Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T16:04:54.313Z Has data issue: false hasContentIssue false

3 - Familial and inherited renal cancers

Published online by Cambridge University Press:  08 August 2009

Tristan Barrett
Affiliation:
Molecular Imaging Program, National Cancer Institute, Bethesda, Maryland, USA
Peter L. Choyke
Affiliation:
Molecular Imaging Program, National Cancer Institute, Bethesda, Maryland, USA
Uday Patel
Affiliation:
St George's Hospital, London
Get access

Summary

Introduction

Although familial and inherited renal cancers account for only 1%–4% of all renal tumors, they have had a disproportionate impact on our understanding of renal cancer biology. Unlike sporadic renal cancer, hereditary forms tend to be multiple, bilateral, develop earlier in life, and occur with similar frequency between the sexes. The discovery of the von Hippel–Lindau (VHL) tumor suppressor gene in 1993 was the first definitive genetic evidence for hereditary renal cancer and it has subsequently been shown to be important in the formation of sporadic clear cell carcinomas of the kidney. The advance of genomics over the last 15 years has led to the discovery of a number of new genes and new inherited renal cancer syndromes. Inheritable diseases with an increased risk of developing renal cancer in adults include VHL (von Hippel–Lindau), BHD (Birt–Hogg–Dubé), HPRC (hereditary papillary renal carcinoma), HLRCC (hereditary leiomyomatosis renal cell cancer), TS (tuberous sclerosis), and FRO (familial renal oncocytoma). The proportion of renal tumors attributed to inherited disease may well increase as the understanding of these syndromes improves. Knowledge of these syndromes is of practical importance to the radiologist, who may be the first to suggest a hereditary basis on typical imaging findings.

The diagnosis of a genetic predisposition to cancer can lead to screening of close family members, the early detection of cancer in these individuals, and earlier, potentially more successful, treatment.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pavlovich, C. P. and Schmidt, L. S., Searching for the hereditary causes of renal-cell carcinoma. Nat Rev Cancer, 4:5 (2004), 381–93.CrossRefGoogle ScholarPubMed
Latif, F., Tory, K., Gnarra, J.et al., Identification of the von Hippel–Lindau disease tumour suppressor gene. Science, 260 (1993), 1317–20.CrossRefGoogle Scholar
Choyke, P. L., Glenn, G. M., Walther, M. M.et al., Hereditary renal cancers. Radiology, 226:1 (2003), 33–46.CrossRefGoogle ScholarPubMed
International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature, 431 (2004), 931–45.CrossRef
Knudson, A. G. Jr., Genetics of human cancer. Genetics, 79:Suppl (1975), 305–16.Google ScholarPubMed
Jackson, L., Fetal cells and DNA in maternal blood. Prenat Diagn, 23 (2003), 837–46.CrossRefGoogle ScholarPubMed
Lau, T. K. and Leung, T. N.,. Genetic screening and diagnosis. Curr Opin Obstet Gynecol, 17:2 (2005), 163–9.CrossRefGoogle ScholarPubMed
Ohh, M. and Kaelin, W. G. Jr., VHL and kidney cancer. Methods Mol Biol, 222 (2003), 167–83.Google ScholarPubMed
Clifford, S. C., Astuti, D., Hooper, L.et al., The pVHL-associated SCF ubiquitin ligase complex: molecular genetic analysis of elongin B and C, Rbx1 and HIF-1alpha in renal cell carcinoma. Oncogene, 20:36 (2001), 5067–74.CrossRefGoogle Scholar
Ohh, M., Park, C. W., Ivan, M.et al., Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat Cell Biol, 2:7 (2000), 423–7.CrossRefGoogle ScholarPubMed
Ohh, M., Ubiquitin pathway in VHL cancer syndrome. Neoplasia, 8:8 (2006), 623–9.CrossRefGoogle ScholarPubMed
Iliopoulos, O., Levy, A. P., Jiang, C.et al., Negative regulation of hypoxia-inducible genes by the von Hippel–Lindau protein. Proc Natl Acad Sci, 93:20 (1996), 10595–9.CrossRefGoogle ScholarPubMed
Banks, R. E., Tirukonda, P., Taylor, C.et al., Genetic and epigenetic analysis of von Hippel–Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. Cancer Res, 66:4 (2006), 2000–11.CrossRefGoogle ScholarPubMed
Choyke, P. L., Glenn, G. M., Walther, M. M.et al., von Hippel–Lindau disease: genetic, clinical, and imaging features. Radiology, 194:3 (1995), 629–42.CrossRefGoogle Scholar
Zbar, B., Kishida, T., Chen, F.et al., Germline mutations in the von Hippel–Lindau disease (VHL) gene in families from North America, Europe, and Japan. Hum Mutat, 8:4 (1996), 348–57.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Clifford, S. C., Cockman, M. E., Smallwood, A. C.et al., Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel–Lindau disease. Hum Mol Genet, 10:10 (2001), 1029–38.CrossRefGoogle ScholarPubMed
Marcos, H. B., Libutti, S. K., Alexander, H. R.et al., Neuroendocrine tumours of the pancreas in von Hippel–Lindau disease: spectrum of appearances at CT and MR imaging with histopathologic comparison. Radiology, 225:3 (2002), 751–8.CrossRefGoogle Scholar
Grubb, R. L., 3rd, Choyke, P. L., Pinto, P. A.et al., Management of von Hippel–Lindau-associated kidney cancer. Nat Clin Pract Urol, 2:5, (2005, May), 248–55.CrossRefGoogle ScholarPubMed
Okimoto, K., Sakurai, J., Kobayashi, T.et al., A germ-line insertion in the Birt–Hogg–Dubé (BHD) gene gives rise to the Nihon rat model of inherited renal cancer. Proc Natl Acad Sci, 101:7 (2004), 2023–7.CrossRefGoogle ScholarPubMed
Silva, N. F., Gentle, D., Hesson, L. B.et al., Analysis of the Birt–Hogg–Dubé (BHD) tumour suppressor gene in sporadic renal cell carcinoma and colorectal cancer. J Med Genet, 40:11 (2003), 820–4.CrossRefGoogle ScholarPubMed
Tickoo, S. K., Reuter, V. E., Amin, M. B.et al., Renal oncocytosis: a morphological study of fourteen cases. Am J Surg Pathol, 23 (1999), 1094–101.CrossRefGoogle Scholar
Pavlovich, C. P., Grubb, R. L. 3rd, Hurley, K.et al., Evaluation and management of renal tumours in the Birt–Hogg–Dubé syndrome. J Urol, 173 (2005), 1482–6.CrossRefGoogle ScholarPubMed
Zbar, B., Alvord, W. G., Glenn, G.et al., Risk of renal and colonic neoplasms and spontaneous pneumothorax in the Birt–Hogg–Dubé syndrome. Cancer Epidemiol Biomarkers Prev, 11:4 (2002), 393–400.Google ScholarPubMed
Dharmawardana, P. G., Giubellino, A., and Bottaro, D. P., Hereditary papillary renal carcinoma type I. Curr Mol Med, 4:8 (2004), 855–68.CrossRefGoogle ScholarPubMed
Jeffers, M., Schmidt, L., Nakaigawa, N.et al., Activating mutations for the met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci, 94:21 (1997), 11445–50.CrossRefGoogle ScholarPubMed
Tomlinson, I. P., Alam, N. A., Rowan, A. J.et al., Multiple Leiomyoma Consortium. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet, 30:4 (2002), 406–10.Google ScholarPubMed
Pollard, P. J., Briere, J. J., Alam, N. A.et al., Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet, 14:15 (2005), 2231–9.CrossRefGoogle ScholarPubMed
Kiuru, M., Lehtonen, R., Arola, J.et al., Few FH mutations in sporadic counterparts of tumour types observed in hereditary leiomyomatosis and renal cell cancer families. Cancer Res, 62:16 (2002), 4554–7.Google ScholarPubMed
Yates, J. R., Tuberous sclerosis. Eur J Hum Genet, 14:10 (2006), 1065–73.CrossRefGoogle ScholarPubMed
Dabora, S. L., Jozwiak, S., Franz, D. N.et al., Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet, 68 (2001), 64–80.CrossRefGoogle Scholar
Sampson, J. R., Maheshwar, M. M., Aspinwall, R.et al., Renal cystic disease in tuberous sclerosis: role of the polycystic kidney disease 1 gene. Am J Hum Genet, 61 (1997), 843–51.CrossRefGoogle ScholarPubMed
Pea, M., Bonetti, F., Martignoni, G.et al., Apparent renal cell carcinomas in tuberous sclerosis are heterogeneous: the identification of malignant epithelioid angiomyolipoma. Am J Surg Pathol, 22:2 (1998), 180–7.CrossRefGoogle ScholarPubMed
Carpten, J. D., Robbins, C. M., Villablanca, A.et al., HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumour syndrome. Nat Genet, 32:4 (2002), 676–80.CrossRefGoogle Scholar
Howell, V. M., Haven, C. J., Kahnoski, K.et al., HRPT2 mutations are associated with malignancy in sporadic parathyroid tumours. J Med Genet, 40:9 (2003), 657–63.CrossRefGoogle ScholarPubMed
Chen, J. D., Morrison, C., Zhang, C.et al., Hyperparathyroidism-jaw tumour syndrome. J Intern Med, 253:6 (2003), 634–42.CrossRefGoogle ScholarPubMed
Teh, B. T., Farnebo, F., Kristoffersson, U.et al., Autosomal dominant primary hyperparathyroidism and jaw tumour syndrome associated with renal hamartomas and cystic kidney disease: linkage to 1q21-q32 and loss of the wild type allele in renal hamartomas. J Clin Endocrinol Metab, 81:12 (1996), 4204–11.Google ScholarPubMed
Jackson, C. E., Norum, R. A., Boyd, S. B.et al., Hereditary hyperparathyroidism and multiple ossifying jaw fibromas: a clinically and genetically distinct syndrome. Surgery, 108:6 (1990), 1006–12; discussion 1012–13.Google ScholarPubMed
DeLellis, R. A., Parathyroid carcinoma: an overview. Adv Anat Pathol, 12:2 (2005), 53–61.CrossRefGoogle ScholarPubMed
Weirich, G., Glenn, G., Junker, K.et al., Familial renal oncocytoma: clinicopathological study of 5 families. J Urol, 160 (1998), 335–40.CrossRefGoogle ScholarPubMed
Bodmer, D., Hurk, W., Groningen, J. J. M.et al., Understanding familial and non-familial renal cell cancer. Human Molecular Genetics, 11:20 (2002), 2489–98.CrossRefGoogle ScholarPubMed
Schmidt, L. S., Nickerson, M. L., Warren, M. B.et al., Germline BHD-mutation spectrum and phenotype analysis of a large Cohort of families with Birt–Hogg–Dubé syndrome. Am J Hum Genet, 76:6 (2005), 1023–33.CrossRefGoogle ScholarPubMed
Katz, D. S., Gharagozloo, A. M., Peebles, T. R.et al., Renal oncocytomatosis. Am J Kidney Dis, 27:4 (1996), 579–82.CrossRefGoogle ScholarPubMed
Cohen, A. J., Li, F. P., Berg, S.et al., Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med, 301:11 (1979), 592–5.CrossRefGoogle ScholarPubMed
Valle, L., Cascon, A., Melchor, L.et al., About the origin and development of hereditary conventional renal cell carcinoma in a four-generation t(3;8)(p14.1;q24.23) family. Eur J Hum Genet, 13:5 (2005), 570–8.CrossRefGoogle Scholar
Davis, C. J., Mostofi, F. K., and Sesterhenn, I. A., Renal medullary carcinoma: the seventh sickle cell nephropathy. Am J Surg Pathol, 19 (1995), 1–11.CrossRefGoogle ScholarPubMed
Dimashkieh, H., Choe, J., and Mutema, G., Renal medullary carcinoma: a report of 2 cases and review of the literature. Arch of Pathol and Lab Med, 127:3, 135–8.
Yang, X. J., Sugimura, J., Tretiakova, M. S.et al., Gene expression profiling of renal medullary carcinoma: potential clinical relevance. Cancer, 100:5 (2004), 976–85.CrossRefGoogle ScholarPubMed
Davidson, A. J., Choyke, P. L., Hartman, D. S.et al., Renal medullary carcinoma associated with sickle cell trait: radiologic findings. Radiology, 195:1 (1995), 83–5.CrossRefGoogle ScholarPubMed
Blitman, N. M., Berkenblit, R. G., Rozenblit, A. M.et al., Renal medullary carcinoma: CT and MRI features. AJR Am J Roentgenol, 185:1 (2005), 268–72.CrossRefGoogle ScholarPubMed
Choyke, P. L., Imaging of hereditary renal cancer. Radiol Clin North Am, 41:5 (2003), 1037–51.CrossRefGoogle ScholarPubMed
Jamis-Dow, C. A., Choyke, P. L., Jennings, S. B.et al., Small (< or = 3-cm) renal masses: detection with CT versus US and pathologic correlation. Radiology, 198:3 (1996, March), 785–8.CrossRefGoogle ScholarPubMed
http://www.genetests.org (accessed December 2006).
Herring, J. C., Enquist, E. G., Chernoff, A.et al., Parenchymal sparing surgery in patients with hereditary renal cell carcinoma: 10-year experience. J Urol, 165:3 (2001), 777–81.CrossRefGoogle ScholarPubMed
Duffey, B. G., Choyke, P. L., Glenn, G.et al., The relationship between renal tumour size and metastases in patients with von Hippel–Lindau disease. J Urol, 172:1 (2004), 63–5.CrossRefGoogle ScholarPubMed
Pavlovich, C. P., Grubb, R. L., 3rd, Hurley, K.et al., Evaluation and management of renal tumours in the Birt–Hogg–Dubé syndrome. J Urol, 173:5 (2005), 1482–6.CrossRefGoogle ScholarPubMed
Choyke, P. L., Pavlovich, C. P., Daryanani, K. D.et al., Intraoperative ultrasound during renal parenchymal sparing surgery for hereditary renal cancers: a 10-year experience. J Urol, 165:2 (2001), 397–400.CrossRefGoogle ScholarPubMed
Mejean, A., Correas, J. M., Thiounn, N.et al., Conservative treatment of kidney cancer by cryoablation and radiofrequency. Prog Urol, 16:2 (2006), 101–4.Google ScholarPubMed
Yang, J. C., Haworth, L., Sherry, R. M.et al., A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med, 349:5 (2003), 427–34.CrossRefGoogle ScholarPubMed
Lara, P. N. Jr, Quinn, D. I., Margolin, K.et al., California Cancer Consortium. SU5416 plus interferon alpha in advanced renal cell carcinoma: a phase II California Cancer Consortium Study with biological and imaging correlates of angiogenesis inhibition. Clin Cancer Res, 9:13 (2003), 4772–81.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Familial and inherited renal cancers
    • By Tristan Barrett, Molecular Imaging Program, National Cancer Institute, Bethesda, Maryland, USA, Peter L. Choyke, Molecular Imaging Program, National Cancer Institute, Bethesda, Maryland, USA
  • Edited by Uday Patel, St George's Hospital, London
  • Book: Carcinoma of the Kidney
  • Online publication: 08 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511545436.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Familial and inherited renal cancers
    • By Tristan Barrett, Molecular Imaging Program, National Cancer Institute, Bethesda, Maryland, USA, Peter L. Choyke, Molecular Imaging Program, National Cancer Institute, Bethesda, Maryland, USA
  • Edited by Uday Patel, St George's Hospital, London
  • Book: Carcinoma of the Kidney
  • Online publication: 08 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511545436.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Familial and inherited renal cancers
    • By Tristan Barrett, Molecular Imaging Program, National Cancer Institute, Bethesda, Maryland, USA, Peter L. Choyke, Molecular Imaging Program, National Cancer Institute, Bethesda, Maryland, USA
  • Edited by Uday Patel, St George's Hospital, London
  • Book: Carcinoma of the Kidney
  • Online publication: 08 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511545436.005
Available formats
×