Book contents
- Frontmatter
- Contents
- Contributors
- Preface
- 1 Introduction
- 2 Endothelial Mechanotransduction
- 3 Role of the Plasma Membrane in Endothelial Cell Mechanosensation of Shear Stress
- 4 Mechanotransduction by Membrane-Mediated Activation of G-Protein Coupled Receptors and G-Proteins
- 5 Cellular Mechanotransduction: Interactions with the Extracellular Matrix
- 6 Role of Ion Channels in Cellular Mechanotransduction – Lessons from the Vascular Endothelium
- 7 Toward a Modular Analysis of Cell Mechanosensing and Mechanotransduction
- 8 Tensegrity as a Mechanism for Integrating Molecular and Cellular Mechanotransduction Mechanisms
- 9 Nuclear Mechanics and Mechanotransduction
- 10 Microtubule Bending and Breaking in Cellular Mechanotransduction
- 11 A Molecular Perspective on Mechanotransduction in Focal Adhesions
- 12 Protein Conformational Change
- 13 Translating Mechanical Force into Discrete Biochemical Signal Changes
- 14 Mechanotransduction through Local Autocrine Signaling
- 15 The Interaction between Fluid-Wall Shear Stress and Solid Circumferential Strain Affects Endothelial Cell Mechanobiology
- 16 Micro- and Nanoscale Force Techniques for Mechanotransduction
- 17 Mechanical Regulation of Stem Cells
- 18 Mechanotransduction
- 19 Summary and Outlook
- Index
- Plate Section
- References
14 - Mechanotransduction through Local Autocrine Signaling
Published online by Cambridge University Press: 05 July 2014
- Frontmatter
- Contents
- Contributors
- Preface
- 1 Introduction
- 2 Endothelial Mechanotransduction
- 3 Role of the Plasma Membrane in Endothelial Cell Mechanosensation of Shear Stress
- 4 Mechanotransduction by Membrane-Mediated Activation of G-Protein Coupled Receptors and G-Proteins
- 5 Cellular Mechanotransduction: Interactions with the Extracellular Matrix
- 6 Role of Ion Channels in Cellular Mechanotransduction – Lessons from the Vascular Endothelium
- 7 Toward a Modular Analysis of Cell Mechanosensing and Mechanotransduction
- 8 Tensegrity as a Mechanism for Integrating Molecular and Cellular Mechanotransduction Mechanisms
- 9 Nuclear Mechanics and Mechanotransduction
- 10 Microtubule Bending and Breaking in Cellular Mechanotransduction
- 11 A Molecular Perspective on Mechanotransduction in Focal Adhesions
- 12 Protein Conformational Change
- 13 Translating Mechanical Force into Discrete Biochemical Signal Changes
- 14 Mechanotransduction through Local Autocrine Signaling
- 15 The Interaction between Fluid-Wall Shear Stress and Solid Circumferential Strain Affects Endothelial Cell Mechanobiology
- 16 Micro- and Nanoscale Force Techniques for Mechanotransduction
- 17 Mechanical Regulation of Stem Cells
- 18 Mechanotransduction
- 19 Summary and Outlook
- Index
- Plate Section
- References
Summary
Introduction
While mechanotransduction within the cytoskeleton, cell membrane, and cell-matrix interface are well known, multicellular tissue organization provides an additional opportunity for mechanotransduction in the extracellular space through local autocrine signaling. In many tissues and organs, cells are organized into relatively dense structures separated by narrow interstitial spaces. The interstitial fluid in these spaces facilitates nutrient and waste transport, and provides a conduit for the exchange of autocrine and paracrine signals. When mechanical loads are applied to tissues, the resulting pressure gradients can locally redistribute interstitial fluid, altering the geometry of the interstitial spaces separating cells. These changes in interstitial geometry, in the presence of a constitutively active autocrine signaling environment, provide a means for coupling mechanical loading to changes in local ligand concentration and receptor activation. In this chapter we discuss these behaviors using the example of airway epithelial cells, which exhibit constitutive autocrine signaling localized to an interstitial space that deforms under physiological levels of loading. We highlight evidence demonstrating that changes in autocrine ligand concentration arising from the deformation of the local interstitial geometry are sufficient to drive alterations in receptor activation. We then use a computational modeling approach to explore the unique characteristics of this mechanical signaling system, and discuss its broader implications.
Mechanical Stress–Induced Signaling in Bronchial Epithelium
The mechanical environment shapes the development and function of the lung’s airways from the first stages of airway morphogenesis in utero (Tschumperlin and Drazen, 2006). In the adult lung the mechanical environment is defined by a unique balance of surface, tissue, and muscle forces, but the underlying load-bearing structure is similar to many organs of the body: an epithelium-lined structure surrounded by extracellular matrix, vasculature, and mesenchymal cells (e.g., smooth muscle). In diseases such as asthma, activation of the airway smooth muscle wrapped around airways abruptly narrows the airway lumen (Figure 14.1; Plate 16) and profoundly changes the stress state within the tissue of the airway wall (Wiggs et al., 1997). Because mechanical stress–induced remodeling is well known in many tissues, and tissue remodeling is frequently observed in asthmatic airways (Bousquet et al., 2000), two related question arise: Are the cells of the airway wall responsive to the mechanical stresses that accompany smooth muscle shortening (bronchoconstriction), and if so, how do the cells sense changes in their mechanical environment?
- Type
- Chapter
- Information
- Cellular MechanotransductionDiverse Perspectives from Molecules to Tissues, pp. 339 - 359Publisher: Cambridge University PressPrint publication year: 2009
References
- 1
- Cited by