Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Prologue: Regular Variation
- 1 Preliminaries
- 2 Baire Category and Related Results
- 3 Borel Sets, Analytic Sets and Beyond: Δ21
- 4 Infinite Combinatorics in Rn: Shift-Compactness
- 5 Kingman Combinatorics and Shift-Compactness
- 6 Groups and Norms: BirkhoffKakutani Theorem
- 7 Density Topology
- 8 Other Fine Topologies
- 9 CategoryMeasure Duality
- 10 Category Embedding Theorem and Infinite Combinatorics
- 11 Effros’ Theorem and the Cornerstone Theorems of Functional Analysis
- 12 Continuity and Coincidence Theorems
- 13 * Non-separable Variants
- 14 Contrasts between Category and Measure
- 15 Interior-Point Theorems: Steinhaus–Weil Theory
- 16 Axiomatics of Set Theory
- Epilogue: Topological Regular Variation
- References
- Index
7 - Density Topology
Published online by Cambridge University Press: 14 January 2025
- Frontmatter
- Dedication
- Contents
- Preface
- Prologue: Regular Variation
- 1 Preliminaries
- 2 Baire Category and Related Results
- 3 Borel Sets, Analytic Sets and Beyond: Δ21
- 4 Infinite Combinatorics in Rn: Shift-Compactness
- 5 Kingman Combinatorics and Shift-Compactness
- 6 Groups and Norms: BirkhoffKakutani Theorem
- 7 Density Topology
- 8 Other Fine Topologies
- 9 CategoryMeasure Duality
- 10 Category Embedding Theorem and Infinite Combinatorics
- 11 Effros’ Theorem and the Cornerstone Theorems of Functional Analysis
- 12 Continuity and Coincidence Theorems
- 13 * Non-separable Variants
- 14 Contrasts between Category and Measure
- 15 Interior-Point Theorems: Steinhaus–Weil Theory
- 16 Axiomatics of Set Theory
- Epilogue: Topological Regular Variation
- References
- Index
Summary
A point is a density point of a set if the ratio of the length of its intersection with an interval containing it to that of the interval tends to 1 as the interval shrinks to the point. The classical Lebesgue Density Theorem states that almost all points of a measurable set are density points. Declaring a set open when all its points are density points leads to a topology, the density topology. This is a fine topology – it refines the ordinary (Euclidean) topology, in having more open sets. The density-meagre sets are the Lebesgue-null sets. This result shows how working bitopologically – switching between the Euclidean and density topologies – enables us to switch between the category and measure cases. A list of properties of the line under the density topology is given. Caution is needed: for instance, the line is a topological group under the Euclidean topology, but not (only a paratopological group) under the density topology (as now multiplication is only separately but not jointly continuous).
Keywords
- Type
- Chapter
- Information
- Category and MeasureInfinite Combinatorics, Topology and Groups, pp. 101 - 113Publisher: Cambridge University PressPrint publication year: 2025