Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-06T12:12:17.322Z Has data issue: false hasContentIssue false

IV.B.1 - Calcium

from IV.B - Minerals

Published online by Cambridge University Press:  28 March 2008

Kenneth F. Kiple
Affiliation:
Bowling Green State University, Ohio
Get access

Summary

This chapter deals with the history of calcium and its metabolism in adult humans. It should be read in conjunction with Chapter IV.D.4 on osteoporosis, which contains a further discussion of calcium requirements and the effects of a deficiency in adults, and with Chapter IV.A.4 on vitamin D, which deals with the history of rickets, a disease caused in part by a deficiency of calcium resulting from reduced intake or poor absorption.

Historical Aspects

Bone is the main depository of calcium. Fully 99 percent of the body’s calcium is in the skeleton, with the rest in extracellular fluid and soft tissues. As early as the sixteenth century, it was recognized by a Dutch physician that the skeleton is not an inactive but a dynamic tissue under hormonal influence and capable of remodeling throughout life (Lutwak, Singer, and Urist 1974). Two specific types of bone cells acted upon in these processes are the osteoblasts (involved in bone formation) and the osteoclasts (involved in bone resorption).

Another important discovery in the history of calcium was made by Sidney Ringer more than 100 years ago. He demonstrated that the contractility of cardiac muscle was stimulated and maintained by the addition of calcium to the perfusion fluid (Ringer 1883). It has also been shown that this important effect of calcium is not limited to cardiac muscle but has a generalized, activating effect in practically all differentiated cells (Opie 1980; Rubin 1982; Campbell 1986). However, in addition to calcium, the presence of specific concentrations of sodium and potassium are needed to achieve this effect (Mines 1911; Lowenstein and Rose 1978).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albright, F., Aub, J. C., and Bauer, W.. 1934. Hyperparathyroidism. Journal of the merican Medical Association 102.Google Scholar
Albright, F., and Reifenstein, E. C.. 1948. The parathyroid glands and metabolic bone disease.Baltimore, Md.Google Scholar
Altura, B. M., and Altura, B. T.. 1981. Magnesium ions and contraction of vascular smooth muscles: Relationship to some vascular diseases. Federation Proceedings 40.Google ScholarPubMed
Avioli, L. V., McDonald, J. E., and Lee, S. W.. 1965. The influence of age on the intestinal absorption of 47Ca in women and its relation to 47Ca absorption in postmenopausal osteoporosis. Journal of Clinical Investigation 44.CrossRefGoogle Scholar
Baylink, D., Morey, E., and Rich, C.. 1969. Effect of calcitonin on the rates of bone formation and resorption in the rat. Endocrinology 84.CrossRefGoogle ScholarPubMed
Bernstein, D., Sadowsky, H., and Hegsted, D. M.. 1966. Prevalence of osteoporosis in high and low-fluoride areas in North Dakota. Journal of the American Medical Association 193.Google Scholar
Bijvoet, O. L. M., Van der Sluys Veer, J., and Jansen, A. P.. 1968. Effects of calcitonin on patients with Paget’s disease, thyrotoxicosis, or hypercalcaemia. Lancet 1.Google ScholarPubMed
Bronner, F., and Peterlik, M.. 1995. International conference on progress in bone and mineral research. Journal of Nutrition 125.Google Scholar
Bronner, F., and Stein, W. D.. 1995. Calcium homeostasis – an old problem revisited. Journal of Nutrition 125.CrossRefGoogle ScholarPubMed
Campbell, A. K. 1986. Lewis Victor Heilbrunn. Pioneer of calcium as an intracellular regulator. Cell Calcium 7.Google Scholar
Cantarow, A. 1933. Calcium metabolism and calcium therapy. Second edition. Philadelphia, Pa.Google Scholar
Collip, J. B. 1925. The extraction of a parathyroid hormone which will prevent or control parathyroid tetany and which regulates the level of blood calcium. Journal of Biological Chemistry 63.Google Scholar
Copp, D. H. 1967. Hormonal control of hypercalcemia. Historic development of the calcitonin concept. American Journal of Medicine 43.CrossRefGoogle ScholarPubMed
Copp, D. H. 1969. Calcitonin and parathyroid hormone. Annual Review of Pharmacology 9.CrossRefGoogle ScholarPubMed
Copp, D. H., Cameron, E. C., Cheney, B. A., et al. 1962. Evidence for calcitonin – a new hormone from the parathyroid that lowers blood calcium. Endocrinology 70.CrossRefGoogle ScholarPubMed
Cummings, J. H. 1978. Nutritional implications of dietary fiber. American Journal of Clinical Nutrition 31.CrossRefGoogle ScholarPubMed
DeLuca, H. F. 1979. W. O. Atwater Lecture: The vitamin D system in the regulation of calcium and phosphorus metabolism. Nutrition Reviews 37.Google Scholar
DeLuca, H. F. 1980. The vitamin D hormonal system: Implications for bone diseases. Hospital Practice 15.CrossRefGoogle ScholarPubMed
DeLuca, H. F. 1988. The vitamin D story: A collaborative effort of basic science and clinical medicine. Federation Proceedings 2.Google ScholarPubMed
Draper, H. H., Sie, T., and Bergan, J. C.. 1972. Osteoporosis in aging rats induced by high phosphorus diets. Journal of Nutrition 102.CrossRefGoogle ScholarPubMed
Ebashi, S. 1987. Ca2+ in the heart. Journal of Molecular and Cellular Cardiology 19.CrossRefGoogle ScholarPubMed
Feitelberg, S., Epstein, S., Ismail, F., et al. 1987. Deranged bone mineral metabolism in chronic alcoholism. Metabolism 36.CrossRefGoogle ScholarPubMed
Flanagan, B., and Nichols, G.. 1969. Bone matrix turnover and balance in vitro. II. The effect of aging. Journal of Clinical Investigation 48.CrossRefGoogle Scholar
Fogelman, I., Smith, L., Mazess, R., et al. 1986. Absorption of oral diphosphonate in normal subjects. Clinical Endocrinology 24.CrossRefGoogle ScholarPubMed
Foster, G. V., Joplin, G. F., MacIntyre, I., et al. 1966. Effect of thyrocalcitonin in man. Lancet 1.Google ScholarPubMed
Francis, R. M. 1995. Oral biphosphonates in the treatment of osteoporosis: A review. Current Therapeutic Research 56.CrossRefGoogle Scholar
Fye, W. B. 1984. Sydney Ringer. Calcium and cardiac function. Circulation 69.CrossRefGoogle Scholar
Garn, S. M. 1970. Calcium requirements for bone building and skeletal maintenance. American Journal of Clinical Nutrition 23.CrossRefGoogle ScholarPubMed
Gascon-Barre, M. 1985. Influence of chronic ethanol consumption on the metabolism and action of vitamin D. Journal of the American College of Nutrition 4.CrossRefGoogle Scholar
Gloth, F. M., and Tobin, J. D.. 1995. Vitamin D deficiency in older people. Journal of American Geriatrics Society 43.CrossRefGoogle ScholarPubMed
Goldsmith, R. S., Killian, P., Ingbar, S. H., et al. 1969. Effect of phosphate supplementation during immobilization of normal men. Metabolism 18.CrossRefGoogle ScholarPubMed
Goldsmith, R. S., Woodhouse, C. F., Ingbar, S. H., et al. 1967. Effect of phosphate supplements in patients with fractures. Lancet 1.Google ScholarPubMed
Greenwald, E., Samachson, J., and Spencer, H.. 1963. Effect of lactose on calcium metabolism in man. Journal of Nutrition 79.CrossRefGoogle ScholarPubMed
Hannon, R. R., Shorr, E., McClellan, W. S., and Bois, E. F. Du. 1930. A case of osteitis fibrosa cystica (osteomalacia?) with evidence of hyperactivity of the parathyroid bodies. Metabolic study I. Journal of Clinical Investigation 8.CrossRefGoogle Scholar
Harrison, D. C., and Mellanby, E.. 1934. Phytic acid and the rickets-producing action of cereals. Biochemistry Journal 33.Google Scholar
Heaney, R. P. 1982. Calcium intake requirement and bone mass in the elderly. Journal of Laboratory Clinical Medicine 100.Google ScholarPubMed
Heaney, R. P., Gallagher, J. C., Johnston, C. C., et al. 1982. Calcium nutrition and bone health in the elderly. American Journal of Clinical Nutrition 36.CrossRefGoogle ScholarPubMed
Heaney, R. P., Recker, R. R., and Saville, P. D.. 1977. Calcium balance and calcium requirements in middle-aged women. American Journal of Clinical Nutrition 30.CrossRefGoogle ScholarPubMed
Hegsted, D. M., Moscoso, I., and Collazos, C.. 1952. A study of the minimum calcium requirements of adult men. Journal of Nutrition 46.CrossRefGoogle ScholarPubMed
Hess, A. F., and Weinstock, M.. 1924. Antirachitic properties imparted to inert fluids by ultraviolet irradiation. Journal of the American Medical Association 83.Google Scholar
Hirsch, P. F., and Munson, P. L.. 1969. Thyrocalcitonin. Physiological Reviews 49.CrossRefGoogle ScholarPubMed
Hodsman, A. B. 1989. Effects of cyclical therapy for osteoporosis using an oral regimen of inorganic phosphate and sodium etidronate: A clinical and bone histomorphometric study. Bone Mineral 5.CrossRefGoogle ScholarPubMed
Hoekstra, W., Lewis, P. K., Phillips, P. H., et al. 1956. The relationship of parakeratosis, supplemental calcium and zinc to the zinc content of certain body components of swine. Journal of Animal Science 15.CrossRefGoogle Scholar
Huldschinsky, K. 1919. Heilung von Rachitis durch künstliche Höhensonne. Deutsche Medizinische Wochenschrift 45.CrossRefGoogle Scholar
Irwin, M. I., and Kienholz, E. W.. 1973. A conspectus of research on calcium requirements of man. Journal of Nutrition 103.CrossRefGoogle Scholar
Ismail-Beigi, F., Reinhold, J. G., Faraji, B., et al. 1977. Effects of cellulose added to diets of low and high fiber content upon the metabolism of calcium, magnesium, zinc and phosphorus by man. Journal of Nutrition 107.CrossRefGoogle Scholar
Jeans, P., and Stearns, G.. 1938. The effect of vitamin D on linear growth in infancy. II. The effects of intakes above 1800 USP units daily. Journal of Pediatrics 13.Google Scholar
Kallfelz, F. A., Taylor, A. N., and Wasserman, R. H.. 1967. Vitamin D–induced calcium binding factor in rat intestinal mucosa. Federation Proceedings 125.Google ScholarPubMed
LaFlamme, G. H., and Jowsey, J.. 1972. Bone and soft tissue changes with oral phosphate supplements. Journal of Clinical Investigation 51.CrossRefGoogle ScholarPubMed
Laitinen, K., and Valimaki, M.. 1991. Alcohol and bone. Calcified Tissue International 49.CrossRefGoogle Scholar
Leichsenring, J. M., Norris, L. M., Lamison, S. A., et al. 1951. The effect of level of intake on calcium and phosphorus metabolism in college women. Journal of Nutrition 45.Google ScholarPubMed
Lotz, M., Zisman, E., and Bartter, F. C.. 1968. Evidence for a phosphorus-depletion syndrome in man. New England Journal of Medicine 278.CrossRefGoogle ScholarPubMed
Lowenstein, W. R., and Rose, B.. 1978. Calcium in (junctional) intercellular communication and a thought on its behavior in intracellular communication. Annals of the New York Academy of Science 307.Google Scholar
Luecke, R. W., Hoefer, J. A., Brammell, W. S., et al. 1957. Calcium and zinc in parakeratosis of swine. Journal of Animal Science 16.CrossRefGoogle Scholar
Lukert, B. P., and Adams, J. S.. 1976. Calcium and phosphorus homeostasis in man: Effect of corticosteroids. Archives of Internal Medicine 136.CrossRefGoogle ScholarPubMed
Lumb, G. A., and Stanbury, S. W.. 1974. Parathyroid function in human vitamin D deficiency and vitamin D deficiency in primary hyperparathyroidism. American Journal of Medicine 56.CrossRefGoogle ScholarPubMed
Lund, J., and DeLuca, H. F.. 1966. Biologically active metabolite of vitamin D3 from bone, liver, and blood serum. Journal of Lipid Research 7.Google ScholarPubMed
Lutwak, L., Singer, F. R., and Urist, M. R.. 1974. Current concepts of bone metabolism. Annals of Internal Medicine 80.CrossRefGoogle ScholarPubMed
Malm, O. J. 1958. Calcium requirements and adaptation in adult men. Scandinavian Journal of Clinical Laboratory Investigations 10 (Supplement 36).Google Scholar
Mandl, F. 1926. Klinisches und Experimentelles zur Frage der lokalisierten und generalisierten Osteitis fibrosa. B. Die generalisierte form der Osteitis fibrosa. Archiv für Klinische Chirurgie 143.Google Scholar
Marie, P. J., Skoryna, S. C., Pivon, R. J., et al. 1985. Histomorphometry of bone changes in stable strontium therapy. In Trace substances in environmental health, Vol. 19, ed. Hemphill, D. D.. Columbia, Mo.Google Scholar
Matkovic, V., Kostial, K., Simonovic, I., et al. 1979. Bone status and fracture rates in two regions of Yugoslavia. American Journal of Clinical Nutrition 32.CrossRefGoogle ScholarPubMed
Mawer, B. E., Backhouse, J., Hill, L. F., et al. 1975. Vitamin D metabolism and parathyroid function in man. Clinical Science of Molecular Medicine 48.Google ScholarPubMed
Mazess, R. B., Barden, H. S., Ettinger, M., et al. 1988. Bone density of the radius, spine and proximal femur in osteoporosis. Journal of Bone and Mineral Research 3.Google ScholarPubMed
McCance, R. A., Widdowson, E. M., and Lehmann, H.. 1942. The effect of protein intake on the absorption of calcium and magnesium. Biochemistry Journal 36.CrossRefGoogle ScholarPubMed
McCollum, E. V., Simmonds, N., Kinney, M., et al. [1921]1995. Studies on experimental rickets. XVII. The effects of diets deficient in calcium and in fat-soluble A in modifying the histological structure of the bones. American Journal of Epidemiology 141.Google Scholar
McCollum, E. V., Simmonds, N., Shipley, P. G., and Park, E. A.. 1921. VIII. The production of rickets by diets low in phosphorus and fat-soluble vitamin A. Journal of Biological Chemistry 47.Google Scholar
Mellanby, E. 1921. Experimental rickets. Medical Research Council Special Report Series No. 61.Google Scholar
Mellanby, E. 1949. The rickets-producing and anticalcifying action of phytate. Journal of Physiology 109.CrossRefGoogle Scholar
Mendelson, J. H., Ogata, M., and Mello, N. K.. 1971. Adrenal function and alcoholism. I. Serum cortisol. Psychosomatic Medicine 33.CrossRefGoogle ScholarPubMed
Mills, R., Breiter, H., Kempster, E., et al. 1940. The influence of lactose on calcium retention in children. Journal of Nutrition 20.CrossRefGoogle Scholar
Mines, G. R. 1911. On the replacement of calcium in certain neuro-muscular mechanisms by allied substances. Journal of Physiology 42.CrossRefGoogle ScholarPubMed
Moldawer, M., Zimmerman, S. J., and Collins, L. C.. 1965. The incidence of osteoporosis in elderly whites and elderly Negroes. Journal of the American Medical Association 194.Google ScholarPubMed
Morris, E. R., and O'Dell, B. L.. 1961. Magnesium deficiency in the guinea pig. Mineral composition of tissues and distribution of acid-soluble phosphorus. Journal of Nutrition 75.CrossRefGoogle ScholarPubMed
,National Institutes of Health Consensus Conference. 1995. Optimal calcium intake. Journal of the American Medical Association 272.
,National Research Council. 1989. Recommended dietary allowances. Tenth edition. Washington, D.C.
Nordin, B. E. C. 1966. International patterns of osteoporosis. Clinical Orthopedics and Related Research 45.CrossRefGoogle Scholar
Nordin, B. E. C., Young, M. M., Bulusu, L., et al. 1970. Osteoporosis reexamined. In Osteoporosis, ed. Barzel, U. S.. New York.Google Scholar
O'Dell, B. L. 1960. Magnesium requirement and its relation to other dietary constituents. Federation Proceedings 19.Google Scholar
Olson, E. B. Jr., and DeLuca, H. F.. 1973. Vitamin D. Metabolism and mechanism of action. World Review of Nutrition and Dietetics 17.Google ScholarPubMed
Opie, L. H. 1980. Cardiac metabolism: Cetecholamines, calcium, cyclic AMP, and substrates. Advances in Myocardiology 1.Google ScholarPubMed
Osis, D., Kramer, L., Wiatrowski, E., and Spencer, H.. 1974. Dietary fluoride intake in man. Journal of Nutrition 104.CrossRefGoogle ScholarPubMed
Paget, J. 1877. On a form of chronic inflammation of bones (osteitis deformans). Medical Chirurgical Transactions 60.Google Scholar
Palm, T. A. 1890. Geographical distribution and etiology of rickets. Practitioner 45.Google Scholar
Pechet, M. M., Bobadilla, E., Carroll, E. L., et al. 1967. Regulation of bone resorption and formation. American Journal of Medicine 43.CrossRefGoogle ScholarPubMed
Pettifor, J. M., and Ross, F. P.. 1983. Low dietary calcium intake and its role in the pathogenesis of rickets. South African Medical Journal 63.Google ScholarPubMed
Pettifor, J. M., Ross, F. P., Travers, R., et al. 1981. Dietary calcium deficiency: A syndrome associated with bone deformities and elevated 1, 25-dihydroxyvitamin D concentrations. Metabolic Bone Disease and Related Research 2.CrossRefGoogle Scholar
Pettifor, J. M., Ross, F. P., Wong, J., et al. 1978. Rickets in rural blacks in South Africa. Is dietary calcium a factor?Journal of Pediatrics 92.CrossRefGoogle Scholar
Ponchon, G., and DeLuca, H. F.. 1969. Metabolites of vitamin D3 and their biologic activity. Journal of Nutrition 99.CrossRefGoogle ScholarPubMed
Pramanik, A. K., Gupta, S., and Agarwal, P. S.. 1971. Rickets in protein calorie malnutrition. Indian Pediatrics 8.Google ScholarPubMed
Reinhold, J. G., Nasr, K., Lahimgarzaden, A., et al. 1973. Effects of purified phytate and phytate-rich breads upon metabolism of zinc, calcium, phosphorus and nitrogen in man. Lancet 1.Google ScholarPubMed
Rich, C., Ensinck, J., and Ivanovich, P.. 1964. The effects of sodium fluoride on calcium metabolism of subjects with metabolic bone diseases. Journal of Clinical Investigation 43.CrossRefGoogle Scholar
Ringer, S. 1883. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. Journal of Physiology 4.Google Scholar
Ringer, S. 1886. Further experiments regarding the influence of small quantities of lime, potassium and other salts on muscular tissue. Journal of Physiology 7.CrossRefGoogle ScholarPubMed
Robertson, I. 1969. A survey of clinical rickets in the infant population in Cape Town in 1967 to 1968. South African Medical Journal 43.Google ScholarPubMed
Rubin, R. P. 1982. Calcium and cellular secretion. New York.CrossRefGoogle Scholar
San Fillippo, F. A., and Battistone, G. C.. 1971. The fluoride content of a representative diet of the young adult male. Clinical Chimica Acta 31.CrossRefGoogle Scholar
Sandler, R. B., Slemenda, C., LaPorte, R. E., et al. 1985. Postmenopausal bone density and milk consumption in childhood and adolescence. American Journal of Clinical Nutrition 42.CrossRefGoogle ScholarPubMed
Schuette, S. A., Zemel, M. B., and Linkswiler, H. M.. 1980. Studies on the mechanism of protein-induced hypercalciuria in older men and women. Journal of Nutrition 110.CrossRefGoogle ScholarPubMed
Schwartz, R., Woodcock, N. A., Blakely, J. D., et al. 1973. Metabolic response of adolescent boys to two levels of dietary magnesium and protein. II. Effect of magnesium and protein level on calcium balance. American Journal of Clinical Nutrition 26.Google Scholar
Shai, F., Baker, R. K., and Wallach, S.. 1971. The clinical and metabolic effects of porcine calcitonin on Paget’s disease of bone. Journal of Clinical Investigation 50.CrossRefGoogle ScholarPubMed
Sherman, H. C. 1920. Calcium requirement of maintenance in man. Journal of Biological Chemistry 44.Google Scholar
Sherman, H. C., and Pappenheimer, A. M.. 1921. I. A diet producing rickets in white rats and its prevention by the addition of an inorganic salt. Journal of Experimental Medicine 34.CrossRefGoogle ScholarPubMed
Shohl, A. T. 1939. Mineral metabolism. American Chemical Society Monograph Series. New York.Google Scholar
Shorr, E., and Carter, A. C.. 1950. The value of strontium as an adjuvant to calcium in the mineralization of the skeleton in osteoporosis in man. In Metabolic interrelations, ed. Reifenstein, E. C. Jr., and Johnson, V.. New York.Google Scholar
Spencer, H. 1982. Osteoporosis: Goals of therapy. Hospital Practice 17.CrossRefGoogle ScholarPubMed
Spencer, H., Fuller, H., Norris, C., and Williams, D.. 1994. Effect of magnesium on the intestinal absorption of calcium in man. Journal of the American College of Nutrition 5.Google Scholar
Spencer, H., Hausinger, A., and Laszlo, D.. 1954. The calcium tolerance test in senile osteoporosis. Journal of the American Geriatric Society 2.CrossRefGoogle ScholarPubMed
Spencer, H., 1987. Osteoporosis, calcium requirement and factors causing calcium loss. Clinics in Geriatric Medicine 3.Google ScholarPubMed
Spencer, H., Kramer, L., DeBartolo, M., et al. 1983. Further studies of the effect of a high protein diet as meat on calcium metabolism. American Journal of Clinical Nutrition 37.CrossRefGoogle ScholarPubMed
Spencer, H., Kramer, L., Lesniak, M., et al. 1984. Calcium requirements in humans. Clinical Orthopedics and Related Research 184.Google Scholar
Spencer, H., Kramer, L., Norris, C., et al. 1982. Effect of small doses of aluminum-containing antacids on calcium and phosphorus metabolism. American Journal of Clinical Nutrition 36.CrossRefGoogle ScholarPubMed
Spencer, H., Kramer, L., Norris, C., et al. 1984. Effect of calcium and phosphorus on zinc metabolism in man. American Journal of Clinical Nutrition 40.Google ScholarPubMed
Spencer, H., Kramer, L., and Osis, D.. 1982. Factors contributing to calcium loss in aging. American Journal of Clinical Nutrition 36.CrossRefGoogle Scholar
Spencer, H., Kramer, L., and Osis, D.. 1988. Do protein and phosphorus cause calcium loss?Journal of Nutrition 118.CrossRefGoogle ScholarPubMed
Spencer, H., Kramer, L., and Osis, D., et al. 1978a. Effect of phosphorus on the absorption of calcium and on the calcium balance in man. Journal of Nutrition 108.CrossRefGoogle Scholar
Spencer, H., Kramer, L., and Osis, D., et al. 1978b. Effect of a high protein (meat) intake on calcium metabolism in man. American Journal of Clinical Nutrition 31.CrossRefGoogle Scholar
Spencer, H., Kramer, L., Wiatrowski, E., et al. 1978. Magnesium-fluoride interrelationships in man. II. Effect of magnesium on fluoride metabolism. American Journal of Physiology 234.Google ScholarPubMed
Spencer, H., Lesniak, M., Gatza, C., et al. 1980. Magnesium absorption and metabolism in patients with chronic renal failure and in patients with normal renal function. Gastroenterology 79.Google ScholarPubMed
Spencer, H., Lesniak, M., Kramer, L., et al. 1980. Studies of magnesium metabolism in man. In Magnesium in health and disease, ed. Cantin, M. and Seelig, M. S.. Jamaica, N.Y.Google Scholar
Spencer, H., Lewin, I., Osis, D., et al. 1970. Studies of fluoride and calcium metabolism in patients with osteoporosis. American Journal of Medicine 49.CrossRefGoogle ScholarPubMed
Spencer, H., Menczel, J., and Lewin, I.. 1964. Metabolic and radioisotope studies in osteoporosis. Clinical Orthopedics and Related Research 35.Google ScholarPubMed
Spencer, H., Menczel, J., Lewin, I., et al. 1965. Effect of high phosphorus intake on calcium and phosphorus metabolism in man. Journal of Nutrition 86.Google ScholarPubMed
Spencer, H., Norris, C., and Osis, D.. 1992. Further studies of the effect of zinc on intestinal absorption of calcium in man. Journal of the American College of Nutrition 5.Google Scholar
Spencer, H., Osis, D., Kramer, L., et al. 1975. Effect of calcium and phosphorus on fluoride metabolism in man. Journal of Nutrition 105.CrossRefGoogle ScholarPubMed
Spencer, H., Osis, D., and Lender, M.. 1981. Studies of fluoride metabolism in man. Science of the Total Environment 17.CrossRefGoogle ScholarPubMed
Spencer, H., Rubio, N., Indreika, M., et al. 1986. Chronic alcoholism: Frequently overlooked cause of osteoporosis in men. American Journal of Medicine 80.CrossRefGoogle ScholarPubMed
Spencer, H., Rubio, N., Kramer, L., et al. 1987. Effect of zinc supplements on the intestinal absorption of calcium. Journal of the American College of Nutrition 6.CrossRefGoogle Scholar
Spencer, H., Schwartz, R., and Osis, D.. 1988. Magnesium balances and 28Mg studies in man. In Trace substances in environmental health, Vol. 22, ed. Hemphill, D. D.. Columbia, Mo.Google Scholar
Stanbury, S. W. 1981. Vitamin D and hyperparathyroidism. Journal of the Royal College of Physicians 15.Google ScholarPubMed
Stearns, G., Jeans, P. C., and Vandecar, V.. 1936. The effect of vitamin D on linear growth in infancy. Journal of Pediatrics 9.CrossRefGoogle Scholar
Steenbock, H., and Black, A.. 1924. XVII. The induction of growth-promoting and calcifying properties in a ration by exposure to ultraviolet light. Journal of Biological Chemistry 61.Google Scholar
Strause, L., Saltman, P., Smith, K. T., et al. 1994. Spinal bone loss in postmenopausal women supplemented with calcium and trace minerals. Journal of Nutrition 124.CrossRefGoogle ScholarPubMed
Theiler, A. 1976. Rickets and other deficiency diseases of the osseous system (last lecture given by Sir Arnold Theiler Onderstepoort, 1936). Journal of South African Veterinary Association 47.Google Scholar
Tsai, K. S., Heath, H., Kumar, R., et al. 1984. Impaired vitamin D metabolism with aging in women. Possible role in the pathogenesis of senile osteoporosis. Journal of Clinical Investigation 73.CrossRefGoogle ScholarPubMed
Wachman, A., and Bernstein, D. S.. 1968. Diet and osteoporosis. Lancet 1.Google ScholarPubMed
Walker, P. M., and Linkswiler, H. M.. 1972. Calcium retention in the adult human male as affected by protein intake. Journal of Nutrition 102.CrossRefGoogle ScholarPubMed
Warren, J. M., and Spencer, H.. 1972. Analysis of stable strontium in biological materials by atomic absorption spectrophotometry. Clinical Chimica Acta 38.CrossRefGoogle ScholarPubMed
Warren, J. M., and Spencer, H.. 1976. Metabolic balances of strontium in man. Clinical Orthopedics and Related Research 117.Google Scholar
Wasserman, R. H., Corradina, R. A., and Taylor, A. N.. 1968. Vitamin D–dependent calcium-binding protein. Purification and some properties. Journal of Biological Chemistry 243.Google ScholarPubMed
Wasserman, R. H., and Taylor, A. N.. 1968. Vitamin D–dependent calcium-binding protein. Response to some physiological and nutritional variables. Journal of Biological Chemistry 243.Google ScholarPubMed
Watts, N. B., Harris, S. T., Genant, H. K., et al. 1990. Intermittent cyclical etidronate treatment of postmenopausal osteoporosis. New England Journal of Medicine 323.CrossRefGoogle ScholarPubMed
Whedon, G. D. 1959. Effects of high calcium intake on bone, blood and soft tissue: Relationship of calcium intake to balance in osteoporosis. Federation Proceedings 18.Google Scholar
,WHO (World Health Organization). 1962. Calcium requirements. Technical Report Series, No. Geneva.
Woodhouse, N. J. Y., Bordier, P., Fisher, M., et al. 1971. Human calcitonin in the treatment of Paget’s bone disease. Lancet 1.Google ScholarPubMed
Woodhouse, N. J. Y., Doyle, F. H., and Joplin, G. F.. 1971. Vitamin D deficiency and primary hyperparathyroidism. Lancet 2.Google ScholarPubMed
Woodhouse, N. J. Y., Tun Chot, S., Bordier, P., et al. 1973. Vitamin D administration in primary hyperparathyroidism. Clinical Science 44.CrossRefGoogle ScholarPubMed
Yates, A. J., Oreffo, R. O. C., Mayor, K., et al. 1991. Inhibition of bone resorption by inorganic phosphate is mediated by both reduced osteoclast formation and decreased activity of mature osteoclasts. Journal of Bone and Mineral Research 6.Google ScholarPubMed
Zipkin, I., Posner, A. S., and Eanes, E. D.. 1962. The effect of fluoride on the X-ray-diffraction pattern of the apatite of human bone. Biochimica Biophysica Acta 59CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×