Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T21:02:41.972Z Has data issue: false hasContentIssue false

34 - Molecular imaging of carotid artery disease

from Future directions in carotid plaque imaging

Published online by Cambridge University Press:  03 December 2009

James H. F. Rudd
Affiliation:
The Zena and Michael A. Wiener Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Mount Sinai School of Medicine, New York NY, USA
Michael J. Lipinski
Affiliation:
The Zena and Michael A. Wiener Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Mount Sinai School of Medicine, New York NY, USA
Fabien Hyafil
Affiliation:
The Zena and Michael A. Wiener Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Mount Sinai School of Medicine, New York NY, USA
Zahi A. Fayad
Affiliation:
The Zena and Michael A. Wiener Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Mount Sinai School of Medicine, New York NY, USA
Jonathan Gillard
Affiliation:
University of Cambridge
Martin Graves
Affiliation:
University of Cambridge
Thomas Hatsukami
Affiliation:
University of Washington
Chun Yuan
Affiliation:
University of Washington
Get access

Summary

Atherosclerosis and its complications are the scourge of Western civilization, and are becoming increasingly more frequent in the developing world (British Heart Foundation Health Promotion Research Group, 2005). Atherosclerosis affects medium- and large-sized arteries, with the carotid artery being the second most common site after the thoracic aorta (Svindland and Torvik, 1988).

Atherosclerosis is characterized by accumulation of lipid, inflammatory cells and connective tissue within the arterial wall. It is a chronic, progressive disease that has a long asymptomatic phase. The first pathological abnormality is the fatty streak, caused by an aggregation of lipid and macrophages in the subendothelial space. The fatty streak, often present within the aorta from the second decade of life (Ross, 1999), is thought to develop primarily in regions of endothelial dysfunction. Endothelial cells in regions of disrupted flow and low shear stress, often occurring in branch or bifurcation points of the arterial tree (Vander Laan et al., 2004), have decreased production of nitric oxide (Ku et al., 1985). The low shear stress also leads to increased expression of adhesion molecules and uptake of lipoproteins into the subendothelial space by means still unclear (Kinlay et al., 1998). Once oxidized, low density lipoproteins (LDL) are retained in the subendothelial space. Oxidized LDL (oxLDL) contains monocyte chemoattractant factors such as lysophosphatidylcholine and attracts further monocytes by triggering the release of monocyte chemoattractant protein-1 (MCP-1) from endothelial cells and smooth muscle cells (Cushing et al., 1990).

Type
Chapter
Information
Carotid Disease
The Role of Imaging in Diagnosis and Management
, pp. 471 - 483
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aime, S., Cabella, C., Colombatto, S., et al. (2002). Insights into the use of paramagnetic Gd(III) complexes in Magnetic resonance-molecular imaging investigations. Journal of Magnetic Resonance Imaging, 16, 394–406.CrossRefGoogle ScholarPubMed
Barkhausen, J., Ebert, W., Heyer, C., Debatin, J. F. and Weinmann, H. J. (2003). Detection of atherosclerotic plaque with gadofluorine-enhanced magnetic resonance imaging. Circulation, 108, 605–9.CrossRefGoogle ScholarPubMed
Botnar, R. M., Perez, A. S., Witte, S., et al. (2004). In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation, 109, 2023–9.CrossRefGoogle ScholarPubMed
Bremer, C., Tung, C. H. and Weissleder, R. (2001). In vivo molecular target assessment of matrix metalloproteinase inhibition., Nature Medicine, 7, 743–8.CrossRefGoogle ScholarPubMed
British Heart Foundation Health Promotion Research Group. (2005). Coronary Heart Disease Statistics. London, UK.
Burke, A. P., Farb, A., Malcom, G. T., et al. (1999). Plaque rupture and sudden death related to exertion in men with coronary artery disease. Journal of the American Medical Association, 281, 921–6.CrossRefGoogle ScholarPubMed
Cannon, C. P., Braunwald, E., McCabe, C. H., et al. (2004). Intensive versus moderate lipid lowering with statins after acute coronary syndromes. New England Journal of Medicine, 350, 1495–504.CrossRefGoogle ScholarPubMed
Choudhury, R. P., Fuster, V. and Fayad, Z. A. (2004). Molecular, cellular and functional imaging of atherothrombosis. Nature Reviews. Drug Discovery, 3, 913–25.CrossRefGoogle ScholarPubMed
Chu, B., Kampschulte, A., Ferguson, M. S., et al. (2004). Hemorrhage in the atherosclerotic carotid plaque: a high-resolution Magnetic resonance imaging study. Stroke, 35, 1079–84.CrossRefGoogle Scholar
Corti, R., Fuster, V., Fayad, Z. A., et al. (2005). Effects of aggressive versus conventional lipid-lowering therapy by simvastatin on human atherosclerotic lesions: a prospective, randomized, double-blind trial with high-resolution magnetic resonance imaging. Journal of the American College of Cardiology, 46, 106–12.CrossRefGoogle ScholarPubMed
Cushing, S. D., Berliner, J. A., Valente, A. J., et al. (1990). Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proceedings of the National Academy of Science UltrasoundA, 87, 5134–8.CrossRefGoogle ScholarPubMed
Faxon, D. P., Fuster, V., Libby, P., et al. (2004). Atherosclerotic vascular disease conference: writing group III: pathophysiology. Circulation, 109, 2617–25.CrossRefGoogle ScholarPubMed
Fayad, Z. A. and Fuster, V. (2000). Characterization of atherosclerotic plaques by magnetic resonance imaging. Annals of the New York Academy of Science, 902, 173–86.CrossRefGoogle ScholarPubMed
Frias, J. C., Williams, K. J., Fisher, E. A. and Fayad, Z. A. (2004). Recombinant HDL-like nanoparticles: a specific contrast agent for Magnetic resonance imaging of atherosclerotic plaques. Journal of the American Chemical Society, 126, 16316–17.CrossRefGoogle ScholarPubMed
Glagov, S., Weisenberg, E., Zarins, C. K., Stankunavicius, R. and Kolettis, G. J. (1987). Compensatory enlargement of human atherosclerotic coronary arteries. New England Journal of Medicine, 316, 1371–5.CrossRefGoogle ScholarPubMed
Hamilton, J. A., Myers, D., Jessup, W., et al. (1999). Oxidized LDL can induce macrophage survival, Deoxyribonucleic acid synthesis, and enhanced proliferative response to CSF-1 and GM-CSF. Arteriosclerosis, Thrombosis and Vascular Biology, 19, 98–105.CrossRefGoogle Scholar
Itskovich, V. V., Choudhury, R. P., Aguinaldo, J. G., et al. (2003). Characterization of aortic root atherosclerosis in ApoE knockout mice: high-resolution in vivo and ex vivo Magnetic resonanceM with histological correlation. Magnetic Resonance in Medicine, 49, 381–5.CrossRefGoogle ScholarPubMed
Kang, H. W., Josephson, L., Petrovsky, A., Weissleder, R. and Bogdanov, A. Jr. (2002). Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjugate Chemistry, 13, 122–7.CrossRefGoogle ScholarPubMed
Kato, M., Dote, K., Habara, S., et al. (2003). Clinical implications of carotid artery remodeling in acute coronary syndrome: ultrasonographic assessment of positive remodeling. Journal of the American College of Cardiology, 42, 1026–32.CrossRefGoogle ScholarPubMed
Kelly, K. A., Allport, J. R., Tsourkas, A., et al. (2005). Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circulation Research, 96, 327–36.CrossRefGoogle ScholarPubMed
Kerwin, W., Hooker, A. and Spilker, M. (2003). Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation, 107, 851–6.CrossRefGoogle ScholarPubMed
Kinlay, S., Selwyn, A. P., Libby, P. and Ganz, P. (1998). Inflammation, the endothelium, and the acute coronary syndromes. Journal of Cardiovascular Pharmacology, 32 (Suppl. 3), S62–6.Google ScholarPubMed
Kolodgie, F. D., Gold, H. K., Burke, A. P., et al. (2003). Intraplaque hemorrhage and progression of coronary atheroma. New England Journal of Medicine, 349, 2316–25.CrossRefGoogle ScholarPubMed
Kooi, M. E., Cappendijk, V. C., Cleutjens, K. B., et al. (2003). Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation, 107, 2453–8.CrossRefGoogle ScholarPubMed
Ku, D. N., Giddens, D. P., Zarins, C. K. and Glagov, S. (1985). Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis, 5, 293–302.CrossRefGoogle ScholarPubMed
Kumamoto, M., Nakashima, Y. and Sueishi, K. (1995). Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significance. Human Pathology, 26, 450–6.CrossRefGoogle ScholarPubMed
Lauffer, R. B., Parmelee, D. J., Dunham, S. U., et al. (1998). MS-325: albumin-targeted contrast agent for Magnetic resonance angiography. Radiology, 207, 529–38.CrossRefGoogle Scholar
Libby, P. (2001). Current concepts of the pathogenesis of the acute coronary syndromes. Circulation, 104, 365–72.CrossRefGoogle ScholarPubMed
Lipinski, M. J., Fuster, V., Fisher, E. A. and Fayad, Z. A. (2004). Technology insight: targeting of biological molecules for evaluation of high-risk atherosclerotic plaques with magnetic resonance imaging. Nature Clinical Practice. Cardiovascular Medicine, 1, 48–55.Google ScholarPubMed
Litovsky, S., Madjid, M., Zarrabi, A., et al. (2003). Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-alpha, interleukin-1beta, and interferon-gamma. Circulation, 107, 1545–9.CrossRefGoogle ScholarPubMed
Lombardo, A., Biasucci, L. M., Lanza, G. A., et al. (2004). Inflammation as a possible link between coronary and carotid plaque instability. Circulation, 109, 3158–63.CrossRefGoogle ScholarPubMed
Mani, V., Briley-Saebo, K. C., Itskovich, V. V., Samber, D. D. and Fayad, Z. A. (2006). Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): Sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T. Magnetic Resonance in Medicine, 55, 126–35.CrossRefGoogle ScholarPubMed
Mani, V., Itskovich, V. V., Szimtenings, M., et al. (2004). Rapid extended coverage simultaneous multisection black-blood vessel wall Magnetic resonance imaging. Radiology, 232, 281–8.CrossRefGoogle Scholar
Matter, C. M., Schuler, P. K., Alessi, P., et al. (2004). Molecular imaging of atherosclerotic plaques using a human antibody against the extra-domain B of fibronectin. Circulation Research, 95, 1225–33.CrossRefGoogle ScholarPubMed
Naghavi, M., Libby, P., Falk, E., et al. (2003). From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation, 108, 1772–8.CrossRefGoogle Scholar
Port, M., Meyer, D., Bonnemain, B., et al. (1999). P760 and P775: Magnetic resonance imaging contrast agents characterized by new pharmacokinetic properties. Magma, 8, 172–6.CrossRefGoogle ScholarPubMed
Rioufol, G., Finet, G., Ginon, I., et al. (2002). Multiple atherosclerotic plaque rupture in acute coronary syndrome: a three-vessel intravascular ultrasound study. Circulation, 106, 804–8.CrossRefGoogle ScholarPubMed
Rittersma, S. Z., Wal, A. C., Koch, K. T., et al. (2005). Plaque instability frequently occurs days or weeks before occlusive coronary thrombosis: a pathological thrombectomy study in primary percutaneous coronary intervention. Circulation, 111, 1160–5.CrossRefGoogle ScholarPubMed
Ross, R. (1999). Atherosclerosis – an inflammatory disease. New England Journal of Medicine, 340, 115–26.CrossRefGoogle ScholarPubMed
Rudd, J. H., Davies, J. R. and Weissberg, P. L. (2005). Imaging of atherosclerosis – can we predict plaque rupture?Trends in Cardiovascular Medicine, 15, 17–24.CrossRefGoogle ScholarPubMed
Schafers, M., Riemann, B., Kopka, K., et al. (2004). Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation, 109, 2554–9.CrossRefGoogle ScholarPubMed
Shaalan, W. E., Cheng, H., Gewertz, B., et al. (2004). Degree of carotid plaque calcification in relation to symptomatic outcome and plaque inflammation. Journal of Vascular Surgery, 40, 262–9.CrossRefGoogle ScholarPubMed
Sipkins, D. A., Gijbels, K., Tropper, F. D., et al. (2000). ICAM-1 expression in autoimmune encephalitis visualized using magnetic resonance imaging. Journal of Neuroimmunology, 104, 1–9.CrossRefGoogle ScholarPubMed
Sirol, M., Aguinaldo, J. G., Graham, P. B., et al. (2005a). Fibrin-targeted contrast agent for improvement of in vivo acute thrombus detection with magnetic resonance imaging. Atherosclerosis, 182, 79–85.CrossRefGoogle Scholar
Sirol, M., Fuster, V., Badimon, J. J., et al. (2005b). Chronic thrombus detection with in vivo magnetic resonance imaging and a fibrin-targeted contrast agent. Circulation, 112, 1594–600.CrossRefGoogle Scholar
Sirol, M., Itskovich, V. V., Mani, V., et al. (2004). Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation, 109, 2890–6.CrossRefGoogle ScholarPubMed
Spagnoli, L. G., Mauriello, A., Sangiorgi, G., et al. (2004). Extracranial thrombotically active carotid plaque as a risk factor for ischemic stroke. Journal of the American Medical Association, 292, 1845–52.CrossRefGoogle ScholarPubMed
Svindland, A. and Torvik, A. (1988). Atherosclerotic carotid disease in asymptomatic individuals: An histological study of 53 cases. Acta Neurologica Scandinavica, 78, 506–17.CrossRefGoogle ScholarPubMed
Takaya, N., Yuan, C., Chu, B., et al. (2005). Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques: a high-resolution magnetic resonance imaging study. Circulation, 111, 2768–75.CrossRefGoogle ScholarPubMed
Toussaint, J. F., LaMuraglia, G. M., Southern, J. F., et al. (1996). Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation, 94, 932–8.CrossRefGoogle ScholarPubMed
Traub, O. and Berk, B. C. (1998). Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arteriosclerosis, Thrombosis and Vascular Biology, 18, 677–85.CrossRefGoogle ScholarPubMed
Trivedi, R., King-Im, J. and Gillard, J. (2003). Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaque. Circulation, 108, e140.CrossRefGoogle ScholarPubMed
Trivedi, R. A., King-Im, J. M., Graves, M. J., et al. (2004). In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced Magnetic resonance imaging. Stroke, 35, 1631–5.CrossRefGoogle Scholar
VanderLaan, P. A., Reardon, C. A. and Getz, G. S. (2004). Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arteriosclerosis, Thrombosis and Vascular Biology, 24, 12–22.CrossRefGoogle ScholarPubMed
Virmani, R., Kolodgie, F. D., Burke, A. P., Farb, A. and Schwartz, S. M. (2000). Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arteriosclerosis, Thrombosis and Vascular Biology, 20, 1262–75.CrossRefGoogle ScholarPubMed
Wilson, P. W., D'Agostino, R. B., Parise, H., Sullivan, L. and Meigs, J. B. (2005). Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation, 112, 3066–72.CrossRefGoogle ScholarPubMed
Winter, P. M., Caruthers, S. D., Yu, X., et al. (2003a). Improved molecular imaging contrast agent for detection of human thrombus. Magnetic Resonance in Medicine, 50, 411–16.CrossRefGoogle Scholar
Winter, P. M., Morawski, A. M., Caruthers, S. D., et al. (2003b). Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation, 108, 2270–4.CrossRefGoogle Scholar
Yancy, A. D., Olzinski, A. R., Hu, T. C., et al. (2005). Differential uptake of ferumoxtran-10 and ferumoxytol, ultrasmall superparamagnetic iron oxide contrast agents in rabbit: critical determinants of atherosclerotic plaque labeling. Journal of Magnetic Resonance Imaging, 21, 432–42.CrossRefGoogle ScholarPubMed
Yu, X., Song, S. K., Chen, J., et al. (2000). High-resolution Magnetic resonance imaging characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magnetic Resonance in Medicine, 44, 867–72.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Yuan, C., Kerwin, W. S., Ferguson, M. S., et al. (2002a). Contrast-enhanced high resolution Magnetic resonance imaging for atherosclerotic carotid artery tissue characterization. Journal of Magnetic Resonance Imaging, 15, 62–7.CrossRefGoogle Scholar
Yuan, C., Mitsumori, L. MBeach, K. W. and Maravilla, K. R. (2001a). Carotid atherosclerotic plaque: noninvasive Magnetic resonance characterization and identification of vulnerable lesions. Radiology, 221, 285–99.CrossRefGoogle Scholar
Yuan, C., Mitsumori, L. M., Ferguson, M. S, et al. (2001b). In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation, 104, 2051–6.CrossRefGoogle Scholar
Yuan, C., Zhang, S. X., Polissar, N. L., et al. (2002b). Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation, 105, 181–5.CrossRefGoogle Scholar
Zhao, X. Q., Yuan, C., Hatsukami, T. S., et al. (2001). Effects of prolonged intensive lipid-lowering therapy on the characteristics of carotid atherosclerotic plaques in vivo by Magnetic resonance imaging: a case-control study. Arteriosclerosis, Thrombosis and Vascular Biology, 21, 1623–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Molecular imaging of carotid artery disease
    • By James H. F. Rudd, The Zena and Michael A. Wiener Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Mount Sinai School of Medicine, New York NY, USA, Michael J. Lipinski, The Zena and Michael A. Wiener Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Mount Sinai School of Medicine, New York NY, USA, Fabien Hyafil, The Zena and Michael A. Wiener Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Mount Sinai School of Medicine, New York NY, USA, Zahi A. Fayad, The Zena and Michael A. Wiener Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Mount Sinai School of Medicine, New York NY, USA
  • Edited by Jonathan Gillard, University of Cambridge, Martin Graves, University of Cambridge, Thomas Hatsukami, University of Washington, Chun Yuan, University of Washington
  • Book: Carotid Disease
  • Online publication: 03 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544941.035
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Molecular imaging of carotid artery disease
    • By James H. F. Rudd, The Zena and Michael A. Wiener Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Mount Sinai School of Medicine, New York NY, USA, Michael J. Lipinski, The Zena and Michael A. Wiener Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Mount Sinai School of Medicine, New York NY, USA, Fabien Hyafil, The Zena and Michael A. Wiener Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Mount Sinai School of Medicine, New York NY, USA, Zahi A. Fayad, The Zena and Michael A. Wiener Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Mount Sinai School of Medicine, New York NY, USA
  • Edited by Jonathan Gillard, University of Cambridge, Martin Graves, University of Cambridge, Thomas Hatsukami, University of Washington, Chun Yuan, University of Washington
  • Book: Carotid Disease
  • Online publication: 03 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544941.035
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Molecular imaging of carotid artery disease
    • By James H. F. Rudd, The Zena and Michael A. Wiener Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Mount Sinai School of Medicine, New York NY, USA, Michael J. Lipinski, The Zena and Michael A. Wiener Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Mount Sinai School of Medicine, New York NY, USA, Fabien Hyafil, The Zena and Michael A. Wiener Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Mount Sinai School of Medicine, New York NY, USA, Zahi A. Fayad, The Zena and Michael A. Wiener Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Mount Sinai School of Medicine, New York NY, USA
  • Edited by Jonathan Gillard, University of Cambridge, Martin Graves, University of Cambridge, Thomas Hatsukami, University of Washington, Chun Yuan, University of Washington
  • Book: Carotid Disease
  • Online publication: 03 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544941.035
Available formats
×