Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Prologue: Regular Variation
- 1 Preliminaries
- 2 Baire Category and Related Results
- 3 Borel Sets, Analytic Sets and Beyond: Δ21
- 4 Infinite Combinatorics in Rn: Shift-Compactness
- 5 Kingman Combinatorics and Shift-Compactness
- 6 Groups and Norms: BirkhoffKakutani Theorem
- 7 Density Topology
- 8 Other Fine Topologies
- 9 CategoryMeasure Duality
- 10 Category Embedding Theorem and Infinite Combinatorics
- 11 Effros’ Theorem and the Cornerstone Theorems of Functional Analysis
- 12 Continuity and Coincidence Theorems
- 13 * Non-separable Variants
- 14 Contrasts between Category and Measure
- 15 Interior-Point Theorems: Steinhaus–Weil Theory
- 16 Axiomatics of Set Theory
- Epilogue: Topological Regular Variation
- References
- Index
Prologue: Regular Variation
Published online by Cambridge University Press: 14 January 2025
- Frontmatter
- Dedication
- Contents
- Preface
- Prologue: Regular Variation
- 1 Preliminaries
- 2 Baire Category and Related Results
- 3 Borel Sets, Analytic Sets and Beyond: Δ21
- 4 Infinite Combinatorics in Rn: Shift-Compactness
- 5 Kingman Combinatorics and Shift-Compactness
- 6 Groups and Norms: BirkhoffKakutani Theorem
- 7 Density Topology
- 8 Other Fine Topologies
- 9 CategoryMeasure Duality
- 10 Category Embedding Theorem and Infinite Combinatorics
- 11 Effros’ Theorem and the Cornerstone Theorems of Functional Analysis
- 12 Continuity and Coincidence Theorems
- 13 * Non-separable Variants
- 14 Contrasts between Category and Measure
- 15 Interior-Point Theorems: Steinhaus–Weil Theory
- 16 Axiomatics of Set Theory
- Epilogue: Topological Regular Variation
- References
- Index
Summary
Part of the motivation for this book was its role in solving open problems in regular variation – in brief, the study of limiting relations of the form f(λx)/f(x) → g(x) as x → ∞ for all λ > 0 and its relatives. This was the subject of the earlier book Regular Variation by N. H. Bingham, C. M. Goldie and J. L. Teugels (BGT). So to serve as prologue to the present book, a brief summary of the many uses of regular variation is included, to remind readers of BGT and spare others needing to consult it. Topics covered include: probability (weak law of large numbers, central limit theorem, stability, domains of attraction, etc.), complex analysis (Abelian, Tauberian and Mercerian theorems, Levin–Pfluger theory), analytic number theory (prime divisor functions; results of Hardy and Ramanujan, Erdős and Kac, Rényi and Turán); the Cauchy functional equation g(λμ) = g(λ)g(μ) for all λ; μ > 0; dichotomy – the solutions are either very nice (powers) or very nasty (pathological – the ‘Hamel pathology’).
Keywords
- Type
- Chapter
- Information
- Category and MeasureInfinite Combinatorics, Topology and Groups, pp. 1 - 23Publisher: Cambridge University PressPrint publication year: 2025