Book contents
- Frontmatter
- Introduction: The Modern Physical and Mathematical Sciences
- Part I The Public Cultures of the Physical Sciences After 1800
- Part II Discipline Building in the Sciences: Places, Instruments, Communication
- 6 Mathematical Schools, Communities, and Networks
- 7 The Industry, Research, and Education Nexus
- 8 Remaking Astronomy: Instruments and Practice in the Nineteenth and Twentieth Centuries
- 9 Languages in Chemistry
- 10 Imagery And Representation In Twentieth-Century Physics
- Part III Chemistry and Physics: Problems Through the Early 1900s
- Part IV Atomic and Molecular Sciences in the Twentieth Century
- Part V Mathematics, Astronomy, and Cosmology Since the Eighteenth Century
- Part VI Problems and Promises at the End of the Twentieth Century
- Index
- References
7 - The Industry, Research, and Education Nexus
from Part II - Discipline Building in the Sciences: Places, Instruments, Communication
Published online by Cambridge University Press: 28 March 2008
- Frontmatter
- Introduction: The Modern Physical and Mathematical Sciences
- Part I The Public Cultures of the Physical Sciences After 1800
- Part II Discipline Building in the Sciences: Places, Instruments, Communication
- 6 Mathematical Schools, Communities, and Networks
- 7 The Industry, Research, and Education Nexus
- 8 Remaking Astronomy: Instruments and Practice in the Nineteenth and Twentieth Centuries
- 9 Languages in Chemistry
- 10 Imagery And Representation In Twentieth-Century Physics
- Part III Chemistry and Physics: Problems Through the Early 1900s
- Part IV Atomic and Molecular Sciences in the Twentieth Century
- Part V Mathematics, Astronomy, and Cosmology Since the Eighteenth Century
- Part VI Problems and Promises at the End of the Twentieth Century
- Index
- References
Summary
This chapter explores the impact of science and technology research capacity and educational change on industrial performance in the century and a half since 1850. Analysis covers four countries remarkable for their industrial achievement, England, France, Germany, and the United States. It is important to note that for each of these countries, economic growth has often been organized around contrasting systems of education and research.
Today, most scholars agree that education, as a general phenomenon, does not constitute a linear, direct determinant of industrial growth. For example, Fritz Ringer has shown that although German and French education had numerous parallels in the nineteenth and early twentieth centuries, such as per capita size of cohorts, the economic development of the two nations was extremely different. Peter Lundgreen, who has compared the size of France’s and Germany’s engineering communities and the character of training, has come to much the same conclusion. Robert Fox and Anna Guanine, in a comparative study of education and industry in six European countries and the United States for the pre-World War I decades, demonstrate that although nations had contrasting rates of industrial growth, their educational policies and practices nevertheless frequently converged.
The existence of a direct and linear connection between research and industry is also viewed as doubtful today. For example, during the decades immediately preceding and following World War I, very few French firms possessed any research capacity, and with scant exception, neither was applied research present inside the educational system. Still, France’s industry advanced at a steady albeit slow pace, thanks largely to alternative innovation-acquisition practices, such as patent procurement, licensing, and concentration on low-technology sectors.
- Type
- Chapter
- Information
- The Cambridge History of Science , pp. 133 - 153Publisher: Cambridge University PressPrint publication year: 2002
References
- 14
- Cited by