridional atmosphere and ocean heat transports. Journal of Climate, 14, 34333443. [9]Google Scholar
Trenberth, K. E., and Dai, A., 2007: Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophysical Research Letters, 34, L15702. https://doi.org/10.1029/2007GL030524. [10]Google Scholar
Trenberth, K. E., and Fasullo, J., 2007: Water and energy budgets of hurricanes and implications for climate change. Journal of Geophysical Research, 112, D23107. https://doi.org/10.1029/2006JD008304. [7] [10]Google Scholar
Trenberth, K. E., and Fasullo, J., 2008: Energy budgets of Atlantic hurricanes and changes from 1970. Geochemistry, Geophysics, Geosystems, 9, Q09V08. https://doi.org/10.1029/2007GC001847. [7]Google Scholar
Trenberth, K. E., and Fasullo, J. T., 2010: Tracking Earth’s energy. Science, 328, 316317. [14]Google Scholar
Trenberth, K. E., and Fasullo, J. T., 2011: Tracking Earth’s energy: from El Niño to global warming. Surveys in Geophysics, https://doi.org/10.1007/s10712-011-9150-2. [3]Google Scholar
Trenberth, K. E., and Fasullo, J. T., 2012: Climate extremes and climate change: the Russian heat wave and other climate extremes of 2010. Journal of Geophysical Research, 117, D17103. https://doi.org/10.1029/2012JD018020. [5]Google Scholar
Trenberth, K. E., and Fasullo, J. T., 2013: An apparent hiatus in global warming? Earth’s Future. 1, 1932. https://doi.org/10.002/2013EF000165. [15]Google Scholar
Trenberth, K. E., and Hoar, T. J., 1996: The 1990–1995 El Niño–Southern Oscillation Event: longest on record. Geophysical Research Letters, 23, 5760. [12]Google Scholar
Trenberth, K. E., and Hoar, T. J., 1997: El Niño and climate change. Geophysical Research Letters, 24, 30573060. [12]Google Scholar
Trenberth, K. E., and Hurrell, J. W., 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dynamics, 9, 303319. [11]Google Scholar
Trenberth, K. E., and Hurrell, J. W., 2019: Climate change. In: Dunn, P. O., and Møller, A. P., eds., The Effects of Climate Change on Birds, 2nd ed. Oxford: Oxford University Press, 525. [11] [12]Google Scholar
Trenberth, K. E., and Otto-Bliesner, B. L., 2003: Toward integrated reconstructions of past climates. Science, 300, 589591. [4]Google Scholar
Trenberth, K. E., and Shea, D. J., 1987: On the evolution of the Southern Oscillation. Monthly Weather Review, 115, 30783096. [12]Google Scholar
Trenberth, K. E., and Shea, D. J., 2005: Relationships between precipitation and surface temperature. Geophysical Research Letters, 32, L14703. https://doi.org/10.1029/2005GL022760. [5]Google Scholar
Trenberth, K. E., and Shea, D. J., 2006: Atlantic hurricanes and natural variability in 2005. Geophysical Research Letters, 33, L12704. https://doi.org/10.1029/2006GL026894. [11]CrossRefGoogle Scholar
Trenberth, K. E., and Smith, L., 2005: The mass of the atmosphere: a constraint on global analyses. Journal of Climate, 18, 864875. [6]Google Scholar
Trenberth, K. E., and Stepaniak, D. P., 2001: Indices of El Niño evolution. Journal of Climate, 14, 16971701. [12]Google Scholar
Trenberth, K. E., and Stepaniak, D. P., 2003a: Co-variability of components of poleward atmospheric energy transports on seasonal and interannual timescales. Journal of Climate, 16, 36913705. https://doi.org/10.1175/1520-0442(2003)016,3691:COCOPA.2.0.CO;2. [7] [9]Google Scholar
Trenberth, K. E., and Stepaniak, D. P., 2003b: Seamless poleward atmospheric energy transports and implications for the Hadley circulation. Journal of Climate, 16, 37063722. https://doi.org/10.1175/1520-0442(2003)016,3706:SPAETA.2.0.CO;2. [7] [9]Google Scholar
Trenberth, K. E., and Stepaniak, D. P., 2004: The flow of energy through the Earth’s climate system. Quarterly Journal of the Royal Meteorological Society, 130, 26772701. https://doi.org/10.1256/qj.04.83. [6]Google Scholar
Trenberth, K. E., and Zhang, Y., 2018a: How often does it really rain? Bulletin of the American Meteorological Society, 99, 289298. https://doi.org/10.1175/BAMS-D-17-0107.1. [5] [7] [10]Google Scholar
Trenberth, K. E. and Zhang, Y., 2018b: Near global covariability of hourly precipitation in space and time. Journal of Hydrometeorology, 19, 695713. https://doi.org/10.1175/JHM-D-17-0238.1. [5] [7] [10]Google Scholar
Trenberth, K. E., and Zhang, Y., 2019: Observed inter-hemispheric meridional heat transports and the role of the Indonesian ThroughFlow in the Pacific Ocean. Journal of Climate, 32, 85238536. https://journals.ametsoc.org/doi/pdf/10.1175/JCLI-D-19-0465.1. [9] [14]Google Scholar
Trenberth, K. E., Houghton, J. T., and Meira Filho, L. G.. 1996: The climate system: an overview. In: Houghton, J. T., Meira Filho, L. G., Callander, B., et al., eds., Climate Change 1995. The Science of Climate Change. Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 5164. [1]Google Scholar
Trenberth, K. E., Branstator, G. W., Karoly, D., Kumar, A., Lau, N-C., and Ropelewski, C., 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. Journal of Geophysical Research, 103, 1429114324. [11] [12]Google Scholar
Trenberth, K. E., Stepaniak, D. P., and Caron, J. M., 2000: The global monsoon as seen through the divergent atmospheric circulation. Journal of Climate, 13, 39693993. [7]Google Scholar
Trenberth, K. E., Caron, J. M., Stepaniak, D. P., and Worley, S., 2002: Evolution of El Niño Southern Oscillation and global atmospheric surface temperatures. Journal of Geophysical Research, 107(D8), 4065. https://doi.org/10.1029/2000JD000298. [12]Google Scholar
Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B., 2003: The changing character of precipitation. Bulletin of the American Meteorological Society, 84, 12051217. https://doi.org/10.1175/bams-84-9-1205. [5] [10]Google Scholar
Trenberth, K. E., Smith, L., Qian, T., Dai, A., and Fasullo, J., 2007: Estimates of the global water budget and its annual cycle using observational and model data. Journal of Hydrometeorology, 8, 758769. https://doi.org/10.1175/JHM600.1. [10]Google Scholar
Trenberth, K. E., Jones, P. D., Ambenje, P., et al., 2007a: Observations: surface and atmospheric climate change. In: Solomon, S., Qin, D., Manning, M., et al., eds., Climate Change 2007. The Physical Science Basis. Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 235336. [11] [12]Google Scholar
Trenberth, K. E., Davis, C. A., and Fasullo, J., 2007b: Water and energy budgets of hurricanes: case studies of Ivan and Katrina. Journal of Geophysical Research, 112, D23106. https://doi.org/10.1029/2006JD008303. [7]Google Scholar
Trenberth, K. E., Fasullo, J. T., and Kiehl, J., 2009: Earth’s global energy budget. Bulletin of the American Meteorological Society, 90, 311323. https://doi.org/10.1175/2008BAMS2634.1. [3]Google Scholar
Trenberth, K. E., Anthes, R. A., Belward, A., et al., 2013: Challenges of a sustained climate observing system. In: Asrar, G. R., and Hurrell, J. W., eds., Climate Science for Serving Society: Research, Modelling and Prediction Priorities. Dordrecht: Springer, 1350. [17]Google Scholar
Trenberth, K. E., Fasullo, J. T., and Balmaseda, M. A., 2014a: Earth’s energy imbalance. Journal of Climate, 27, 31293144. https://doi.org/10.1175/JCLI‐D-13-00294. [14]Google Scholar
Trenberth, K. E., Dai, A., van der Schrier, G., et al., 2014b: Global warming and changes in drought. Nature Climate Change, 4, 1722. https://doi.org/10.1038/NCLIMATE2067. [10] [12]CrossRefGoogle Scholar
Trenberth, K. E., Fasullo, J. T., Branstator, G., and Phillips, A. S., 2014c: Seasonal aspects of the recent pause in surface warming. Nature Climate Change, 4, 911916. https://doi.org/10.1038/NCLIMATE2341. http://rdcu.be/o7wB [15]Google Scholar
Trenberth, K. E., Fasullo, J. T., and Shepherd, T. G., 2015a: Attribution of climate extreme events. Nature Climate Change, 5, 725730. https://doi.org/10.1038/NCLIMATE2657. [15]Google Scholar
Trenberth, K. E., Zhang, Y., Fasullo, J. T., and Taguchi, S., 2015b: Climate variability and relationships between top-of-atmosphere radiation and temperatures on Earth. Journal of Geophysical Research, 120, 36423659. https://doi.org/10.1002/2014JD022887. [13]Google Scholar
Trenberth, K. E., Zhang, Y., and Fasullo, J. T., 2015c: Relationships among top-of-atmosphere radiation and atmospheric state variables in observations and CESM. Journal of Geophysical Research, 120, 10,074–10,090. https://doi.org/10.1002/2015JD023381. [13]Google Scholar
Trenberth, K. E., Fasullo, J. T., von Schuckmann, K. and Cheng, L., 2016a: Insights into Earth’s energy imbalance from multiple sources. Journal of Climate, 29, 74957505. http://dx.doi.org/10.1175/JCLI-D-16-0339.1. [14]Google Scholar
Trenberth, K. E., Marquis, M., and Zebiak, S., 2016b: The vital need for a climate information system. Nature Climate Change, 6, 10571059. https://doi.org/10.1038/NCLIM-16101680. [17]Google Scholar
Trenberth, K. E., Zhang, Y., and Gehne, M., 2017: Intermittency in precipitation: duration, frequency, intensity, and amounts using hourly data. Journal of Hydrometeorology, 18, 13931412. https://doi.org/10.1175/JHM-D-16-0263. [5] [10]Google Scholar
Trenberth, K. E., Cheng, L., Jacobs, P., Zhang, Y., and Fasullo, J., 2018: Hurricane Harvey links to ocean heat content. Earth’s Future, 6, 730744. https://doi.org/10.1029/2018EF000825. [7] [10] [12]Google Scholar
Trenberth, K. E., Zhang, Y., Fasullo, J. T., and Cheng, L., 2019: Observation-based estimates of global and basin ocean meridional heat transport time series. Journal of Climate, 32, 45674583. https://doi.org/10.1175/JCLI-D-18-0872.1. [8] [9] [10]CrossRefGoogle Scholar
Turner, J., Phillips, T., Marshall, G. J., et al., 2017: Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophysical Research Letters, 44, 68686875. https://doi.org/10.1002/2017GL073656. [11] [14]Google Scholar
USGCRP, 2017: Climate Science Special Report: Fourth National Climate Assessment, Vol. I, edited byWuebbles, D.J., Fahey, D.W., Hibbard, K.A., et al. Washington, DC: US Global Change Research Program, 470pp. https://science2017.globalchange.gov/. [16] [17]Google Scholar
USGCRP, 2018: Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Vol. II, edited by Reidmiller, D. R., Avery, C. W., Easterling, D. R., et al. Washington, DC: US Global Change Research Program, 1515 pp. https://doi.org/10.7930/NCA4.2018. [17]Google Scholar
Vanderkelen, I., van Lipzig, N. P. M., Lawrence, D. M., et al., 2020. Global heat uptake by inland waters. Geophysical Research Letters, 47. https://doi.org/10.1029/2020GL087867. [14]Google Scholar
van Vuuren, D. P., Edmonds, J., Kainuma, M., et al., 2011: The representative concentration pathways: an overview. Climatic Change, 109, 531. https://doi.org/10.1007/s10584–011-0148-z. [16]Google Scholar
Vecchi, G. A., and Soden, B. J., 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070. https://doi.org/10.1038/nature06423. [7]Google Scholar
von Schuckmann, K., Palmer, M. D., Trenberth, K. E., et al., 2016: Earth’s energy imbalance: an imperative for monitoring. Nature Climate Change, 6, 138144. https://doi.org/10.1038/NCLIM-15030445C. www.nature.com/nclimate/journal/v6/n2/full/nclimate2876.html. [14]Google Scholar
Wells, N., Goddard, S., and Hayes, M. J., 2004: A self‐calibrating Palmer Drought Severity Index. Journal of Climate, 17, 23352351. https://doi.org/10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2. [10]Google Scholar
Wild, M., Folini, D., Hakuba, M. Z., et al., 2015: The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Climate Dynamics, 44, 33933429. [3]Google Scholar
Williams, A. P., Abatzoglou, J. T., Gershunov, A., et al., 2019: Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Future, 7, 892910. https://doi.org/10.1029/2019EF001210. [10]Google Scholar
Williams, I. N., and Patricola, C. M., 2018: Diversity of ENSO events unified by convective threshold sea surface temperature: a nonlinear ENSO index. Geophysical Research Letters, 45. 92369244. https://doi.org/10.1029/2018GL079203. [12]Google Scholar
Wolter, K., and Timlin, M. S., 2011: El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). International Journal of Climatology, 31, 10741087. https://doi.org/10.1002/joc.2336. [12]Google Scholar
Xie, P., Joyce, R., Wu, S., et al., 2017: Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates. Journal of Hydrometeorology, 18, 16171641. https://doi.org/10.1175/JHM-D-16-0168.1 [5] [7]Google Scholar
Yang, C.; Masina, S., and Storto, A., 2017: Historical ocean reanalyses (1900–2010) using different data assimilation strategies. Quarterly Journal of the Royal Meteorological Society, 143, 479493. https://doi.org/10.1002/qj.2936. [14]Google Scholar
Zanna, L.,Khatiwala, S., Gregory, J. M., Ison, J., and Heimbach, P., 2019: Global reconstruction of historical ocean heat storage and transport. Proceedings of the National Academy of Sciences USA, 116, 11261131. https://doi.org/10.1073/pnas.1808838115. [14]Google Scholar
Zelinka, M. D., Myers, T. A., McCoy, D. T., et al., 2020: Causes of higher climate sensitivity in CMIP6 models. Geophysical Research Letters, 47, e2019GL085782. [13]Google Scholar
Zhu, J., Poulsen, C. J., and Otto-Bliesner, B. L., 2020: High climate sensitivity in CMIP6 model not supported by paleoclimate. Geophysical Research Letters, 47. https://doi.org/10.1038/s41558-020-0764-6. [13]Google Scholar
ACRI(Actuaries Climate Risk Index), 2020: www.actuary.org/sites/default/files/2020-01/ACRI.pdf [18]Google Scholar
AVISO: Archiving, Validation and Interpretation of Satellite Oceanographic data: www.aviso.altimetry.fr/en/home.html [14]Google Scholar
Bast, E., 2015: Empty promises: G20 subsidies to oil, gas and coal production. http://priceofoil.org/2015/11/11/empty-promises-g20-subsidies-to-oil-gas-and-coal-production/ [18]Google Scholar
Hausfather, Z., 2018: Explainer: How ‘Shared Socioeconomic Pathways’ explore future climate change. www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change [16]Google Scholar
Hausfather, Z., and Betts, R., 2020: Importance of carbon-cycle feedback uncertainties. www.carbonbrief.org/analysis-how-carbon-cycle-feedbacks-could-make-global-warming-worse [2]Google Scholar
IPCC (Intergovernmental Panel on Climate Change), Fifth Assessment Reports (AR5) www.ipcc.ch/report/ar5/ and reports from Working Groups 1, 2 and 3: www.ipcc.ch/report/ar5/wg1/; www.ipcc.ch/report/ar5/wg2/; www.ipcc.ch/report/ar5/wg3/ [17] [18]Google Scholar
Keen, S., 2020: The appallingly bad neoclassical economics of climate change. Globalizations, https://doi.org/10.1080/14747731.2020.1807856 [18]Google Scholar
NOAA (National Oceanic and Atmospheric Administration), 2020: www.climate.gov/ [14]Google Scholar
NRC (National Research Council), 2010: America’s Climate Choices: Advancing the Science of Climate Change. www.nap.edu/catalog.php?record_id=12782 [18]Google Scholar
NRC, 2011: Climate Stabilization Targets: Emissions, Concentrations, and Impacts over Decades to Millennia. www.nap.edu/catalog.php?record_id=12877 [18]Google Scholar
NRC, 2013: Abrupt Impacts of Climate Change: Anticipating Surprise. www.nap.edu/catalog.php?record_id=18373 [18]Google Scholar
NRC, 2014, and Royal Society, 2014: Climate Change: Evidence and Causes, Washington, DC: National Academy Press, 33pp. www.nap.edu/catalog.php?record_id=18730 [18]Google Scholar
Paulsen, H. and Bloomberg, M., 2014: Risky Business: The Economic Risks of Climate Change in the United States. http://riskybusiness.org/report/national/ [18]Google Scholar
Pope Francis, 2015: Laudato Si. https://laudatosi.com/watch [18]Google Scholar
Ritchie, H., and Roser, M., 2017: CO₂ and Greenhouse Gas Emissions. Published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions. [17]Google Scholar
Ritchie, H., and Roser, M., 2020: Land Use. Published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/land-use, 26 April 2020. [6]Google Scholar
UNFCCC(United Nations Framework Convention on Climate Change): https://unfccc.int/2860.php [18]Google Scholar
ACRI(Actuaries Climate Risk Index), 2020: www.actuary.org/sites/default/files/2020-01/ACRI.pdf [18]Google Scholar
AVISO: Archiving, Validation and Interpretation of Satellite Oceanographic data: www.aviso.altimetry.fr/en/home.html [14]Google Scholar
Bast, E., 2015: Empty promises: G20 subsidies to oil, gas and coal production. http://priceofoil.org/2015/11/11/empty-promises-g20-subsidies-to-oil-gas-and-coal-production/ [18]Google Scholar
Hausfather, Z., 2018: Explainer: How ‘Shared Socioeconomic Pathways’ explore future climate change. www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change [16]Google Scholar
Hausfather, Z., and Betts, R., 2020: Importance of carbon-cycle feedback uncertainties. www.carbonbrief.org/analysis-how-carbon-cycle-feedbacks-could-make-global-warming-worse [2]Google Scholar
IPCC (Intergovernmental Panel on Climate Change), Fifth Assessment Reports (AR5) www.ipcc.ch/report/ar5/ and reports from Working Groups 1, 2 and 3: www.ipcc.ch/report/ar5/wg1/; www.ipcc.ch/report/ar5/wg2/; www.ipcc.ch/report/ar5/wg3/ [17] [18]Google Scholar
Keen, S., 2020: The appallingly bad neoclassical economics of climate change. Globalizations, https://doi.org/10.1080/14747731.2020.1807856 [18]Google Scholar
NOAA (National Oceanic and Atmospheric Administration), 2020: www.climate.gov/ [14]Google Scholar
NRC (National Research Council), 2010: America’s Climate Choices: Advancing the Science of Climate Change. www.nap.edu/catalog.php?record_id=12782 [18]Google Scholar
NRC, 2011: Climate Stabilization Targets: Emissions, Concentrations, and Impacts over Decades to Millennia. www.nap.edu/catalog.php?record_id=12877 [18]Google Scholar
NRC, 2013: Abrupt Impacts of Climate Change: Anticipating Surprise. www.nap.edu/catalog.php?record_id=18373 [18]Google Scholar
NRC, 2014, and Royal Society, 2014: Climate Change: Evidence and Causes, Washington, DC: National Academy Press, 33pp. www.nap.edu/catalog.php?record_id=18730 [18]Google Scholar
Paulsen, H. and Bloomberg, M., 2014: Risky Business: The Economic Risks of Climate Change in the United States. http://riskybusiness.org/report/national/ [18]Google Scholar
Pope Francis, 2015: Laudato Si. https://laudatosi.com/watch [18]Google Scholar
Ritchie, H., and Roser, M., 2017: CO₂ and Greenhouse Gas Emissions. Published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions. [17]Google Scholar
Ritchie, H., and Roser, M., 2020: Land Use. Published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/land-use, 26 April 2020. [6]Google Scholar
UNFCCC(United Nations Framework Convention on Climate Change): https://unfccc.int/2860.php [18]Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Kevin E. Trenberth
  • Book: The Changing Flow of Energy Through the Climate System
  • Online publication: 25 February 2022
  • Chapter DOI: https://doi.org/10.1017/9781108979030.024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Kevin E. Trenberth
  • Book: The Changing Flow of Energy Through the Climate System
  • Online publication: 25 February 2022
  • Chapter DOI: https://doi.org/10.1017/9781108979030.024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Kevin E. Trenberth
  • Book: The Changing Flow of Energy Through the Climate System
  • Online publication: 25 February 2022
  • Chapter DOI: https://doi.org/10.1017/9781108979030.024
Available formats
×