from Plaque modelling
Published online by Cambridge University Press: 03 December 2009
Introduction
The carotid bifurcation is a site of particular interest for arterial disease studies, since it is a focal site where atherosclerosis is common, particularly affecting the carotid sinus, at the origin of the internal carotids. Moreover, as the atherosclerotic plaque forms, it may become vulnerable to rupture, releasing emboli and promoting the formation of thrombus more distally, leading to stroke.
The long-standing hypothesis that hemodynamic forces correlate with the initiation and progression of atherosclerosis has been the driver for numerous computational and experimental studies of the carotid arteries over the years. Research on the combination of magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) began almost a decade ago, leading to subsequent publications on studies of large artery hemodynamics under physiologically realistic anatomical and flow conditions (Milner et al., 1998; Taylor et al., 1999; Long et al., 2000a, b; Wood et al., 2001). The use of conventional and 3D ultrasound imaging to acquire in vivo geometrical information for CFD analysis has not been widely adopted although some attempts have been made (Gill et al., 2000; Augst et al., 2003; Barratt et al., 2004; Glor et al., 2005). Computerised tomography (CT) imaging has also been used for reconstruction of subject-specific models of coronary stenoses and abdominal aortic aneurysms (Raghavan et al., 2000; Achenbach et al., 2001; Leung et al., 2005), but this technique is limited by the associated ionizing radiation.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.