Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-12T20:31:55.805Z Has data issue: false hasContentIssue false

9 - Biological Systems Underlying the Development of Adaptive Functioning and Coping

from Part III - Neurophysiological and Experiential Bases of the Development of Coping

Published online by Cambridge University Press:  22 June 2023

Ellen A. Skinner
Affiliation:
Portland State University
Melanie J. Zimmer-Gembeck
Affiliation:
Griffith University, Queensland
Get access

Summary

In the present chapter, coping and its development is considered from a dynamical biological systems perspective, drawing to the framework of neurovisceral integration. Higher order constituents of the central nervous system (CNS) and the autonomic nervous system (ANS) are assumed to be in dynamic interplay, enabling the organism to integrate information from within and outside the body and to flexibly adapt the regulation of cognition, perception, action, and physiology according to changing environmental demands. The underlying neural circuitry, primarily prefrontal and limbic structures, can thereby be understood as the core of coping. During development, and particularly in periods of heightened vulnerability, the capacity of the developing organism to adaptively deal with adverse experiences might be overstrained, resulting in an increased risk for pathological outcomes. Yet, as will be argued, a certain level of exposure to adversity may be required to enable later adaptive functioning, and thus coping.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agorastos, A., Pervanidou, P., Chrousos, G. P., & Baker, D. G. (2019). Developmental trajectories of early life stress and trauma: A narrative review on neurobiological aspects beyond stress system dysregulation. Frontiers in Psychiatry, 10. https://doi.org/10.3389/fpsyt.2019.00118Google Scholar
Ahmed, S. P., Bittencourt-Hewitt, A., & Sebastian, C. L. (2015). Neurocognitive bases of emotion regulation development in adolescence. Developmental Cognitive Neuroscience, 15, 1125. https://doi.org/10.1016/j.dcn.2015.07.006CrossRefGoogle ScholarPubMed
Aimie-Salleh, N., Malarvili, M. B., & Whittaker, A. C. (2019). Fusion of heart rate variability and salivary cortisol for stress response identification based on adverse childhood experience. Medical & Biological Engineering & Computing, 57(6), 12291245. https://doi.org/10.1007/s11517-019-01958-3Google Scholar
Appelhans, B. M., & Luecken, L. J. (2006). Heart rate variability as an index of regulated emotional responding. Review of General Psychology, 10(3), 229240. https://doi.org/10.1037/1089-2680.10.3.229CrossRefGoogle Scholar
Beauchaine, T. P. (2015a). Respiratory sinus arrhythmia: A transdiagnostic biomarker of emotion dysregulation and psychopathology. Current Opinion in Psychology, 3, 4347. https://doi.org/10.1016/j.copsyc.2015.01.017Google Scholar
Beauchaine, T. P. (2015b). Future directions in emotion dysregulation and youth psychopathology. Journal of Clinical Child & Adolescent Psychology, 44(5), 875896. https://doi.org/10.1080/15374416.2015.1038827Google Scholar
Benarroch, E. E. (1993). The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clinic Proceedings, 68(10), 9881001. https://doi.org/10.1016/S0025-6196(12)62272-1CrossRefGoogle ScholarPubMed
Benarroch, E. E. (1997). The central autonomic network. In Low, P. A. (Ed.), Clinical autonomic disorders (2nd ed., pp. 1723). Lippincott-Raven.Google Scholar
Brosschot, J. F., Gerin, W., & Thayer, J. F. (2006). The perseverative cognition hypothesis: A review of worry, prolonged stress-related physiological activation, and health. Journal of Psychosomatic Research, 60(2), 113124. https://doi.org/10.1016/j.jpsychores.2005.06.074Google Scholar
Casey, B. J., Getz, S., & Galvan, A. (2008). The adolescent brain. Developmental Review, 28(1), 6277. https://doi.org/10.1016/j.dr.2007.08.003CrossRefGoogle ScholarPubMed
Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews Endocrinology, 5(7), 374381. https://doi.org/10.1038/nrendo.2009.106Google Scholar
Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system disorders: Overview of physical and behavioral homeostasis. JAMA, 267(9), 12441252.Google Scholar
Churchwell, J. C., Morris, A. M., Heurtelou, N. M., & Kesner, R. P. (2009). Interactions between the prefrontal cortex and amygdala during delay discounting and reversal. Behavioral Neuroscience, 123(6), 11851196. https://doi.org/10.1037/a0017734Google Scholar
Daskalakis, N. P., Bagot, R. C., Parker, K. J., Vinkers, C. H., & de Kloet, E. R. (2013). The three-hit concept of vulnerability and resilience: Toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology, 38(9), 18581873. https://doi.org/10.1016/j.psyneuen.2013.06.008CrossRefGoogle ScholarPubMed
Friedman, B. H. (2007). An autonomic flexibility–neurovisceral integration model of anxiety and cardiac vagal tone. Biological Psychology, 74(2), 185199. https://doi.org/10.1016/j.biopsycho.2005.08.009Google Scholar
Friedman, B. H., & Thayer, J. F. (1998). Autonomic balance revisited: Panic anxiety and heart rate variability. Journal of Psychosomatic Research, 44(1), 133151. https://doi.org/10.1016/S0022-3999(97)00202-XGoogle Scholar
Gabard-Durnam, L., & McLaughlin, K. A. (2020). Sensitive periods in human development: Charting a course for the future. Current Opinion in Behavioral Sciences, 36, 120128. https://doi.org/10.1016/j.cobeha.2020.09.003Google Scholar
Heim, C. M., Entringer, S., & Buss, C. (2019). Translating basic research knowledge on the biological embedding of early-life stress into novel approaches for the developmental programming of lifelong health. Psychoneuroendocrinology, 105, 123137. https://doi.org/10.1016/j.psyneuen.2018.12.011CrossRefGoogle ScholarPubMed
Hilt, L. M., Hanson, J. L., & Pollak, S. D. (2011). Emotion dysregulation. In Brown, B. B. & Prinstein, M. J. (Eds.), Encyclopedia of adolescence (Vol. 3, pp. 160169). Elsevier.Google Scholar
Katz, M., Liu, C., Schaer, M., Parker, K. J., Ottet, M.-C., Epps, A., Buckmaster, C. L., Bammer, R., Moseley, M. E., Schatzberg, A. F., Eliez, S., & Lyons, D. M. (2009). Prefrontal plasticity and stress inoculation-induced resilience. Developmental Neuroscience, 31(4), 293299. https://doi.org/10.1159/000216540Google Scholar
Koenig, J. (2020). Neurovisceral regulatory circuits of affective resilience in youth: Principal outline of a dynamic model of neurovisceral integration in development. Psychophysiology, 57(5), Article e13568. https://doi.org/10.1111/psyp.13568CrossRefGoogle ScholarPubMed
Kok, B. E., Coffey, K. A., Cohn, M. A., Catalino, L. I., Vacharkulksemsuk, T., Algoe, S. B., Brantley, M., & Fredrickson, B. L. (2013). How positive emotions build physical health: Perceived positive social connections account for the upward spiral between positive emotions and vagal tone. Psychological Science, 24(7), 11231132. https://doi.org/10.1177/0956797612470827Google Scholar
Lewis, M. D., & Douglas, L. (1988). A dynamic systems approach to cognition – Emotion interactions in development. In Mascolo, M. F. & Griffin, S. (Eds.), What develops in emotional development? Emotions, personality, and psychotherapy (pp. 159188). Springer. https://doi.org/10.1007/978-1-4899-1939-7_7Google Scholar
Maier, S. F. (2015). Behavioral control blunts reactions to contemporaneous and future adverse events: Medial prefrontal cortex plasticity and a corticostriatal network. Neurobiology of Stress, 1, 1222. https://doi.org/10.1016/j.ynstr.2014.09.003Google Scholar
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. The New England Journal of Medicine, 338(3), 171179. https://doi.org/10.1056/NEJM199801153380307Google Scholar
McEwen, B. S., & Gianaros, P. J. (2011). Stress- and allostasis-induced brain plasticity. Annual Review of Medicine, 62, 431445. https://doi.org/10.1146/annurev-med-052209-100430Google Scholar
Merikangas, K. R., He, J., Burstein, M., Swanson, S. A., Avenevoli, S., Cui, L., Benjet, C., Georgiades, K., & Swendsen, J. (2010). Lifetime prevalence of mental disorders in U.S. adolescents: Results from the National Comorbidity Survey Replication–Adolescent Supplement (NCS-A). Journal of the American Academy of Child & Adolescent Psychiatry, 49(10), 980989. https://doi.org/10.1016/j.jaac.2010.05.017Google Scholar
Merikangas, K. R., Nakamura, E. F., & Kessler, R. C. (2009). Epidemiology of mental disorders in children and adolescents. Dialogues in Clinical Neuroscience, 11(1), 720. https://doi.org/10.31887/DCNS.2009.11.1/krmerikangasGoogle Scholar
Meyer, H. C., & Lee, F. S. (2019). Translating developmental neuroscience to understand risk for psychiatric disorders. American Journal of Psychiatry, 176(3), 179185. https://doi.org/10.1176/appi.ajp.2019.19010091Google Scholar
Mulkey, S. B., & du Plessis, A. J. (2019). Autonomic nervous system development and its impact on neuropsychiatric outcome. Pediatric Research, 85(2), 120126. https://doi.org/10.1038/s41390-018-0155-0CrossRefGoogle ScholarPubMed
Nederhof, E., & Schmidt, M. V. (2012). Mismatch or cumulative stress: Toward an integrated hypothesis of programming effects. Physiology & Behavior, 106(5), 691700. https://doi.org/10.1016/j.physbeh.2011.12.008Google Scholar
Nolte, I. M., Munoz, M. L., Tragante, V., Amare, A. T., Jansen, R., Vaez, A., … & de Geus, E. J. C. (2017). Genetic loci associated with heart rate variability and their effects on cardiac disease risk. Nature Communications, 8(1), Article 15805. https://doi.org/10.1038/ncomms15805CrossRefGoogle ScholarPubMed
Patron, E., Calgagnì, A., Thayer, J. F., & Scrimin, S. (2021). The longitudinal negative impact of early stressful events on emotional and physical well-being: The buffering role of cardiac vagal development. Developmental Psychobiology, 63, 11461155. https://doi.org/10.1002/dev.22066Google Scholar
Pozzato, I., Craig, A., Gopinath, B., Tran, Y., Dinh, M., Gillett, M., & Cameron, I. (2019). Biomarkers of autonomic regulation for predicting psychological distress and functional recovery following road traffic injuries: Protocol for a prospective cohort study. BMJ Open, 9(4), e024391. https://doi.org/10.1136/bmjopen-2018-024391CrossRefGoogle ScholarPubMed
Prinsloo, G. E., Rauch, H. G. L., & Derman, W. E. (2014). A brief review and clinical application of heart rate variability biofeedback in sports, exercise, and rehabilitation medicine. The Physician and Sportsmedicine, 42(2), 8899. https://doi.org/10.3810/psm.2014.05.2061Google Scholar
Russo, S. J., Murrough, J. W., Han, M., Charney, D. S., & Nestler, E. J. (2012). Neurobiology of resilience. Nature Neuroscience, 15(11), 14751484. https://doi.org/10.1038/nn.3234CrossRefGoogle ScholarPubMed
Sakaki, M., Yoo, H. J., Nga, L., Lee, T.-H., Thayer, J. F., & Mather, M. (2016). Heart rate variability is associated with amygdala functional connectivity with MPFC across younger and older adults. NeuroImage, 139, 4452. https://doi.org/10.1016/j.neuroimage.2016.05.076Google Scholar
Saul, J. (1990). Beat-to-beat variations of heart rate reflect modulation of cardiac autonomic outflow. Physiology, 5(1), 3237. https://doi.org/10.1152/physiologyonline.1990.5.1.32Google Scholar
Sigrist, C., Mürner-Lavanchy, I., Peschel, S. K. V., Schmidt, S. J., Kaess, M., & Koenig, J. (2021). Early life maltreatment and resting-state heart rate variability: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 120, 307334. https://doi.org/10.1016/j.neubiorev.2020.10.026Google Scholar
Smith, R., Thayer, J. F., Khalsa, S. S., & Lane, R. D. (2017). The hierarchical basis of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 75, 274296. https://doi.org/10.1016/j.neubiorev.2017.02.003CrossRefGoogle ScholarPubMed
Squeglia, L. M., Jacobus, J., Sorg, S. F., Jernigan, T. L., & Tapert, S. F. (2013). Early adolescent cortical thinning is related to better neuropsychological performance. Journal of the International Neuropsychological Society, 19(9), 962970. https://doi.org/10.1017/S1355617713000878Google Scholar
Steinfurth, E. C. K., Wendt, J., Geisler, F., Hamm, A. O., Thayer, J. F., & Koenig, J. (2018). Resting state vagally-mediated heart rate variability is associated with neural activity during explicit emotion regulation. Frontiers in Neuroscience, 12, 794. https://doi.org/10.3389/fnins.2018.00794Google Scholar
Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J., & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral Reviews, 36(2), 747756. https://doi.org/10.1016/j.neubiorev.2011.11.009CrossRefGoogle ScholarPubMed
Thayer, J. F., & Brosschot, J. F. (2005). Psychosomatics and psychopathology: Looking up and down from the brain. Psychoneuroendocrinology, 30(10), 10501058. https://doi.org/10.1016/j.psyneuen.2005.04.014Google Scholar
Thayer, J. F., & Friedman, B. H. (1997). The heart of anxiety: A dynamical systems approach. In Vingerhoets, A. (Ed.), The (non)expression of emotions in health and disease (pp. 3949). Springer.Google Scholar
Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61(3), 201216. https://doi.org/10.1016/S0165-0327(00)00338-4Google Scholar
Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 33(2), 8188. https://doi.org/10.1016/j.neubiorev.2008.08.004Google Scholar
Thayer, J. F., Mather, M., & Koenig, J. (2021). Stress and aging: A neurovisceral integration perspective. Psychophysiology, 58(7), e13804. https://doi.org/10.1111/psyp.13804CrossRefGoogle ScholarPubMed
Thayer, J. F., & Siegle, G. J. (2002). Neurovisceral integration in cardiac and emotional regulation. IEEE Engineering in Medicine and Biology Magazine, 21(4), 2429. https://doi.org/10.1109/MEMB.2002.1032635Google Scholar
Thayer, J. F., Yamamoto, S. S., & Brosschot, J. F. (2010). The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. International Journal of Cardiology, 141(2), 122131. https://doi.org/10.1016/j.ijcard.2009.09.543Google Scholar
van der Kolk, B. A. (2015). The body keeps the score: Brain, mind, and body in the healing of trauma. Penguin Books.Google Scholar
Vijayakumar, N., Whittle, S., Yücel, M., Dennison, M., Simmons, J., & Allen, N. B. (2014). Thinning of the lateral prefrontal cortex during adolescence predicts emotion regulation in females. Social Cognitive and Affective Neuroscience, 9(11), 18451854. https://doi.org/10.1093/scan/nst183CrossRefGoogle ScholarPubMed
Walker, F. R., Pfingst, K., Carnevali, L., Sgoifo, A., & Nalivaiko, E. (2017). In the search for integrative biomarker of resilience to psychological stress. Neuroscience & Biobehavioral Reviews, 74, 310320. https://doi.org/10.1016/j.neubiorev.2016.05.003Google Scholar
Wulsin, L., Herman, J., & Thayer, J. F. (2018). Stress, autonomic imbalance, and the prediction of metabolic risk: A model and a proposal for research. Neuroscience & Biobehavioral Reviews, 86, 1220. https://doi.org/10.1016/j.neubiorev.2017.12.010Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×