Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T20:34:53.288Z Has data issue: false hasContentIssue false

3 - Techniques from group cohomology

Published online by Cambridge University Press:  09 November 2009

Philippe Gille
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Tamás Szamuely
Affiliation:
Hungarian Academy of Sciences, Budapest
Get access

Summary

In order to pursue our study of Brauer groups, we need some basic notions from the cohomology theory of groups with abelian coefficient modules. This is a theory which is well documented in the literature; we only establish here the facts we shall need in what follows, for the ease of the reader. In particular, we establish the basic exact sequences, construct cup-products and study the maps relating the cohomology of a group to that of a subgroup or a quotient. In accordance with the current viewpoint in homological algebra, we emphasize the use of complexes and projective resolutions, rather than that of explicit cocycles and the technique of dimension-shifting (though the latter are also very useful).

As already said, the subject matter of this chapter is fairly standard and almost all facts may already be found in the first monograph written on homological algebra, that of Cartan and Eilenberg [1]. Some of the constructions were first developed with applications to class field theory in view. For instance, Shapiro's lemma first appears in a footnote to Weil [1], then with a (two-page) proof in Hochschild–Nakayama [1].

Definition of cohomology groups

Let G be a group. By a (left) G-module we shall mean an abelian group A equipped with a left action by G. Notice that this is the same as giving a left module over the integral group ring Z[G]: indeed, for elements ∑ nσσ∈ Z[G] and aA we may define (∑ nσσ)a := ∑ nσσ(a) and conversely, a Z[G]- module structure implies in particular the existence of “multiplication-by-σ” maps on A for all σ ∈ G.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Techniques from group cohomology
  • Philippe Gille, Centre National de la Recherche Scientifique (CNRS), Paris, Tamás Szamuely, Hungarian Academy of Sciences, Budapest
  • Book: Central Simple Algebras and Galois Cohomology
  • Online publication: 09 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511607219.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Techniques from group cohomology
  • Philippe Gille, Centre National de la Recherche Scientifique (CNRS), Paris, Tamás Szamuely, Hungarian Academy of Sciences, Budapest
  • Book: Central Simple Algebras and Galois Cohomology
  • Online publication: 09 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511607219.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Techniques from group cohomology
  • Philippe Gille, Centre National de la Recherche Scientifique (CNRS), Paris, Tamás Szamuely, Hungarian Academy of Sciences, Budapest
  • Book: Central Simple Algebras and Galois Cohomology
  • Online publication: 09 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511607219.004
Available formats
×