Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T14:18:42.321Z Has data issue: false hasContentIssue false

8 - Plasticity of the Brain and Cognition in Older Adults

from Part I - Biomedical Aspects

Published online by Cambridge University Press:  10 January 2019

Rocío Fernández-Ballesteros
Affiliation:
Universidad Autónoma de Madrid
Athanase Benetos
Affiliation:
Université de Lorraine and Institut national de la santé et de la recherche médicale (INSERM) Nancy
Jean-Marie Robine
Affiliation:
INSERM
Get access

Summary

Brain plasticity refers to the brain’s dynamic process to modify its existing cortical structures and functions, in response to intrinsic and extrinsic factors. It is a biological mechanism of the learning brain, supported essentially by neurogenesis and synaptic plasticity (strengthening and weakening). Plasticity is not limited to an early childhood, but the brain is continuously plastic throughout life. The main difference with aging is the way in which the brain regulates plasticity: in older brains, plasticity is regulated as a function of behavioral context and outcomes, and not as continuous competitive processes as in younger brain. Based on the understanding of brain plasticity, cognition can be improved for successful brain aging. Many ways are discussed: environmental simulation (novelty and challenge), cognitive training, exercise, sleep, and brain plasticity-based pharmacologic interventions. Thus, the future strategy for successful cognitive aging might be to boost and recruit this plasticity, to prevent age-related cognitive decline and age associated comorbidities, by a personalized and multimodal brain plasticity-based therapeutics.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, T., Havekes, R., Saletin, J. M., Walker, M. P. Sleep, plasticity and memory from molecules to whole-brain networks. Curr Biol. Elsevier; 2013; 23: R77488. doi: 10.1016/j.cub.2013.07.025.CrossRefGoogle ScholarPubMed
Ahissar, E., Vaadia, E., Ahissar, M., et al. Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context. Science. 1992; 257: 1412–5. Available: http://ncbi.nlm.nih.gov/pubmed/1529342CrossRefGoogle ScholarPubMed
Aimone, J. B., Li, Y., Lee, S. W., et al. Regulation and function of adult neurogenesis: From genes to cognition. Physiol Rev. 2014; 94: 9911026. doi: 10.1152/physrev.00004.2014.CrossRefGoogle ScholarPubMed
Akbik, F. V., Bhagat, S. M., Patel, P. R., Cafferty, W. B. J., Strittmatter, S. M. Anatomical plasticity of adult brain is titrated by Nogo receptor 1. Neuron. 2013; 77: 859–66. doi: 10.1016/j.neuron.2012.12.027.CrossRefGoogle ScholarPubMed
Aston-Jones, G., Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annu Rev Neurosci. 2005; 28: 403–50. doi: 10.1146/annurev.neuro.28.061604.135709.CrossRefGoogle ScholarPubMed
Aston-Jones, G., Rajkowski, J., Cohen, J. Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry. 1999; 46: 1309–20. Available: http://ncbi.nlm.nih.gov/pubmed/10560036CrossRefGoogle ScholarPubMed
Bäckman, L., Lindenberger, U., Li, S.-C., Nyberg, L. Linking cognitive aging to alterations in dopamine neurotransmitter functioning: Recent data and future avenues. Neurosci Biobehav Rev. 2010; 34: 670–7. doi: 10.1016/j.neubiorev.2009.12.008.CrossRefGoogle ScholarPubMed
Bao, S., Chan, V. T., Merzenich, M. M. Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature. 2001; 412: 7983. doi: 10.1038/35083586.CrossRefGoogle ScholarPubMed
Bao, S., Chan, V. T., Zhang, L. I., Merzenich, M. M. Suppression of cortical representation through backward conditioning. Proc Natl Acad Sci. 2003; 100: 1405–8. doi: 10.1073/pnas.0337527100.CrossRefGoogle ScholarPubMed
Barili, P., De Carolis, G., Zaccheo, D., Amenta, F. Sensitivity to ageing of the limbic dopaminergic system: A review. Mech Ageing Dev. 1998; 106: 5792. Available: http://ncbi.nlm.nih.gov/pubmed/9883974CrossRefGoogle ScholarPubMed
Barulli, D., Stern, Y. Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends Cog. Sci. 2013; 17(10): 502–9. doi: 10.1016/j.tics.2013.08.012.CrossRefGoogle ScholarPubMed
Bergan, J. F., Ro, P., Ro, D., Knudsen, E. I. Hunting increases adaptive auditory map plasticity in adult barn owls. J Neurosci. 2005; 25: 9816–20. doi: 10.1523/JNEUROSCI.2533-05.2005.CrossRefGoogle ScholarPubMed
Brose, A., Schmiedek, F., Lövdén, M., Lindenberger, U. Daily variability in working memory is coupled with negative affect: The role of attention and motivation. Emotion. 2012; 12: 605–17. doi: 10.1037/a0024436.CrossRefGoogle ScholarPubMed
Buonomano, D. V., Merzenich, M. M. Cortical plasticity: From synapses to maps. Annu Rev Neurosci. Annual Reviews 4139 El Camino Way, P.O. Box 10139, Palo Alto, CA 94303-0139, USA; 1998; 21: 149–86. doi: 10.1146/annurev.neuro.21.1.149.CrossRefGoogle ScholarPubMed
Burke, S. N., Barnes, C. A. Senescent synapses and hippocampal circuit dynamics. Trends Neurosci. 2010; 33: 153–61. doi: 10.1016/j.tins.2009.12.003.CrossRefGoogle ScholarPubMed
Burzynska, A. Z., Garrett, D. D., Preuschhof, C., et al. A scaffold for efficiency in the human brain. J Neurosci. 2013; 33: 171509. doi: 10.1523/JNEUROSCI.1426-13.2013.CrossRefGoogle ScholarPubMed
Cai, L., Chan, J. S. Y., Yan, J. H., Peng, K. Brain plasticity and motor practice in cognitive aging. Front Aging Neurosci. 2014; 6: 112. doi: 10.3389/fnagi.2014.00031.CrossRefGoogle ScholarPubMed
Clark, S. A., Allard, T., Jenkins, W. M., Merzenich, M. M. Receptive fields in the body-surface map in adult cortex defined by temporally correlated inputs. Nature. 1988; 332: 444–5. doi: 10.1038/332444a0.CrossRefGoogle ScholarPubMed
Coelho, F. G. de M., Gobbi, S., Andreatto, C. A. A., et al. Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): A systematic review of experimental studies in the elderly. Arch Gerontol Geriatr. 2013; 56: 1015. doi: 10.1016/j.archger.2012.06.003.CrossRefGoogle ScholarPubMed
Colcombe, S. J., Kramer, A. F., Erickson, K. I., et al. Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci. 2004; 101: 3316–21. doi: 10.1073/pnas.0400266101.CrossRefGoogle ScholarPubMed
Cooper, L. N., Bear, M. F. The BCM theory of synapse modification at 30: Interaction of theory with experiment. Nat Rev Neurosci. 2012; 13: 798810. doi: 10.1038/nrn3353.CrossRefGoogle ScholarPubMed
Cotman, C. W., Berchtold, N. C. Exercise: A behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 2002; 25: 295301. doi: 10.1016/S0166-2236(02)02143-4.CrossRefGoogle Scholar
Curlik, D. M, Shors, T. J. Training your brain: Do mental and physical (MAP) training enhance cognition through the process of neurogenesis in the hippocampus? Neuropharmacology. 2013; 64: 506–14. doi: 10.1016/j.neuropharm.2012.07.027.CrossRefGoogle ScholarPubMed
Dan, Y., Poo, M.-M. Spike timing-dependent plasticity: From synapse to perception. Physiol Rev. 2006; 86: 1033–48. doi: 10.1152/physrev.00030.2005.CrossRefGoogle ScholarPubMed
de Villers-Sidani, E., Alzghoul, L., Zhou, X., et al. Recovery of functional and structural age-related changes in the rat primary auditory cortex with operant training. Proc Natl Acad Sci. 2010; 107: 139005. doi: 10.1073/pnas.1007885107.CrossRefGoogle ScholarPubMed
de Villers-Sidani, E., Merzenich, M. M. Lifelong plasticity in the rat auditory cortex. Progress in Brain Research. 2011; 191: 119–31. doi: 10.1016/B978-0-444-53752-2.00009-6.CrossRefGoogle ScholarPubMed
Delekate, A., Zagrebelsky, M., Kramer, S., Schwab, M. E., Korte, M. NogoA restricts synaptic plasticity in the adult hippocampus on a fast time scale. Proc Natl Acad Sci. 2011; 108: 2569–74. doi: 10.1073/pnas.1013322108.CrossRefGoogle ScholarPubMed
Deshpande, A., Bergami, M., Ghanem, A., et al. Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb. Proc Natl Acad Sci U S A. 2013; 110: E115261. doi: 10.1073/pnas.1218991110.CrossRefGoogle ScholarPubMed
Deslandes, A., Moraes, H., Ferreira, C., et al. Exercise and mental health: Many reasons to move. Neuropsychobiology. 2009; 59: 191–8. doi: 10.1159/000223730.CrossRefGoogle ScholarPubMed
Dranovsky, A, Picchini, A. M., Moadel, T., et al. Experience dictates stem cell fate in the adult hippocampus. Neuron. 2011; 70: 908–23. doi: 10.1016/j.neuron.2011.05.022.CrossRefGoogle ScholarPubMed
Dresler, M., Sandberg, A., Ohla, K., et al. Non-pharmacological cognitive enhancement. Neuropharmacology. 2013; 64: 529–43. doi: 10.1016/j.neuropharm.2012.07.002.CrossRefGoogle ScholarPubMed
Feldman, D. E. The spike-timing dependence of plasticity. Neuron. 2012; 75: 556–71. doi: 10.1016/j.neuron.2012.08.001.CrossRefGoogle ScholarPubMed
Freund, J., Brandmaier, A. M., Lewejohann, L., et al. Emergence of individuality in genetically identical mice. Science. 2013; 340(6133): 756–9. doi: 10.1126/science.1235294.CrossRefGoogle ScholarPubMed
Froemke, R. C., Merzenich, M. M., Schreiner, C. E. A synaptic memory trace for cortical receptive field plasticity. Nature. 2007; 450: 425–9. doi: 10.1038/nature06289.CrossRefGoogle ScholarPubMed
Ge, S., Yang, C.-H., Hsu, K.-S., Ming, G.-L., Song, H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron. 2007; 54: 559–66. doi: 10.1016/j.neuron.2007.05.002.CrossRefGoogle ScholarPubMed
Gervain, J., Vines, B. W., Chen, L. M., et al. Valproate reopens critical-period learning of absolute pitch. Front Syst Neurosci. 2013; 7. doi: 10.3389/fnsys.2013.00102.CrossRefGoogle ScholarPubMed
Gilbert, C. D., Li, W., Piech, V. Perceptual learning and adult cortical plasticity. J Physiol. 2009; 587: 2743–51. doi: 10.1113/jphysiol.2009.171488.CrossRefGoogle ScholarPubMed
Göritz, C., Frisén, J. Neural stem cells and neurogenesis in the adult. Cell Stem Cell. 2012; 10: 657–9. doi: 10.1016/j.stem.2012.04.005.CrossRefGoogle ScholarPubMed
Grady, C. The cognitive neuroscience of ageing. Nat Rev Neurosci. 2012; 13: 491505. doi: 10.1038/nrn3256.CrossRefGoogle ScholarPubMed
Haberman, R. P., Colantuoni, C., Koh, M. T., Gallagher, M. Behaviorally activated mRNA expression profiles produce signatures of learning and enhanced inhibition in aged rats with preserved memory. Ginsberg SD, editor. PLoS One. 2013; 8: e83674. doi: 10.1371/journal.pone.0083674.CrossRefGoogle Scholar
Hahn, K., Myers, N., Prigarin, S., et al. Selectively and progressively disrupted structural connectivity of functional brain networks in Alzheimer's disease – Revealed by a novel framework to analyze edge distributions of networks detecting disruptions with strong statistical evidence. Neuroimage. 2013; 81: 96109. doi: 10.1016/j.neuroimage.2013.05.011.CrossRefGoogle ScholarPubMed
Horng, S. H., Sur, M. Visual activity and cortical rewiring: Activity-dependent plasticity of cortical networks. Prog Brain Res. 2006; 157: 311. Available: http://ncbi.nlm.nih.gov/pubmed/17167899CrossRefGoogle ScholarPubMed
Houillon, A., Lorenz, R. C., Boehmer, W., et al. The effect of novelty on reinforcement learning. Progress in Brain Research. 2013; 202: 415–39. doi: 10.1016/B978-0-444-62604-2.00021-6.CrossRefGoogle ScholarPubMed
Jagust, W. Vulnerable neural systems and the borderland of brain aging and neurodegeneration. Neuron. 2013; 77: 219–34. doi: 10.1016/j.neuron.2013.01.002.CrossRefGoogle ScholarPubMed
Jessberger, S., Gage, F. H. Adult neurogenesis: Bridging the gap between mice and humans. Trends Cell Biol. 2014; 24: 558–63. doi: 10.1016/j.tcb.2014.07.003.CrossRefGoogle ScholarPubMed
Jessberger, S., Gage, F. H. Stem-cell-associated structural and functional plasticity in the aging hippocampus. Psychol Aging. 2008; 23: 684691. doi: 10.1037/a0014188.CrossRefGoogle ScholarPubMed
Kamal, B., Holman, C., de Villers-Sidani, E. Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments. Front Syst Neurosci. 2013; 7: 52. doi: 10.3389/fnsys.2013.00052.CrossRefGoogle ScholarPubMed
Kempermann, G., Gast, D., Gage, F. H. Neuroplasticity in old age: Sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann Neurol. 2002; 52: 135–43. doi: 10.1002/ana.10262.CrossRefGoogle ScholarPubMed
Kent, B. A., Mistlberger, R. E. Sleep and hippocampal neurogenesis: Implications for Alzheimer's disease. Front Neuroendocrinol. 2017; 45: 3552. doi: 10.1016/j.yfrne.2017.02.004.CrossRefGoogle ScholarPubMed
Kleim, J. A., Barbay, S., Cooper, N. R., et al. Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol Learn Mem. 2002; 77: 6377. doi: 10.1006/nlme.2000.4004.CrossRefGoogle ScholarPubMed
Kreutzmann, J. C., Havekes, R., Abel, T., Meerlo, P. Sleep deprivation and hippocampal vulnerability: Changes in neuronal plasticity, neurogenesis and cognitive function. Neuroscience. 2015; 309: 173–90. doi: 10.1016/j.neuroscience.2015.04.053.CrossRefGoogle ScholarPubMed
Kuzawa, C. W., Chugani, H. T., Grossman, L. I., et al. Metabolic costs and evolutionary implications of human brain development. Proc Natl Acad Sci. 2014; 111: 1301013015. doi: 10.1073/pnas.1323099111.CrossRefGoogle ScholarPubMed
Li, S. Spasticity, motor recovery, and neural plasticity after stroke. Front Neurol. Frontiers Media SA; 2017; 8: 120. doi: 10.3389/fneur.2017.00120.Google ScholarPubMed
Lindenberger, U., Lövdén, M., Schellenbach, M., Li, S.-C., Krüger, A. Psychological principles of successful aging technologies: A mini-review. Gerontology. 2008; 54: 5968. doi: 10.1159/000116114.CrossRefGoogle ScholarPubMed
Lindenberger, U. Human cognitive aging: Corriger la fortune? Science. 2014; 346(6209): 572–8. doi: 10.1126/science.1254403.CrossRefGoogle ScholarPubMed
Lisman, J., Grace, A. A., Duzel, E. A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP. Trends Neurosci. 2011; 34: 536–47. doi: 10.1016/j.tins.2011.07.006.CrossRefGoogle ScholarPubMed
Lo, R. Y., Hubbard, A. E., Shaw, L. M., et al. Longitudinal change of biomarkers in cognitive decline. Arch Neurol. 2011; 68: 1257. doi: 10.1001/archneurol.2011.123.CrossRefGoogle ScholarPubMed
Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S., Schmiedek, F. A theoretical framework for the study of adult cognitive plasticity. Psychol Bull. 2010a; 136: 659–76. doi: 10.1037/a0020080.CrossRefGoogle Scholar
Lövdén, M., Bodammer, N. C., Kühn, S., et al. Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia. 2010b; 48: 3878–83. doi: 10.1016/j.neuropsychologia.2010.08.026.CrossRefGoogle ScholarPubMed
Lövdén, M., Schaefer, S., Noack, H., et al. Spatial navigation training protects the hippocampus against age-related changes during early and late adulthood. Neurobiol Aging. 2012; 33: 620. e9620. e22. doi: 10.1016/j.neurobiolaging.2011.02.013.CrossRefGoogle ScholarPubMed
Lövdén, M., Wenger, E., Mårtensson, J., Lindenberger, U., Bäckman, L. Structural brain plasticity in adult learning and development. Neurosci Biobehav Rev. 2013; 37: 2296–310. doi: 10.1016/j.neubiorev.2013.02.014.CrossRefGoogle ScholarPubMed
Mahncke, H. W., Bronstone, A., Merzenich, M. M. Brain plasticity and functional losses in the aged: Scientific bases for a novel intervention. Progress in Brain Research. 2006a; 157: 81109CrossRefGoogle ScholarPubMed
Mahncke, H. W., Connor, B. B., Appelman, J., et al. Memory enhancement in healthy older adults using a brain plasticity-based training program: A randomized, controlled study. Proc Natl Acad Sci. 2006b; 103: 125238. doi: 10.1073/pnas.0605194103.CrossRefGoogle ScholarPubMed
Malkasian, D. R., Diamond, M. C. The effects of environmental manipulation on the morphology of the neonate rat brain. Int J Neurosci. 1971; 2: 161–9. Available: http://ncbi.nlm.nih.gov/pubmed/5161309CrossRefGoogle ScholarPubMed
Merzenich, M. M., Vleet, T. M. Van, Nahum, M. Brain plasticity-based therapeutics. Front Hum Neurosci. 2014; 8: 116. doi: 10.3389/fnhum.2014.00385.CrossRefGoogle ScholarPubMed
Merzenich, M. M. Cortical plasticity contributing to child development. McClelland, J. L. & Siegler, R. S. (Eds.), Carnegie Mellon Symposia on Cognition. Mechanisms of Cognitive Development: Behavioral and Neural Perspectives. Mahwah, NJ: Lawrence Erlbaum Associates Publishers. 2001. pp. 6796.Google Scholar
Merzenich, M. M., DeCharms, R. C. Neural representations, experience, and change. In Llinás, R. R. & Churchland, P. S. (Eds.), The Mind–Brain Continuum: Sensory Processes. Cambridge, MA: The MIT Press. 1996. pp. 6181.Google Scholar
Merzenich, M. M., Nelson, R. J., Stryker, M. P., et al. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol. 1984; 224: 591605. doi: 10.1002/cne.902240408.CrossRefGoogle ScholarPubMed
Merzenich, M. M., Schreiner, C., Jenkins, W., Wang, X. Neural mechanisms underlying temporal integration, segmentation, and input sequence representation: Some implications for the origin of learning disabilities. Ann N Y Acad Sci. 1993; 682: 122. Available: http://ncbi.nlm.nih.gov/pubmed/8323106CrossRefGoogle ScholarPubMed
Middleton, L. E., Barnes, D. E., Lui, L.-Y., Yaffe, K. Physical activity over the life course and its association with cognitive performance and impairment in old age. J Am Geriatr Soc. 2010; 58: 1322–6. doi: 10.1111/j.1532-5415.2010.02903.x.CrossRefGoogle ScholarPubMed
Morris, R. G. D.O. Hebb: The Organization of Behavior, Wiley: New York; 1949. Brain Res Bull. 50: 437. Available: http://ncbi.nlm.nih.gov/pubmed/10643472Google Scholar
Morrison, J. H., Baxter, M. G. Synaptic health. JAMA Psychiatry. 2014; 71: 835. doi: 10.1001/jamapsychiatry.2014.380.CrossRefGoogle ScholarPubMed
Mufson, E. J., Ma, S. Y., Dills, J., et al. Loss of basal forebrain P75(NTR) immunoreactivity in subjects with mild cognitive impairment and Alzheimer's disease. J Comp Neurol. 2002; 443: 136–53. Available: http://ncbi.nlm.nih.gov/pubmed/11793352CrossRefGoogle ScholarPubMed
Nahum, M., Lee, H., Merzenich, M. M. Principles of neuroplasticity-based rehabilitation. Prog Brain Res. 2013; 207: 141–71. doi: 10.1016/B978-0-444-63327-9.00009-6.CrossRefGoogle ScholarPubMed
Nakamura, S., Sakaguchi, T. Development and plasticity of the locus coeruleus: A review of recent physiological and pharmacological experimentation. Prog Neurobiol. 1990; 34: 505–26. Available: http://ncbi.nlm.nih.gov/pubmed/2202018CrossRefGoogle ScholarPubMed
Noack, H., Lövdén, M., Schmiedek, F. On the validity and generality of transfer effects in cognitive training research. Psychol Res. 2014; 78: 773–89. doi: 10.1007/s00426-014-0564-6.CrossRefGoogle ScholarPubMed
Persson, J., Pudas, S., Lind, J., et al. Longitudinal structure-function correlates in elderly reveal MTL dysfunction with cognitive decline. Cereb Cortex. 2012; 22: 2297–304. doi: 10.1093/cercor/bhr306.CrossRefGoogle ScholarPubMed
Pieramico, V., Esposito, R., Cesinaro, S., Frazzini, V., Sensi, S. L. Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals. Front Syst Neurosci. 2014; 8: 153. doi: 10.3389/fnsys.2014.00153. eCollection 2014.CrossRefGoogle ScholarPubMed
Raven, F., Van der Zee, E. A., Meerlo, P., Havekes, R. The role of sleep in regulating structural plasticity and synaptic strength: Implications for memory and cognitive function. Sleep Med Rev. 2018; 39: 311. doi: 10.1016/j.smrv.2017.05.002.CrossRefGoogle ScholarPubMed
Raz, N., Rodrigue, K. M. Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev. 2006; 30: 730–48. doi: 10.1016/j.neubiorev.2006.07.001.CrossRefGoogle ScholarPubMed
Raz, N., Lindenberger, U., Rodrigue, K. M., et al. Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cereb Cortex. 2005; 15: 1676–89. doi: 10.1093/cercor/bhi044.CrossRefGoogle ScholarPubMed
Raz, N., Schmiedek, F., Rodrigue, K. M., et al. Differential brain shrinkage over 6-months shows limited association with cognitive practice. Brain Cogn. 2013; 82: 171–80. doi: 10.1016/j.bandc.2013.04.002.CrossRefGoogle Scholar
Recanzone, G. H., Schreiner, C. E., Merzenich, M. M. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci. 1993; 13: 87103. Available: http://ncbi.nlm.nih.gov/pubmed/8423485CrossRefGoogle ScholarPubMed
Richardson, R. T., DeLong, M. R. Context-dependent responses of primate nucleus basalis neurons in a go/no-go task. J Neurosci. 1990; 10: 2528–40. Available: http://ncbi.nlm.nih.gov/pubmed/2388078CrossRefGoogle Scholar
Rowe, J. W., Kahn, R. L. Human aging: Usual and successful. Science. 1987; 237: 143–9. Available: http://ncbi.nlm.nih.gov/pubmed/3299702CrossRefGoogle ScholarPubMed
Ryan, S. M., Nolan, Y. M. Neuroinflammation negatively affects adult hippocampal neurogenesis and cognition: Can exercise compensate? Neurosci Biobehav Rev. 2016; 61: 121–31. doi: 10.1016/j.neubiorev.2015.12.004.CrossRefGoogle ScholarPubMed
Salthouse, T. Consequences of age-related cognitive declines. Annu Rev Psychol. 2012; 63: 201–26. doi: 10.1146/annurev-psych-120710-100328.CrossRefGoogle ScholarPubMed
Salthouse, T. A. Aging and measures of processing speed. Biol Psychol. 2000; 54: 3554. Available: http://ncbi.nlm.nih.gov/pubmed/11035219CrossRefGoogle ScholarPubMed
Sara, S. J. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci. 2009; 10: 211–23. doi: 10.1038/nrn2573.CrossRefGoogle ScholarPubMed
Sara, S. J., Bouret, S. Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron. 2012; 76: 130–41. doi: 10.1016/j.neuron.2012.09.011.CrossRefGoogle ScholarPubMed
Sara, S. J., Segal, M. Plasticity of sensory responses of locus coeruleus neurons in the behaving rat: Implications for cognition. Prog Brain Res. 1991; 88: 571–85. Available: http://ncbi.nlm.nih.gov/pubmed/1813935CrossRefGoogle ScholarPubMed
Sarter, M., Gehring, W. J., Kozak, R. More attention must be paid: The neurobiology of attentional effort. Brain Res Rev. 2006; 51: 145–60. doi: 10.1016/j.brainresrev.2005.11.002.CrossRefGoogle ScholarPubMed
Sarter, M., Givens, B., Bruno, J. P. The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Brain Res Brain Res Rev. 2001; 35(2): 146–60.CrossRefGoogle ScholarPubMed
Schmiedek, F., Lövdén, M., Lindenberger, U. Hundred days of cognitive training enhance broad cognitive abilities in adulthood: Findings from the COGITO study. Front Aging Neurosci. 2010; 2: pii: 27. doi: 10.3389/fnagi.2010.00027.Google ScholarPubMed
Schmiedek, F., Lövdén, M., Lindenberger, U. Younger adults show long-term effects of cognitive training on broad cognitive abilities over 2 years. Dev Psychol. 2014; 50: 2304–10. doi: 10.1037/a0037388.CrossRefGoogle ScholarPubMed
Schnell, L., Schwab, M. E. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature. 1990; 343: 269–72. doi: 10.1038/343269a0.CrossRefGoogle ScholarPubMed
Schultz, W. Multiple dopamine functions at different time courses. Annu Rev Neurosci. 2007; 30: 259–88. doi: 10.1146/annurev.neuro.28.061604.135722.CrossRefGoogle ScholarPubMed
Schwab, M. E., Chen, M. S., Huber, A. B., et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature. 2000; 403: 434–9. doi: 10.1038/35000219.Google Scholar
Shaffer, J. Neuroplasticity and clinical practice actice acbrain power for health. Front Psychol. 2016; 7: 1118. doi: 10.3389/fpsyg.2016.01118.CrossRefGoogle Scholar
Singh, A., Abraham, W. C. Astrocytes and synaptic plasticity in health and disease. Exp Brain Res. Springer Berlin Heidelberg; 2017; 235: 1645–55. doi: 10.1007/s00221-017-4928-1.CrossRefGoogle ScholarPubMed
Smith, B. A., Goldberg, N. R. S., Meshul, C. K. Effects of treadmill exercise on behavioral recovery and neural changes in the substantia nigra and striatum of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse. Brain Res. 2011; 1386: 7080. doi: 10.1016/j.brainres.2011.02.003.CrossRefGoogle Scholar
Steiner, B., Winter, C., Hosman, K., et al. Enriched environment induces cellular plasticity in the adult substantia nigra and improves motor behavior function in the 6-OHDA rat model of Parkinson's disease. Exp Neurol. 2006; 199: 291300. doi: 10.1016/j.expneurol.2005.11.004.CrossRefGoogle ScholarPubMed
Swain, R. A., Thompson, R. F. In search of engrams. Ann N Y Acad Sci. 1993; 702: 2739. Available: http://ncbi.nlm.nih.gov/pubmed/8109877CrossRefGoogle ScholarPubMed
Takesian, A. E., Hensch, T. K. Balancing plasticity/stability across brain development. Prog Brain Res. 2013; 207: 334. doi: 10.1016/B978-0-444-63327-9.00001-1.CrossRefGoogle ScholarPubMed
Tashiro, A., Sandler, V. M., Toni, N., Zhao, C., Gage, F. H. NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature. 2006; 442: 929–33. doi: 10.1038/nature05028.CrossRefGoogle ScholarPubMed
Taubert, M., Draganski, B., Anwander, A., et al. Dynamic properties of human brain structure: Learning-related changes in cortical areas and associated fiber connections. J Neurosci. 2010; 30. Available: http://jneurosci.org/content/30/35/11670.longGoogle ScholarPubMed
Trachtenberg, J. T. Competition, inhibition, and critical periods of cortical plasticity. Curr Opin Neurobiol. 2015; 35: 44–8. doi: 10.1016/j.conb.2015.06.006.CrossRefGoogle ScholarPubMed
Uylings, H. B., Kuypers, K., Diamond, M. C., Veltman, W. A. Effects of differential environments on plasticity of dendrites of cortical pyramidal neurons in adult rats. Exp Neurol. 1978; 62: 658–77. Available: http://ncbi.nlm.nih.gov/pubmed/750216CrossRefGoogle ScholarPubMed
Vemuri, P., Lesnick, T. G., Przybelski, S. A., et al. Association of lifetime intellectual enrichment with cognitive decline in the older population. JAMA Neurol. 2014; 71: 1017. doi: 10.1001/jamaneurol.2014.963.CrossRefGoogle ScholarPubMed
Voelkle, M. C., Brose, A., Schmiedek, F., Lindenberger, U. Toward a unified framework for the study of between-person and within-person structures: Building a bridge between two research paradigms. Multivariate Behav Res. 2014; 49: 193213. doi: 10.1080/00273171.2014.889593.CrossRefGoogle Scholar
Wall, J., Xu, J., Wang, X. Human brain plasticity: An emerging view of the multiple substrates and mechanisms that cause cortical changes and related sensory dysfunctions after injuries of sensory inputs from the body. Brain Res Rev. 2002; 39: 181215. doi: 10.1016/S0165-0173(02)00192-3.CrossRefGoogle ScholarPubMed
Weinberger, N. M. Specific long-term memory traces in primary auditory cortex. Nat Rev Neurosci. 2004; 5: 279–90. doi: 10.1038/nrn1366.CrossRefGoogle ScholarPubMed
Wenger, E., Schaefer, S., Noack, H., et al. Cortical thickness changes following spatial navigation training in adulthood and aging. Neuroimage. 2012; 59: 3389–97. doi: 10.1016/j.neuroimage.2011.11.015.CrossRefGoogle ScholarPubMed
Willey, J. Z., Gardener, H., Caunca, M. R., et al. Leisure-time physical activity associates with cognitive decline. Neurology. 2016; 86: 1897–903. doi: 10.1212/WNL.0000000000002582.CrossRefGoogle ScholarPubMed
Winder, D. G., Egli, R. E., Schramm, N. L., Matthews, R. T. Synaptic plasticity in drug reward circuitry. Curr Mol Med. 2002; 2: 667–76. Available: http://ncbi.nlm.nih.gov/pubmed/12420805CrossRefGoogle ScholarPubMed
Wolinsky, F. D., Mahncke, H. W., Weg, M. W. V., et al. The ACTIVE cognitive training interventions and the onset of and recovery from suspected clinical depression. J Gerontol Ser B Psychol Sci Soc Sci. 2009; 64B: 577–85. doi: 10.1093/geronb/gbp061.Google Scholar
Wolinsky, F. D., Unverzagt, F. W., Smith, D. M., et al. The ACTIVE cognitive training trial and health-related quality of life: Protection that lasts for 5 years. J Gerontol A Biol Sci Med Sci. 2006; 61: 1324–9. Available: http://ncbi.nlm.nih.gov/pubmed/17234829CrossRefGoogle ScholarPubMed
Wolinsky, F. D., Vander Weg, M. W., Howren, M. B., Jones, M. P., Dotson, M. M. A randomized controlled trial of cognitive training using a visual speed of processing intervention in middle aged and older adults. Laks J., editor. PLoS One. 2013; 8: e61624. doi: 10.1371/journal.pone.0061624.CrossRefGoogle Scholar
Zagrebelsky, M., Schweigreiter, R., Bandtlow, C. E., Schwab, M. E., Korte, M. Nogo-A stabilizes the architecture of hippocampal neurons. J Neurosci. 2010; 30: 1322034. doi: 10.1523/JNEUROSCI.1044-10.2010.CrossRefGoogle ScholarPubMed
Zelinski, E. M., Spina, L. M., Yaffe, K., et al. Improvement in memory with plasticity-based adaptive cognitive training: Results of the 3-month follow-up. J Am Geriatr Soc. 2011; 59: 258–65. doi: 10.1111/j.1532-5415.2010.03277.x.CrossRefGoogle ScholarPubMed
Zhou, J., Gennatas, E. D., Kramer, J. H., Miller, B. L., Seeley, W. W. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron. 2012; 73: 1216–27. doi: 10.1016/j.neuron.2012.03.004.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×