Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T05:51:35.457Z Has data issue: false hasContentIssue false

Chapter 5 - Premature Ovarian Insufficiency

Published online by Cambridge University Press:  23 October 2024

Laurie J. Mckenzie
Affiliation:
University of Texas MD Anderson Cancer Center, Houston
Denise R. Nebgen
Affiliation:
University of Texas MD Anderson Cancer Center, Houston
Get access

Summary

Premature ovarian insufficiency (POI) is a heterogeneous diagnosis caused by a multitude of factors including genetic, autoimmune, iatrogenic, social, and environmental. It is defined as loss of ovarian function prior to 40 years of age with subsequent secondary amenorrhea for at least 4−6 months in conjunction with elevated follicle stimulating hormone levels on two different measurements. Prompt recognition of symptoms should encourage thorough history-taking and work-up, as some causes of POI are associated with conditions requiring additional screening or medical management. Early initiation of hormone replacement therapy is necessary to prevent long-term sequelae from chronic hypoestrogenism such as cardiovascular events, poor bone health, and cognitive dysfunction. Extensive counseling with regards to future fertility and family building options is necessary as the diagnosis of POI can be psychologically devastating to many women.

Type
Chapter
Information
Caring for the Female Cancer Patient
Gynecologic Considerations
, pp. 81 - 92
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Luborsky, J. L., Meyer, P., Sowers, M. F., Gold, E. B., Santoro, N. Premature menopause in a multi-ethnic population study of the menopause transition. Hum Reprod. 2003;18(1):199206.CrossRefGoogle Scholar
Golezar, S., Tehrani, F. R., Khazaei, S., Ebadi, A., Kashavarz, Z. The global prevalence of primary ovarian insufficiency and early menopause: A meta-analysis. Climacteric. 2019;22(4):403–11.CrossRefGoogle ScholarPubMed
Chemaitilly, W., Li, Z., Krasin, M., Premature ovarian insufficiency in childhood cancer survivors: a report from the St. Jude lifetime cohort.J Clin Endocrinol Metab. 2017;102(7):2242–50.CrossRefGoogle Scholar
Sklar, C., Mertens, A., Mitby, P., et al. Premature menopause in survivors of childhood cancer: a report from the childhood cancer survivor study. J Natl Cancer Inst. 2006;98(13):890–6.CrossRefGoogle ScholarPubMed
De, Bruin M., Huisbrink, J., Hauptmann, M., et al. Treatment-related risk factors for premature menopause following Hodgkin lymphoma. Blood. 2008;111(1):101–08.Google Scholar
Huan, L., Deng, X., He, M., Chen, S., Niu, W. Meta-analysis: Early age at natural menopause and risk for all-cause and cardiovascular mortality. Biomed Res Int. 2021 Mar 15;2021.Google Scholar
Faubion, S. S., Kuhle, C. L., Shuster, L. T., Rocca, W. A. Long-term health consequences of premature or early menopause and considerations for management. Climacteric. 2015;18(4):483–91.CrossRefGoogle ScholarPubMed
Ossewaarde, M., Bots, M., Verbeek, Z., et al. Age at menopause, cause-specific mortality and total life expectancy. Epidemiology. 2005;16(4):556–62.CrossRefGoogle ScholarPubMed
Day, Ruth K. Hussain, F. J., et al. Genetic insights into biological mechanisms governing human ovarian ageing. Nature. 2021;596(7872):393–7.Google Scholar
Qin, Y., Jiao, X., Simpson, J. L., Chen, Z. J. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update. 2015;21(6):787808.CrossRefGoogle ScholarPubMed
Hjerrild, B. E., Mortensen, K. H., Gravholt, C. H. Turner syndrome and clinical treatment. Br Med Bull. 2008;86:7793.CrossRefGoogle ScholarPubMed
Kwon, A, et al. Risk of gonadoblastoma development in patients with Turner syndrome with cryptic Y chromosome material. Horm Cancer. 2017;8(3):166–73.CrossRefGoogle ScholarPubMed
Michala, L., Stefanaki, K., Loutradis, D. Premature ovarian insufficiency in adolescence: A chance for early diagnosis? Hormones (Athens). 2020;19(3):277–83.CrossRefGoogle ScholarPubMed
Tartaglia, N. R., Howell, S., Sutherland, A., Wilson, R., Wilson, L. A review of trisomy X (47,XXX). Orphanet J Rare Dis. 2010;5:8.CrossRefGoogle ScholarPubMed
Persani, L., Rossetti, R., Cacciatore, C. Genes involved in human premature ovarian failure. J Mol Endocrinol. 2010;45(5):257–79.CrossRefGoogle ScholarPubMed
Rossetti, R., Moleri, S., Guizzardi, F. et al. Targeted next-generation sequencing indicates a frequent oligogenic involvement in primary ovarian insufficiency onset. Front Endocrinol (Lausanne). 2021;12:664645.CrossRefGoogle ScholarPubMed
Man, L., Lekovich, J., Rosenwaks, Z., Gerhardt, J. Fragile X-associated diminished ovarian reserve and primary ovarian insufficiency from molecular mechanisms to clinical manifestations. Front Mol Neurosci. 2017;10:290.CrossRefGoogle ScholarPubMed
Tassanakijpanich, N., Hagerman, R. J., Worachotekamjorn, J. Fragile X premutation and associated health conditions: A review. Clin Genet. 2021;99(6):751–60.CrossRefGoogle ScholarPubMed
Hoyos, L. R., Thakur, M. Fragile X premutation in women: Recognizing the health challenges beyond primary ovarian insufficiency. J Assist Reprod Genet. 2017;34(3):315–23.CrossRefGoogle ScholarPubMed
Thakur, M., Feldman, G., Puscheck, E. E. Primary ovarian insufficiency in classic galactosemia: Current understanding and future research opportunities. J Assist Reprod Genet. 2018;35(1):316.CrossRefGoogle ScholarPubMed
Faridi, R., Rea, A., Fenollar-Ferrer, C., et al. New insights into Perrault syndrome, a clinically and genetically heterogeneous disorder. Hum Genet. 2022;141(3–4):805–19.CrossRefGoogle ScholarPubMed
Kim, J., Bae, J. Differential apoptotic and proliferative activities of wild-type FOXL2 and blepharophimosis-ptosis-epicanthus inversus syndrome (BPES)-associated mutant FOXL2 proteins. J Reprod Dev. 2014;60(1):1420.CrossRefGoogle ScholarPubMed
Pilsworth, J., Cochrane, D., Neilson, S., et al. Adult-type granulosa cell tumor of the ovary: A FOXL2-centric disease. J Pathol Clin Res. 2021;7(3):243–52.CrossRefGoogle ScholarPubMed
Rossetti, R., Ferrari, I., Bonomi, M., Persani, M. Genetics of primary ovarian insufficiency. Clin Genet. 2017;91(2):183–98.CrossRefGoogle ScholarPubMed
Silva, C. A., et al. Autoimmune primary ovarian insufficiency. Autoimmun Rev. 2014;13(4–5):427–30.CrossRefGoogle ScholarPubMed
La, Marca A., Brozzetti, A., Sighinolfi, G., et al. Primary ovarian insufficiency: Autoimmune causes. Curr Opin Obstet Gynecol. 2010;22(4):277–82.Google Scholar
Falorni, A., Brozzetti, A., Aglietti, M. C., et al. Progressive decline of residual follicle pool after clinical diagnosis of autoimmune ovarian insufficiency. Clin Endocrinol (Oxf). 2012;77(3):453–8.CrossRefGoogle ScholarPubMed
Kirshenbaum, M., Orvieto, R. Premature ovarian insufficiency (POI) and autoimmunity-an update appraisal. J Assist Reprod Genet. 2019; 36(11):2207–15.CrossRefGoogle ScholarPubMed
Carp, H. J. A., Selmi, C., Shoenfeld, Y. The autoimmune bases of infertility and pregnancy loss. J Autoimmun. 2012;38(2–3):J266–74.CrossRefGoogle ScholarPubMed
Bjorklund, G., Pivin, M., Hangan, T., Yurkovskaya, O., Pivina, L. Autoimmune polyendocrine syndrome type 1: Clinical manifestations, pathogenetic features, and management approach. Autoimmun Rev. 2022;21(8):103135.CrossRefGoogle ScholarPubMed
Taylor, H. S., Pal, L., Seli, E. Speroff’s Clinical Gynecologic Endocrinology and Infertility. Ninth edition. Lippincott Williams & Wilkins; 2019.Google Scholar
Szeliga, A., Calik-Ksepka, A., Maciejewska-Jeske, M., et al. Autoimmune diseases in patients with premature ovarian insufficiency: Our current state of knowledge. Int J Mol Sci. 2021;22(5):2594.CrossRefGoogle ScholarPubMed
Webber, L., Davies, M., Anderson, R., et al. ESHRE guideline: Management of women with premature ovarian insufficiency. Hum Reprod. 2016;31(5):926–37.Google ScholarPubMed
Wallace, W. H. B., Thomson, A. B., Kelsey, T. W. The radiosensitivity of the human oocyte. Hum Reprod. 2003;18(1):117–21.CrossRefGoogle ScholarPubMed
Wallace, W. H. B., Thomson, A. B., Saran, F., Kelsey, T. W. Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int J Radiat Oncol Biol Phys. 2005;62(3):738–44.CrossRefGoogle ScholarPubMed
Wallace, W. H., Shalet, S. M., Crowne, E. C., Morris-Jones, P. H., Gattamaneni, H. R. Ovarian failure following abdominal irradiation in childhood: Natural history and prognosis. Clin Oncol (R Coll Radiol). 1989;1(2):75–9.CrossRefGoogle ScholarPubMed
Green, D., Sklar, C., Boice, J., et al. Ovarian failure and reproductive outcomes after childhood cancer treatment: Results from the Childhood Cancer Survivor Study. J Clin Oncol. 2009;27(14):2374–81.Google ScholarPubMed
Hilal, L., Cercek, A., Navilio, J., et al. Factors associated with premature ovarian insufficiency in young women with locally advanced rectal cancer treated with pelvic radiation therapy. Adv Radiat Oncol. 2021;7(1):100801.CrossRefGoogle ScholarPubMed
Chemaitilly, W., Mertens, A., Mitby, P., et al. Acute ovarian failure in the Childhood Cancer Survivor Study. Clin Endocrinol Metab. 2006;91(5):1723–8.CrossRefGoogle ScholarPubMed
Daly, M., Pal, T., Berry, M., et al. Genetic/familial high-risk assessment: Breast, ovarian, and pancreatic, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2021;19(1):77-102.CrossRefGoogle ScholarPubMed
Rosendahl, M., Simonsen, M. K., Kjer, J. J. The influence of unilateral oophorectomy on the age of menopause. Climacteric. 2017;20(6):540–44.CrossRefGoogle ScholarPubMed
Vabre, P., Gatimel, N., Moreau, J., et al. Environmental pollutants, a possible etiology for premature ovarian insufficiency: A narrative review of animal and human data. Environ Health. 2017;16:37.CrossRefGoogle ScholarPubMed
Grindler, N. M., Allsworth, J., Macones, G., et al. Persistent organic pollutants and early menopause in U.S. women. PLoS One. 2015; 10(1): e0116057.CrossRefGoogle Scholar
Tokmak, A., Yıldırım, G., Sarıkaya, E., et al. Increased oxidative stress markers may be a promising indicator of risk for primary ovarian insufficiency: A cross-sectional case control study. Rev Bras Ginecol Obstet. 2015;37(9):411–16.Google ScholarPubMed
Manikkam, M., Guerrero-Bosagna, C., Tracey, R., Haque, M. M., Skinner, M. K. Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PLoS One. 2012;7(2):e31901.CrossRefGoogle ScholarPubMed
Fleming, L., Levis, S., LeBlanc, W., et al. Earlier age at menopause, work, and tobacco smoke exposure. Menopause. 2008;15(6):1103–08.Google ScholarPubMed
Knauff, E., Westerveld, H., Goverde, A., et al. Lipid profile of women with premature ovarian failure. Menopause. 2008;15(5):919–23.Google ScholarPubMed
Honigberg, M., Zekavat, S., Aragam, K., et al. Association of premature natural and surgical menopause with incident cardiovascular disease. JAMA. 2019;322(24):2411–21.CrossRefGoogle ScholarPubMed
Grundy, S., Stone, N., Bailey, A., et al. 2018 AAHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation. 2019;139(25):e1082e1143.Google Scholar
Uygur, D., Sengül, O., Bayar, D., et al. Bone loss in young women with premature ovarian failure. Arch Gynecol Obstet. 2005;273(1):1719.CrossRefGoogle ScholarPubMed
Camacho, P. M., Petak, S., Binkley, N., et al. American Association of Clinical Endocrinologists/American College of Endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis: 2020 update. Endocr Pract. 2020;26(Suppl 1):146.CrossRefGoogle Scholar
Rocca, W. A., Grossardt, B. R., Shuster, L. T. Oophorectomy, menopause, estrogen treatment, and cognitive aging: Clinical evidence for a window of opportunity. Brain Res. 2011;1379:188–98.CrossRefGoogle ScholarPubMed
Rocca, W. A., Bower, J., Maraganore, D., et al. Increased risk of cognitive impairment or dementia in women who underwent oophorectomy before menopause. Neurology. 2007;69(11):1074–83.CrossRefGoogle ScholarPubMed
Lambrinoudaki, I., Paschou, S., Lumsden, M., et al. Premature ovarian insufficiency: A toolkit for the primary care physician. Maturitas. 2021;147:5363.CrossRefGoogle ScholarPubMed
Palacios, S., Castelo-Branco, C., Cancelo, M. J., Vazquez, F. Low-dose, vaginally administered estrogens may enhance local benefits of systemic therapy in the treatment of urogenital atrophy in postmenopausal women on hormone therapy. Maturitas. 2005;50(2):98104.CrossRefGoogle ScholarPubMed
Graziottin, A., Basson, R. Sexual dysfunction in women with premature menopause. Menopause. 2004;11(6)Pt 2:766–77.Google ScholarPubMed
Fraison, E., Crawford, G., Casper, G., Harris, V., Ledger, W. Pregnancy following diagnosis of premature ovarian insufficiency: A systematic review. Reprod Biomed Online. 2019;39(3):467–76.CrossRefGoogle ScholarPubMed
Ishizuka, B., Furuya, Kimura M., Kamioka, E., Kawamura, K. Live birth rate in patients with premature ovarian insufficiency during long-term follow-up under hormone replacement with or without ovarian stimulation. Front Endocrinol (Lausanne). 2021;12:795724.CrossRefGoogle ScholarPubMed
Suzuki, N., Yoshioka, N., Takae, S., et al. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum Reprod. 2015;30(3):608–15.CrossRefGoogle ScholarPubMed
Petryk, N., Petryk, M. Ovarian rejuvenation through platelet-rich autologous plasma (PRP)-a chance to have a baby without donor eggs, improving the life quality of women suffering from early menopause without synthetic hormonal treatment. Reprod Sci. 2020;27(11):1975–82.CrossRefGoogle ScholarPubMed
Langrish, J. P., Mills, N., Bath, L., et al. Cardiovascular effects of physiological and standard sex steroid replacement regimens in premature ovarian failure. Hypertension. 2009;53(5):805–11.CrossRefGoogle ScholarPubMed
Chetkowski, R. J., et al. Biologic effects of transdermal estradiol. N Engl J Med. 1986;314(25):1615–20.CrossRefGoogle ScholarPubMed
Popat, V. B., et al. Bone mineral density in young women with primary ovarian insufficiency: results of a three-year randomized controlled trial of physiological transdermal estradiol and testosterone replacement. J Clin Endocrinol Metab. 2014;99(9):3418–26.CrossRefGoogle ScholarPubMed
Sullivan, S. D., Sarrel, P. M., Nelson, L. M. Hormone replacement therapy in young women with primary ovarian insufficiency and early menopause. Fertil Steril. 2016;106(7):1588–99.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×