Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-21T15:41:10.377Z Has data issue: false hasContentIssue false

3 - Sensitization of Incentive Salience and the Transition to Addiction

from Part I - Concepts of Addiction

Published online by Cambridge University Press:  13 July 2020

Get access

Summary

Addiction is characterized by excessive desire for a particular substance or behavioral incentive at the expense of other life rewards. Addictive desire can develop even in absence of any associated increase in pleasure, and also in absence of withdrawal. Here we review evidence that the brain mechanisms underlying desire or ‘wanting’ can operate independently from those mediating pleasure, or "liking." That is, "wanting" and "liking" are mediated by two anatomically and neurochemically distinct brain mechanisms that normally interact together to influence motivation, but can become dissociated in the transition to addiction. Pleasure "liking" is the hedonic impact of a pleasant stimulus and is causally amplified by a brain system of several functionally interactive but anatomically distributed locations referred to as "hedonic hotspots." These hedonic hotspots are localized subregions within larger brain structures, and are relatively sensitive to disruption. By contrast, "wanting" or the subconscious desire for reward or reward-related cues is much more robust, and mediated by a larger brain system. "Wanting" can be generated by dopamine enhancements as well as by opioid enhancements in several broadly defined regions throughout mesocorticolimbic circuitry. In susceptible individuals, mesolimbic circuitry can become hyperreactive or sensitized (e.g., through previous drug experience), so that "rewards" and their related cues evoke even greater dopamine release and "wanting." Sensitized "wanting" becomes harder to resist, which can spur on excessive and compulsive pursuit and relapse in addiction. Importantly, this sensitization of brain "wanting" systems need not be accompanied by an enhancement of brain "liking" (i.e., dopamine manipulations do not appear to effect pleasure). In this chapter, we also highlight possible mechanisms for how some drugs or behaviors become the specific focus of excessive but narrow pursuit, usually involving mesolimbic brain interactions with areas such as the amygdala. Further we demonstrate that behavioral addictions such as food addiction and gambling, like drug addiction, are accompanied by sensitization of mesolimbic brain "wanting" systems in the transition to addiction.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anselme, P. (2016). Motivational control of sign-tracking behaviour: a theoretical framework. Neuroscience and Biobehavioral Reviews, 65, 120.CrossRefGoogle ScholarPubMed
Anselme, P. & Robinson, M. J. F. (2013). What motivates gambling behavior? Insight into dopamine’s role. Frontiers in Behavioral Neuroscience, 7, 182.CrossRefGoogle ScholarPubMed
Avena, N. M. & Hoebel, B. G. (2003). Amphetamine-sensitized rats show sugar-induced hyperactivity (cross-sensitization) and sugar hyperphagia. Pharmacology, Biochemistry, and Behavior, 74(3), 635639.CrossRefGoogle ScholarPubMed
Barker, J. M. & Taylor, J. R. (2019). Sex differences in incentive motivation and the relationship to the development and maintenance of alcohol use disorders. Physiology & Behavior, 203, 9199.CrossRefGoogle Scholar
Barrett, S. P., Pihl, R. O., Benkelfat, C., et al. (2008). The role of dopamine in alcohol self-administration in humans: individual differences. European Neuropsychopharmacology, 18(6), 439447.CrossRefGoogle ScholarPubMed
Bartlett, E., Hallin, A., Chapman, B. & Angrist, B. (1997). Selective sensitization to the psychosis-inducing effects of cocaine: a possible marker for addiction relapse vulnerability? Neuropsychopharmacology, 16(1), 7782.CrossRefGoogle Scholar
Bartoshuk, L. (2014). The measurement of pleasure and pain. Perspectives on Psychological Science : A Journal of the Association for Psychological Science, 9(1), 9193.Google Scholar
Becker, J. B. (2016). Sex differences in addiction. Dialogues in Clinical Neuroscience, 18(4), 395402.CrossRefGoogle ScholarPubMed
Becker, J. B. & Hu, M. (2008). Sex differences in drug abuse. Frontiers in Neuroendocrinology, 29(1), 3647.CrossRefGoogle ScholarPubMed
Benotsch, E. G., Kalichman, S. C. & Kelly, J. A. (1999). Sexual compulsivity and substance use in HIV-seropositive men who have sex with men: prevalence and predictors of high-risk behaviors. Addictive Behaviors, 24(6), 857868.Google Scholar
Berger, S. P., Hall, S., Mickalian, J. D., et al. (1996). Haloperidol antagonism of cue-elicited cocaine craving. The Lancet, 347(9000), 504508.CrossRefGoogle ScholarPubMed
Berridge, K. C. (2012). From prediction error to incentive salience: mesolimbic computation of reward motivation. The European Journal of Neuroscience, 35(7), 11241143.CrossRefGoogle ScholarPubMed
Berridge, K. C. (2009). “liking” and “wanting” food rewards: brain substrates and roles in eating disorders. Physiology & Behavior, 97(5), 537550.CrossRefGoogle ScholarPubMed
Berridge, K. C. & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology, 199(3), 457480.CrossRefGoogle ScholarPubMed
Berridge, K. C. & Robinson, T. E. (2016). Liking, wanting, and the incentive-sensitization theory of addiction. The American Psychologist, 71(8), 670679.CrossRefGoogle ScholarPubMed
Berridge, K. C. & Robinson, T. E. (2003). Parsing reward. Trends in Neurosciences, 26(9), 507513.CrossRefGoogle ScholarPubMed
Berridge, K. C. & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research. Brain Research Reviews, 28(3), 309369.CrossRefGoogle ScholarPubMed
Berridge, K. C. & Valenstein, E. S. (1991). What psychological process mediates feeding evoked by electrical stimulation of the lateral hypothalamus? Behavioral Neuroscience, 105(1), 314.CrossRefGoogle ScholarPubMed
Berridge, K. C., Ho, C.-Y., Richard, J. M. DiFeliceantonio, A. G. (2010). The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Research, 1350, 4364.Google Scholar
Berridge, K. C., Venier, I. L. & Robinson, T. E. (1989). Taste reactivity analysis of 6-hydroxydopamine-induced aphagia: implications for arousal and anhedonia hypotheses of dopamine function. Behavioral Neuroscience, 103(1), 3645.CrossRefGoogle ScholarPubMed
Bindra, D. (1978). How adaptive behavior is produced: a perceptual-motivational alternative to response reinforcements. Behavioral and Brain Sciences, 1(01), 41.Google Scholar
Blum, K., et al. (2020). Chapter 24 of the Handbook.Google Scholar
Boakes, R. A., Poli, M., Lockwood, M. J. & Goodall, G. (1978). A study of misbehavior: token reinforcement in the rat. Journal of the Experimental Analysis of Behavior, 29(1), 115134.CrossRefGoogle ScholarPubMed
Boileau, I., Dagher, A., Leyton, M., et al. (2007). Conditioned dopamine release in humans: a positron emission tomography [11C]raclopride study with amphetamine. The Journal of Neuroscience, 27(15), 39984003.Google Scholar
Boileau, I., Payer, D., Chugani, B., et al. (2014). In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: a positron emission tomography study with [(11)C]-(+)-PHNO. Molecular Psychiatry, 19(12), 13051313.CrossRefGoogle Scholar
Boileau, I., Payer, D., Rusjan, P. M., et al. (2016). Heightened dopaminergic response to amphetamine at the D3 dopamine receptor in methamphetamine users. Neuropsychopharmacology, 41(13), 29943002.CrossRefGoogle ScholarPubMed
Bostwick, J. M., Hecksel, K. A., Stevens, S. R., Bower, J. H. & Ahlskog, J. E. (2009). Frequency of new-onset pathologic compulsive gambling or hypersexuality after drug treatment of idiopathic Parkinson disease. Mayo Clinic Proceedings, 84(4), 310316.CrossRefGoogle ScholarPubMed
Brauer, L. H. & de Wit, H. (1997). High dose pimozide does not block amphetamine-induced euphoria in normal volunteers. Pharmacology, Biochemistry, and Behavior, 56(2), 265272.Google Scholar
Brevers, D., Cleeremans, A., Bechara, A., et al. (2014a). Impaired metacognitive capacities in individuals with problem gambling. Journal of Gambling Studies, 30(1), 141152.CrossRefGoogle ScholarPubMed
Brevers, D., Koritzky, G., Bechara, A. & Noël, X. (2014b). Cognitive processes underlying impaired decision-making under uncertainty in gambling disorder. Addictive Behaviors, 39(10), 15331536.CrossRefGoogle ScholarPubMed
Browman, K. E., Badiani, A. & Robinson, T. E. (1998). Modulatory effect of environmental stimuli on the susceptibility to amphetamine sensitization: a dose-effect study in rats. The Journal of Pharmacology and Experimental Therapeutics, 287(3), 10071014.Google ScholarPubMed
Brown, P. L. & Jenkins, H. M. (1968). Auto-shaping of the pigeon’s key-peck. Journal of the Experimental Analysis of Behavior, 11(1), 18.CrossRefGoogle ScholarPubMed
Cabanac, M. (1971). Physiological role of pleasure. Science, 173(4002), 11031107.Google Scholar
Cabanac, M. & Lafrance, L. (1990). Postingestive alliesthesia: the rat tells the same story. Physiology & Behavior, 47(3), 539543.CrossRefGoogle ScholarPubMed
Cacioppo, S., Bianchi-Demicheli, F., Frum, C., Pfaus, J. G. & Lewis, J. W. (2012). The common neural bases between sexual desire and love: a multilevel kernel density fMRI analysis. The Journal of Sexual Medicine, 9(4), 10481054.Google Scholar
Calipari, E. S., Ferris, M. J., Zimmer, B. A., Roberts, D. C. S. & Jones, S. R. (2013). Temporal pattern of cocaine intake determines tolerance vs sensitization of cocaine effects at the dopamine transporter. Neuropsychopharmacology, 38(12), 23852392.CrossRefGoogle ScholarPubMed
Callesen, M. B., Scheel-Krüger, J., Kringelbach, M. L. & Møller, A. (2013). A systematic review of impulse control disorders in Parkinson’s disease. Journal of Parkinson’s Disease, 3(2), 105138.CrossRefGoogle ScholarPubMed
Cameron, C. M., Wightman, R. M. & Carelli, R. M. (2014). Dynamics of rapid dopamine release in the nucleus accumbens during goal-directed behaviors for cocaine versus natural rewards. Neuropharmacology, 86, 319328.CrossRefGoogle ScholarPubMed
Carlson, J. N. & Drew Stevens, K. (2006). Individual differences in ethanol self-administration following withdrawal are associated with asymmetric changes in dopamine and serotonin in the medial prefrontal cortex and amygdala. Alcoholism, Clinical and Experimental Research, 30(10), 16781692.Google Scholar
Casey, K. F., Benkelfat, C., Young, S. N. & Leyton, M. (2006). Lack of effect of acute dopamine precursor depletion in nicotine-dependent smokers. European Neuropsychopharmacology, 16(7), 512520.CrossRefGoogle ScholarPubMed
Castner, S. A. & Goldman-Rakic, P. S. (1999). Long-lasting psychotomimetic consequences of repeated low-dose amphetamine exposure in rhesus monkeys. Neuropsychopharmacology, 20(1), 1028.CrossRefGoogle ScholarPubMed
Castro, D. C. & Berridge, K. C. (2014). Opioid hedonic hotspot in nucleus accumbens shell: mu, delta, and kappa maps for enhancement of sweetness “liking” and “wanting.” The Journal of Neuroscience, 34(12), 42394250.CrossRefGoogle ScholarPubMed
Castro, D. C. & Berridge, K. C. (2017). Opioid and orexin hedonic hotspots in rat orbitofrontal cortex and insula. Proceedings of the National Academy of Sciences of the United States of America, 114(43), E9125E9134.Google Scholar
Castro, D. C., Cole, S. L. & Berridge, K. C. (2015). Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Frontiers in Systems Neuroscience, 9, 90.CrossRefGoogle ScholarPubMed
Castro, D. C., Terry, R. A. & Berridge, K. C. 2016. Orexin in rostral hotspot of nucleus accumbens enhances sucrose “liking” and intake but scopolamine in caudal shell shifts “liking” toward “disgust” and “fear.” Neuropsychopharmacology, 41(8), 21012111.Google Scholar
Chang, S. E. & Smith, K. S. (2016). An omission procedure reorganizes the microstructure of sign-tracking while preserving incentive salience. Learning & Memory, 23(4), 151155.CrossRefGoogle ScholarPubMed
Charboneau, E. J., Dietrich, M. S., Park, S., et al. (2013). Cannabis cue-induced brain activation correlates with drug craving in limbic and visual salience regions: preliminary results. Psychiatry Research, 214(2), 122131.Google Scholar
Childress, A. R., Ehrman, R. N., Wang, Z., et al. (2008). Prelude to passion: limbic activation by “unseen” drug and sexual cues. PLos ONE, 3(1), e1506.CrossRefGoogle ScholarPubMed
Claus, E. D., Ewing, S. W. F., Filbey, F. M., Sabbineni, A. & Hutchison, K. E. (2011). Identifying neurobiological phenotypes associated with alcohol use disorder severity. Neuropsychopharmacology, 36(10), 20862096.Google Scholar
Corbit, L. H. & Janak, P. H. (2007). Ethanol-associated cues produce general pavlovian-instrumental transfer. Alcoholism, Clinical and Experimental Research, 31(5), 766774.CrossRefGoogle ScholarPubMed
Costikyan, G. (2013). Uncertainty in Games. MIT Press.Google Scholar
Cousijn, J., Goudriaan, A. E., Ridderinkhof, K. R., et al. (2013). Neural responses associated with cue-reactivity in frequent cannabis users. Addiction Biology, 18(3), 570580.CrossRefGoogle ScholarPubMed
Cowlishaw, S., Nespoli, E., Jebadurai, J. K., Smith, N. & Bowden-Jones, H. (2018). Episodic and binge gambling: an exploration and preliminary quantitative study. Journal of Gambling Studies, 34(1), 8599.CrossRefGoogle ScholarPubMed
Cox, S. M. L., Benkelfat, C., Dagher, A., et al. (2009). Striatal dopamine responses to intranasal cocaine self-administration in humans. Biological Psychiatry, 65(10), 846850.Google Scholar
Crombag, H. S., Badiani, A., Chan, J., et al. (2001). The ability of environmental context to facilitate psychomotor sensitization to amphetamine can be dissociated from its effect on acute drug responsiveness and on conditioned responding. Neuropsychopharmacology, 24(6), 680690.Google Scholar
Crombag, H. S., Badiani, A., Maren, S. & Robinson, T. E. (2000). The role of contextual versus discrete drug-associated cues in promoting the induction of psychomotor sensitization to intravenous amphetamine. Behavioural Brain Research, 116(1), 122.CrossRefGoogle ScholarPubMed
Cromwell, H. C. & Berridge, K. C. (1993). Where does damage lead to enhanced food aversion: the ventral pallidum/substantia innominata or lateral hypothalamus? Brain Research, 624(1–2), 110.CrossRefGoogle ScholarPubMed
Cruz, F. C., Quadros, I. M., Hogenelst, K., Planeta, C. S. & Miczek, K. A. (2011). Social defeat stress in rats: escalation of cocaine and “speedball” binge self-administration, but not heroin. Psychopharmacology, 215(1), 165175.Google Scholar
Cunningham, S. T. & Kelley, A. E. (1992). Opiate infusion into nucleus accumbens: contrasting effects on motor activity and responding for conditioned reward. Brain Research, 588(1), 104114.CrossRefGoogle ScholarPubMed
Dai, X., Brendl, C. M. & Ariely, D. 2010. Wanting, liking, and preference construction. Emotion, 10(3), 324334.CrossRefGoogle ScholarPubMed
Davis, C. & Carter, J. C. (2009). Compulsive overeating as an addiction disorder. A review of theory and evidence. Appetite, 53(1), 18.Google Scholar
Delamater, R. J. & McNamara, J. R. (1986). The social impact of assertiveness. Research findings and clinical implications. Behavior Modification, 10(2), 139158.Google Scholar
Delpont, B., Lhommée, E., Klinger, H., et al. (2017). Psychostimulant effect of dopaminergic treatment and addictions in Parkinson’s disease. Movement Disorders, 32(11), 15661573.Google Scholar
Deluchi, M., Costa, F. S., Friedman, R., Gonçalves, R. & Bizarro, L. (2017). Attentional bias to unhealthy food in individuals with severe obesity and binge eating. Appetite, 108, 471476.Google Scholar
Derevensky, J. L. (2020). The prevention and treatment of gambling disorders: some art, some science. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 241253.Google Scholar
DiFeliceantonio, A. G. & Berridge, K. C. (2012). Which cue to “want”? Opioid stimulation of central amygdala makes goal-trackers show stronger goal-tracking, just as sign-trackers show stronger sign-tracking. Behavioural Brain Research, 230(2), 399408.CrossRefGoogle ScholarPubMed
Doran, N. (2014). Sex differences in smoking cue reactivity: craving, negative affect, and preference for immediate smoking. The American Journal on Addictions, 23(3), 211217.Google Scholar
Evans, A. H. & Lees, A. J. (2004). Dopamine dysregulation syndrome in Parkinson’s disease. Current Opinion in Neurology, 17(4), 393398.CrossRefGoogle ScholarPubMed
Evans, A. H., Pavese, N., Lawrence, A. D., et al. (2006). Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Annals of Neurology, 59(5), 852858.Google Scholar
Fattore, L., Melis, M., Fadda, P. & Fratta, W. (2014). Sex differences in addictive disorders. Frontiers in Neuroendocrinology, 35(3), 272284.Google Scholar
Filbey, F. M., Schacht, J. P., Myers, U. S., Chavez, R. S. & Hutchison, K. E. (2009). Marijuana craving in the brain. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 1301613021.Google Scholar
Finlayson, G. (2017). Food addiction and obesity: unnecessary medicalization of hedonic overeating. Nature Reviews Endocrinology, 13(8), 493498.Google Scholar
Fiorillo, C. D. (2011). Transient activation of midbrain dopamine neurons by reward risk. Neuroscience, 197, 162171.CrossRefGoogle ScholarPubMed
Fiorillo, C. D., Tobler, P. N. & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science. 299(5614), 18981902.CrossRefGoogle ScholarPubMed
Fischman, M. W. & Foltin, R. W. (1992). Self-administration of cocaine by humans: a laboratory perspective. Ciba Foundation Symposium, 166, 165173; discussion 173.Google Scholar
Flagel, S. B. & Robinson, T. E. (2017). Neurobiological basis of individual variation in stimulus-reward learning. Current Opinion in Behavioral Sciences, 13, 178185.CrossRefGoogle ScholarPubMed
Flagel, S. B., Akil, H. & Robinson, T. E. (2009). Individual differences in the attribution of incentive salience to reward-related cues: Implications for addiction. Neuropharmacology, 56 (Supplement 1), 139148.Google Scholar
Flagel, S. B., Clark, J. J., Robinson, T. E., et al. (2011). A selective role for dopamine in stimulus-reward learningNature469(7328), 5357.CrossRefGoogle ScholarPubMed
Flagel, S. B., Watson, S. J., Akil, H. & Robinson, T. E. (2008). Individual differences in the attribution of incentive salience to a reward-related cue: influence on cocaine sensitization. Behavioural Brain Research, 186(1), 4856.CrossRefGoogle ScholarPubMed
Fox, H. C., Sofuoglu, M., Morgan, P. T., Tuit, K. L. & Sinha, R. (2013). The effects of exogenous progesterone on drug craving and stress arousal in cocaine dependence: impact of gender and cue type. Psychoneuroendocrinology, 38(9), 15321544.Google Scholar
Friedman, J. H. & Chang, V. (2013). Crack cocaine use due to dopamine agonist therapy in Parkinson disease. Neurology, 80(24), 22692270.CrossRefGoogle ScholarPubMed
Galimov, A. & Black, D. W. (2020). Prevention and treatment of compulsive buying disorder. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 271279.CrossRefGoogle Scholar
Garcia, J., Lasiter, P. S., Bermudez-Rattoni, F. & Deems, D. A. (1985). A general theory of aversion learning. Annals of the New York Academy of Sciences, 443, 821.Google Scholar
Garcia-Keller, C., Martinez, S. A., Esparza, M. A., et al. (2013). Cross-sensitization between cocaine and acute restraint stress is associated with sensitized dopamine but not glutamate release in the nucleus accumbens. The European Journal of Neuroscience, 37(6), 982995.CrossRefGoogle Scholar
Gearhardt, A. N., Corbin, W. R. & Brownell, K. D. (2009). Food addiction: an examination of the diagnostic criteria for dependence. Journal of Addiction Medicine, 3(1), 17.Google Scholar
Gearhardt, A. N., Yokum, S., Orr, P. T., et al. (2011). Neural correlates of food addiction. Archives of General Psychiatry, 68(8), 808816.Google Scholar
Georgiadis, J. R. & Kringelbach, M. L. (2012). The human sexual response cycle: brain imaging evidence linking sex to other pleasures. Progress in Neurobiology, 98(1), 4981.Google Scholar
Gerstein, D., Hoffmann, J., Larison, C., et al. 1999. Gambling impact and behavior study. Report to the National Gambling Impact Study Commission. National Opinion Research Center at the University of Chicago, Chicago.Google Scholar
Giroux, I., Faucher-Gravel, A., St-Hilaire, A., Boudreault, C., Jacques, C. & Bouchard, S. (2013). Gambling exposure in virtual reality and modification of urge to gamble. Cyberpsychology, Behavior and Social Networking, 16(3), 224231.Google Scholar
Goudriaan, A. E., de Ruiter, M. B., van den Brink, W., Oosterlaan, J. & Veltman, D. J. (2010). Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study. Addiction Biology, 15(4), 491503.CrossRefGoogle ScholarPubMed
Grill, H. J. & Norgren, R. (1978). The taste reactivity test. I. Mimetic responses to gustatory stimuli in neurologically normal rats. Brain Research, 143(2), 263279.CrossRefGoogle ScholarPubMed
Hellberg, S. N., Levit, J. D. & Robinson, M. J. F. (2018). Under the influence: Effects of adolescent ethanol exposure and anxiety on motivation for uncertain gambling-like cues in male and female rats. Behavioural Brain Research, 337, 1733.Google Scholar
Hernandez, L. & Hoebel, B. G. (1988). Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens. Physiology & Behavior, 44(4–5), 599606.Google Scholar
Hickey, C. & Peelen, M. V. (2015). Neural mechanisms of incentive salience in naturalistic human vision. Neuron, 85(3), 512518.Google Scholar
Ho, C.-Y. & Berridge, K. C. (2013). An orexin hotspot in ventral pallidum amplifies hedonic “liking” for sweetness. Neuropsychopharmacology, 38(9), 16551664.CrossRefGoogle ScholarPubMed
Holmes, N. M., Marchand, A. R. & Coutureau, E. (2010). Pavlovian to instrumental transfer: a neurobehavioural perspective. Neuroscience and Biobehavioral Reviews, 34(8), 12771295.CrossRefGoogle ScholarPubMed
Holst, van, R. J., Sescousse, G., Janssen, L. K., et al. (2018). Increased striatal dopamine synthesis capacity in gambling addiction. Biological Psychiatry, 83(12), 10361043.Google Scholar
Holst, van, R. J., Veltman, D. J., van den Brink, W. & Goudriaan, A. E. (2012). Right on cue? Striatal reactivity in problem gamblers. Biological Psychiatry, 72(10), e23–24.Google Scholar
Horger, B. A., Giles, M. K. & Schenk, S. (1992). Preexposure to amphetamine and nicotine predisposes rats to self-administer a low dose of cocaine. Psychopharmacology, 107(2–3), 271276.Google Scholar
Hu, M. & Becker, J. B. (2008). Acquisition of cocaine self-administration in ovariectomized female rats: effect of estradiol dose or chronic estradiol administration. Drug and Alcohol Dependence, 94(1–3), 5662.Google Scholar
Ihssen, N., Cox, W. M., Wiggett, A., Fadardi, J. S. & Linden, D. E. J. (2011). Differentiating heavy from light drinkers by neural responses to visual alcohol cues and other motivational stimuli. Cerebral Cortex, 21(6), 14081415.Google Scholar
Itoga, C. A., Berridge, K. C. & Aldridge, J. W. (2016). Ventral pallidal coding of a learned taste aversion. Behavioural Brain Research, 300, 175183.Google Scholar
Joutsa, J., Johansson, J., Niemelä, S., et al. (2012). Mesolimbic dopamine release is linked to symptom severity in pathological gambling. Neuroimage, 60(4), 19921999.Google Scholar
Joyner, M. A., Kim, S. & Gearhardt, A. N. (2017). Investigating an incentive-sensitization model of eating behavior: Impact of a simulated fast-food laboratory. Clinical Psychological Science, p. 216770261771882.Google Scholar
Kai, N., Nishizawa, K., Tsutsui, Y., Ueda, S. & Kobayashi, K. (2015). Differential roles of dopamine D1 and D2 receptor-containing neurons of the nucleus accumbens shell in behavioral sensitization. Journal of Neurochemistry, 135(6), 12321241.Google Scholar
Kalivas, P. W. & Duffy, P. (1990). Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse, 5(1), 4858.Google Scholar
Kalivas, P. W. & Stewart, J. (1991). Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Research. Brain Research Reviews, 16(3), 223244.Google Scholar
Kalivas, P. W., Volkow, N. & Seamans, J. (2005). Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron, 45(5), 647650.CrossRefGoogle ScholarPubMed
Kaplan, J. M., Roitman, M. & Grill, H. J. (2000). Food deprivation does not potentiate glucose taste reactivity responses of chronic decerebrate rats. Brain Research, 870(1–2), 102108.CrossRefGoogle Scholar
Kawa, A. B., Bentzley, B. S. & Robinson, T. E. (2016). Less is more: prolonged intermittent access cocaine self-administration produces incentive-sensitization and addiction-like behavior. Psychopharmacology, 233(19–20), 35873602.CrossRefGoogle ScholarPubMed
Kelley, A. E. & Berridge, K. C. (2002). The neuroscience of natural rewards: relevance to addictive drugs. The Journal of Neuroscience, 22(9), 33063311.Google Scholar
Keyes, K. M., Martins, S. S., Blanco, C. & Hasin, D. S. (2010). Telescoping and gender differences in alcohol dependence: new evidence from two national surveys. The American Journal of Psychiatry, 167(8), 969976.Google Scholar
Koob, G. F. & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology, 35(1), 217238.Google Scholar
Kühn, S. & Gallinat, J. (2011). Common biology of craving across legal and illegal drugs – a quantitative meta-analysis of cue-reactivity brain response. The European Journal of Neuroscience, 33(7), 13181326.Google Scholar
LeBlanc, K. H., Ostlund, S. B. & Maidment, N. T. (2012). Pavlovian-to-instrumental transfer in cocaine seeking rats. Behavioral Neuroscience, 126(5), 681689.Google Scholar
Leeman, R. F. & Potenza, M. N. (2012). Similarities and differences between pathological gambling and substance use disorders: a focus on impulsivity and compulsivity. Psychopharmacology, 219(2), 469490.Google Scholar
Lemmens, S. G. T., Schoffelen, P. F. M., Wouters, L., et al. (2009). Eating what you like induces a stronger decrease of “wanting” to eat. Physiology & Behavior, 98(3), 318325.CrossRefGoogle ScholarPubMed
Leyton, M. & Vezina, P. (2013). Striatal ups and downs: their roles in vulnerability to addictions in humans. Neuroscience and Biobehavioral Reviews, 37(9 Pt A), 19992014.CrossRefGoogle ScholarPubMed
Leyton, M., Boileau, I., Benkelfat, C., et al. (2002). Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: a PET/[11C]raclopride study in healthy men. Neuropsychopharmacology, 27(6), 10271035.Google Scholar
Leyton, M., Casey, K. F., Delaney, J. S., Kolivakis, T. & Benkelfat, C. (2005). Cocaine craving, euphoria, and self-administration: a preliminary study of the effect of catecholamine precursor depletion. Behavioral Neuroscience, 119(6), 16191627.Google Scholar
Leyton, M., aan het Rot, M., Booij, L., et al. (2007). Mood-elevating effects of d-amphetamine and incentive salience: the effect of acute dopamine precursor depletion. Journal of Psychiatry & Neuroscience, 32(2), 129136.Google Scholar
Leyton, M., Young, S. N., Blier, P., et al. (2000). Acute tyrosine depletion and alcohol ingestion in healthy women. Alcoholism, Clinical and Experimental Research, 24(4), 459464.Google Scholar
Li, P., Wu, P., Xin, X., et al. (2015). Incubation of alcohol craving during abstinence in patients with alcohol dependence. Addiction Biology, 20(3), 513522.Google Scholar
Li, X., Zeric, T., Kambhampati, S., Bossert, J. M. & Shaham, Y. (2015). The central amygdala nucleus is critical for incubation of methamphetamine craving. Neuropsychopharmacology, 40(5), 12971306.Google Scholar
Litt, A., Khan, U. & Shiv, B. (2010). Lusting while loathing: parallel counterdriving of wanting and liking. Psychological Science, 21(1), 118125.Google Scholar
Lovic, V., Saunders, B. T., Yager, L. M. & Robinson, T. E. (2011). Rats prone to attribute incentive salience to reward cues are also prone to impulsive action. Behavioural Brain Research, 223(2), 255261.Google Scholar
Lu, L., Hope, B. T., Dempsey, J., et al. (2005). Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nature Neuroscience, 8(2), 212219.CrossRefGoogle ScholarPubMed
Lu, L., Uejima, J. L., Gray, S. M., Bossert, J .M. & Shaham, Y. (2007). Systemic and central amygdala injections of the mGluR(2/3) agonist LY379268 attenuate the expression of incubation of cocaine craving. Biological Psychiatry, 61(5), 591598.Google Scholar
Mahler, S. V. & Berridge, K. C. (2009). Which cue to “want?” Central amygdala opioid activation enhances and focuses incentive salience on a prepotent reward cue. The Journal of Neuroscience, 29(20), 65006513.Google Scholar
Mahler, S. V. & Berridge, K. C. (2012). What and when to “want?” Amygdala-based focusing of incentive salience upon sugar and sex. Psychopharmacology, 221(3), 407426.Google Scholar
Mascia, P., Neugebauer, N. M., Brown, J., et al. (2019). Exposure to conditions of uncertainty promotes the pursuit of amphetamine. Neuropsychopharmacology, 44(2), 274280.Google Scholar
McBride, W. J. (2002). Central nucleus of the amygdala and the effects of alcohol and alcohol-drinking behavior in rodents. Pharmacology, Biochemistry, and Behavior, 71(3), 509515.Google Scholar
Metrik, J., Aston, E. R., Kahler, C. W., et al. (2016). Cue-elicited increases in incentive salience for marijuana: craving, demand, and attentional bias. Drug and Alcohol Dependence, 167, 8288.Google Scholar
Mick, I., Myers, J., Stokes, P. R. A., et al. (2014). Amphetamine induced endogenous opioid release in the human brain detected with [11C]carfentanil PET: replication in an independent cohort. The International Journal of Neuropsychopharmacology, 17(12), 20692074.CrossRefGoogle Scholar
Miller, K. A. & Mays, D. (2020). Tanning as an addiction: The state of the research and implications for intervention. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 362372.Google Scholar
Munafò, M. R., Zetteler, J. I. & Clark, T. G. (2007). Personality and smoking status: a meta-analysis. Nicotine & Tobacco Research, 9(3), 405413.Google Scholar
Myrick, H., Anton, R. F., Li, X., et al. (2004). Differential brain activity in alcoholics and social drinkers to alcohol cues: relationship to craving. Neuropsychopharmacology, 29(2), 393402.Google Scholar
Nowak, D. E. & Aloe, A. M. (2014). The prevalence of pathological gambling among college students: a meta-analytic synthesis, 2005–2013. Journal of Gambling Studies, 30(4), 819843.Google Scholar
O’Daly, O. G., Joyce, D., Tracy, D. K., et al. (2014). Amphetamine sensitization alters reward processing in the human striatum and amygdala. PLos ONE, 9(4), e93955.Google Scholar
Oginsky, M. F., Goforth, P. B., Nobile, C. W., Lopez-Santiago, L. F. & Ferrario, C. R. (2016a). Eating “junk-food” produces rapid and long-lasting increases in nac cp-ampa receptors: implications for enhanced cue-induced motivation and food addiction. Neuropsychopharmacology, 41(13), 29772986.Google Scholar
Oginsky, M. F., Maust, J. D., Corthell, J. T. & Ferrario, C. R. (2016b). Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not in adolescent rats susceptible to diet-induced obesity. Psychopharmacology, 233(5), 773784.Google Scholar
Ondo, W. G. & Lai, D. (2008). Predictors of impulsivity and reward seeking behavior with dopamine agonists. Parkinsonism & Related Disorders, 14(1), 2832.Google Scholar
Ostlund, S. B., LeBlanc, K. H., Kosheleff, A. R., Wassum, K. M. & Maidment, N. T. (2014). Phasic mesolimbic dopamine signaling encodes the facilitation of incentive motivation produced by repeated cocaine exposure. Neuropsychopharmacology, 39(10), 24412449.CrossRefGoogle ScholarPubMed
O’Sullivan, S. S., Wu, K., Politis, M., et al. (2011). Cue-induced striatal dopamine release in Parkinson’s disease-associated impulsive-compulsive behaviours. Brain: A Journal of Neurology, 134(Part 4), 969978.Google Scholar
Park, C.-B., Park, S. M., Gwak, A. R., et al. (2015). The effect of repeated exposure to virtual gambling cues on the urge to gamble. Addictive Behaviors, 41, 6164.Google Scholar
Parker, L. A. (2014). Conditioned flavor avoidance and conditioned gaping: rat models of conditioned nausea. European Journal of Pharmacology, 722, 122133.Google Scholar
Pascoli, V., Turiault, M. & Lüscher, C. (2011). Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature, 481(7379), 7175.Google Scholar
Paulson, P. E. & Robinson, T. E. (1995). Amphetamine-induced time-dependent sensitization of dopamine neurotransmission in the dorsal and ventral striatum: a microdialysis study in behaving rats. Synapse, 19(1), 5665.Google Scholar
Paulson, P. E., Camp, D. M. & Robinson, T. E. (1991). Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology, 103(4), 480492.Google Scholar
Peciña, S. & Berridge, K. C. (2000). Opioid site in nucleus accumbens shell mediates eating and hedonic “liking” for food: map based on microinjection Fos plumes. Brain Research, 863(1–2), 7186.Google Scholar
Peciña, S. & Berridge, K. C. (2005). Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? The Journal of Neuroscience, 25(50), 1177711786.Google Scholar
Peciña, S. & Berridge, K. C. (2013). Dopamine or opioid stimulation of nucleus accumbens similarly amplify cue-triggered “wanting” for reward: entire core and medial shell mapped as substrates for PIT enhancement. The European Journal of Neuroscience, 37(9), 15291540.Google Scholar
Peciña, S., Cagniard, B., Berridge, K. C., Aldridge, J. W. & Zhuang, X. (2003). Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. The Journal of Neuroscience, 23(28), 93959402.Google Scholar
Petit, A., Lejoyeux, M., Reynaud, M. & Karila, L. (2014). Excessive indoor tanning as a behavioral addiction: a literature review. Current Pharmaceutical Design, 20(25), 40704075.Google Scholar
Petry, N. M. & Blanco, C. (2013). National gambling experiences in the United States: will history repeat itself? Addiction, 108(6), 10321037.Google Scholar
Pfaus, J. G., Damsma, G., Nomikos, G. G., et al. (1990). Sexual behavior enhances central dopamine transmission in the male rat. Brain Research, 530(2), 345348.Google Scholar
Piazza, P. V., Deminière, J. M., Le Moal, M. & Simon, H. (1989). Factors that predict individual vulnerability to amphetamine self-administration. Science, 245(4925), 15111513.Google Scholar
Piazza, P. V., Deminiere, J. M., Le Moal, M. & Simon, H. (1990). Stress- and pharmacologically-induced behavioral sensitization increases vulnerability to acquisition of amphetamine self-administration. Brain Research, 514(1), 2226.Google Scholar
Piazza, P. V., Deroche-Gamonent, V., Rouge-Pont, F. & Le Moal, M. (2000). Vertical shifts in self-administration dose-response functions predict a drug-vulnerable phenotype predisposed to addiction. The Journal of Neuroscience, 20(11), 42264232.Google Scholar
Pickens, C. L., Airavaara, M., Theberge, F., et al. (2011). Neurobiology of the incubation of drug craving. Trends in Neurosciences, 34(8), 411420.Google Scholar
Politis, M., Loane, C., Wu, K., et al. (2013). Neural response to visual sexual cues in dopamine treatment-linked hypersexuality in Parkinson’s disease. Brain: A Journal of Neurology, 136(Part 2), 400411.Google Scholar
Popien, A., Frayn, M., von Ranson, K. M. & Sears, C. R. (2015). Eye gaze tracking reveals heightened attention to food in adults with binge eating when viewing images of real-world scenes. Appetite, 91, 233240.Google Scholar
Potenza, M. N. (2008). The neurobiology of pathological gambling and drug addiction: an overview and new findings. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1507), 31813189.Google Scholar
Prisciandaro, J. J., Joseph, J. E., Myrick, H., et al. (2014). The relationship between years of cocaine use and brain activation to cocaine and response inhibition cues. Addiction, 109(12), 20622070.Google Scholar
Robbins, T. W. (1976). Relationship between reward-enhancing and stereotypical effects of psychomotor stimulant drugs. Nature, 264(5581), 5759.CrossRefGoogle ScholarPubMed
Robinson, M. J. F. & Berridge, K. C. (2013). Instant transformation of learned repulsion into motivational “wanting.” Current Biology, 23(4), 282289.Google Scholar
Robinson, M. J. F., Anselme, P., Fischer, A. M. & Berridge, K. C. (2014a). Initial uncertainty in Pavlovian reward prediction persistently elevates incentive salience and extends sign-tracking to normally unattractive cues. Behavioural Brain Research, 266, 119130.Google Scholar
Robinson, M. J. F., Anselme, P., Suchomel, K. & Berridge, K. C. (2015a). Amphetamine-induced sensitization and reward uncertainty similarly enhance incentive salience for conditioned cues. Behavioral Neuroscience, 129(4), 502511.Google Scholar
Robinson, M. J. F., Burghardt, P. R., Patterson, C. M., et al. (2015b). Individual differences in cue-induced motivation and striatal systems in rats susceptible to diet-induced obesity. Neuropsychopharmacology, 40(9), 21132123.Google Scholar
Robinson, M. J. F., Warlow, S. M. & Berridge, K. C. (2014b). Optogenetic excitation of central amygdala amplifies and narrows incentive motivation to pursue one reward above another. The Journal of Neuroscience, 34(50), 1656716580.Google Scholar
Robinson, T. E. & Becker, J. B. (1986). Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Research, 396(2), 157198.Google Scholar
Robinson, T. E. & Berridge, K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Research. Brain Research Reviews, 18(3), 247291.Google Scholar
Robinson, T. E. & Berridge, K. C. (2008). Review. The incentive sensitization theory of addiction: some current issues. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1507), 31373146.Google Scholar
Robinson, T. E. & Flagel, S. B. (2009). Dissociating the predictive and incentive motivational properties of reward-related cues through the study of individual differences. Biological Psychiatry, 65(10), 869873.Google Scholar
Robinson, T. E. & Kolb, B. (2004). Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology, 47 (Supplement 1), 3346.Google Scholar
Rømer Thomsen, K., Fjorback, L. O., Møller, A. & Lou, H. C. (2014). Applying incentive sensitization models to behavioral addiction. Neuroscience and Biobehavioral Reviews, 45, 343349.Google Scholar
Rosse, R. B., Fay-McCarthy, M., Collins, J. P., Alim, T. N. & Deutsch, S. I. (1994). The relationship between cocaine-induced paranoia and compulsive foraging: a preliminary report. Addiction, 89(9), 10971104.Google Scholar
Rosse, R. B., Fay-McCarthy, M., Collins, J. P., et al. (1993). Transient compulsive foraging behavior associated with crack cocaine use. The American Journal of Psychiatry, 150(1), 155156.Google Scholar
Rougé-Pont, F., Piazza, P. V., Kharouby, M., Le Moal, M. & Simon, H. (1993). Higher and longer stress-induced increase in dopamine concentrations in the nucleus accumbens of animals predisposed to amphetamine self-administration. A microdialysis study. Brain Research, 602(1), 169174.Google Scholar
Rozin, E. (2000). The flavor principle: comment on use of the concept by Pliner and Stallberg-White (2000). Appetite, 34(2), 224; discussion 225–226.CrossRefGoogle ScholarPubMed
Saal, D., Dong, Y., Bonci, A. & Malenka, R. C. (2003). Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron, 37(4), 577582.Google Scholar
Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A. & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257262.Google Scholar
Saunders, B. T. & Robinson, T. E. (2010). A cocaine cue acts as an incentive stimulus in some but not others: implications for addiction. Biological Psychiatry, 67(8), 730736.Google Scholar
Saunders, B. T. & Robinson, T. E. (2011). Individual variation in the motivational properties of cocaine. Neuropsychopharmacology, 36(8), 16681676.Google Scholar
Schlaepfer, T. E., Cohen, M. X., Frick, C., et al. (2008). Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology, 33(2), 368377.Google Scholar
Schmidt, R., Lüthold, P., Kittel, R., Tetzlaff, A. & Hilbert, A. (2016). Visual attentional bias for food in adolescents with binge-eating disorder. Journal of Psychiatric Research, 80, 2229.Google Scholar
Schmitz, F., Naumann, E., Trentowska, M. & Svaldi, J. (2014). Attentional bias for food cues in binge eating disorder. Appetite, 80, 7080.Google Scholar
Shin, A. C., Pistell, P. J., Phifer, C. B. and Berthoud, H. R. (2010). Reversible suppression of food reward behavior by chronic mu-opioid receptor antagonism in the nucleus accumbens. Neuroscience, 170(2), 580588.Google Scholar
Sienkiewicz-Jarosz, H., Scinska, A., Swiecicki, L., et al. (2013). Sweet liking in patients with Parkinson’s disease. Journal of the Neurological Sciences, 329(1–2), 1722.Google Scholar
Singer, B. F., Scott-Railton, J. & Vezina, P. (2012). Unpredictable saccharin reinforcement enhances locomotor responding to amphetamine. Behavioural Brain Research, 226(1), 340344.Google Scholar
Singer, B. F., Tanabe, L. M., Gorny, G., et al. (2009). Amphetamine-induced changes in dendritic morphology in rat forebrain correspond to associative drug conditioning rather than nonassociative drug sensitization. Biological Psychiatry, 65(10), 835840.Google Scholar
Sinha, R. (2013). The clinical neurobiology of drug craving. Current Opinion in Neurobiology, 23(4), 649654.Google Scholar
Small, D. M., Zatorre, R. J., Dagher, A., Evans, A. C. & Jones-Gotman, M. (2001). Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain: A Journal of Neurology, 124(Pt 9), 17201733.Google Scholar
Smith, K. S. & Berridge, K. C. (2007). Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. The Journal of Neuroscience, 27(7), 15941605.Google Scholar
Smith, K. S. & Berridge, K. C. (2005). The ventral pallidum and hedonic reward: neurochemical maps of sucrose “liking” and food intake. The Journal of Neuroscience, 25(38), 86378649.Google Scholar
Smith, K. S., Berridge, K. C. & Aldridge, J. W. (2011). Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proceedings of the National Academy of Sciences of the United States of America, 108(27), E255–264.Google Scholar
Söderpalm, A. H. & Berridge, K. C. (2000). The hedonic impact and intake of food are increased by midazolam microinjection in the parabrachial nucleus. Brain Research, 877(2), 288297.Google Scholar
Sperling, I., Baldofski, S., Lüthold, P. & Hilbert, A. (2017). Cognitive food processing in binge-eating disorder: an eye-tracking study. Nutrients, 9(8), 903.Google Scholar
Steiner, J. E. (1973). The gustofacial response: observation on normal and anencephalic newborn infants. Symposium on Oral Sensation and Perception, 4, 254278.Google Scholar
Steiner, J. E., Glaser, D., Hawilo, M. E. & Berridge, K. C. (2001). Comparative expression of hedonic impact: affective reactions to taste by human infants and other primates. Neuroscience and Biobehavioral Reviews, 25(1), 5374.Google Scholar
Steketee, J. D. & Kalivas, P. W. (2011). Drug wanting: behavioral sensitization and relapse to drug-seeking behavior. Pharmacological Reviews, 63(2), 348365.Google Scholar
Stuber, G. D., Hopf, F. W., Hahn, J., et al. (2008). Voluntary ethanol intake enhances excitatory synaptic strength in the ventral tegmental area. Alcoholism, Clinical and Experimental Research, 32(10), 17141720.Google Scholar
Sussman, S. & Bolshakova, M. (2020). Treatment of alcohol, tobacco, and other drug (ATOD) misuse. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 215229.Google Scholar
Sussman, S., Rozgonjuk, D. & van den Eijnden, R. J. J. M. (2017). Substance and behavioral addictions may share a similar underlying process of dysregulation. Addiction, 112(10), 17171718.Google Scholar
Tapert, S. F., Cheung, E. H., Brown, G. G., et al. (2003). Neural response to alcohol stimuli in adolescents with alcohol use disorder. Archives of General Psychiatry, 60(7), 727735.Google Scholar
Terraneo, A., Leggio, L., Saladini, M., et al. (2016). Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: A pilot study. European Neuropsychopharmacology, 26(1), 3744.Google Scholar
Thomas, M. J., Kalivas, P. W. & Shaham, Y. (2008). Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. British Journal of Pharmacology, 154(2), 327342.Google Scholar
Tindell, A. J., Berridge, K. C., Zhang, J., Peciña, S. & Aldridge, J. W. (2005). Ventral pallidal neurons code incentive motivation: amplification by mesolimbic sensitization and amphetamine. The European Journal of Neuroscience, 22(10), 26172634.Google Scholar
Tom, R. L., Ahuja, A., Maniates, H., Freeland, C. M. & Robinson, M. J. F. (2019). Optogenetic activation of the central amygdala generates addiction-like preference for reward. The European Journal of Neuroscience, 50(3), 20862100.Google Scholar
Tournier, B. B., Tsartsalis, S., Dimiziani, A., Millet, P. & Ginovart, N. (2016). Time-dependent effects of repeated THC treatment on dopamine D2/3 receptor-mediated signalling in midbrain and striatum. Behavioural Brain Research, 311, 322329.Google Scholar
Uslaner, J. M., Acerbo, M. J., Jones, S. A. & Robinson, T. E. (2006). The attribution of incentive salience to a stimulus that signals an intravenous injection of cocaine. Behavioural Brain Research, 169(2), 320324.Google Scholar
Vela, L., Martínez Castrillo, J. C., García Ruiz, P., et al. (2016). The high prevalence of impulse control behaviors in patients with early-onset Parkinson’s disease: a cross-sectional multicenter study. Journal of the Neurological Sciences, 368, 150154.Google Scholar
Venniro, M., Caprioli, D. & Shaham, Y. (2016). Animal models of drug relapse and craving: From drug priming-induced reinstatement to incubation of craving after voluntary abstinence. Progress in Brain Research, 224, 2552.Google Scholar
Versace, F., Kypriotakis, G., Basen-Engquist, K. & Schembre, S. M. (2016). Heterogeneity in brain reactivity to pleasant and food cues: evidence of sign-tracking in humans. Social Cognitive and Affective Neuroscience, 11(4), 604611.Google Scholar
Vezina, P. & Leyton, M. (2009). Conditioned cues and the expression of stimulant sensitization in animals and humans. Neuropharmacology, 56 (Supplement 1), 160168.Google Scholar
Volkow, N. D., Koob, G. F. & McLellan, A. T. (2016). Neurobiologic advances from the brain disease model of addiction. The New England Journal of Medicine, 374(4), 363371.Google Scholar
Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D. & Baler, R. (2012). Food and drug reward: overlapping circuits in human obesity and addiction. Current Topics in Behavioral Neurosciences, 11, 124.Google Scholar
Voon, V., Napier, T. C., Frank, M. J., et al. (2017). Impulse control disorders and levodopa-induced dyskinesias in Parkinson’s disease: an update. Lancet Neurology, 16(3), 238250.Google Scholar
Wachtel, S. R., Ortengren, A. & de Wit, H. (2002). The effects of acute haloperidol or risperidone on subjective responses to methamphetamine in healthy volunteers. Drug and Alcohol Dependence, 68(1), 2333.Google Scholar
Wang, G., Shi, J., Chen, N., et al. (2013). Effects of length of abstinence on decision-making and craving in methamphetamine abusers. PLos ONE, 8(7), e68791.Google Scholar
Warlow, S. M., Robinson, M. J. F. & Berridge, K. C. (2017). Optogenetic central amygdala stimulation intensifies and narrows motivation for cocaine. The Journal of Neuroscience, 37(35), 83308348.Google Scholar
Warren, N., O’Gorman, C., Lehn, A. & Siskind, D. (2017). Dopamine dysregulation syndrome in Parkinson’s disease: a systematic review of published cases. Journal of Neurology, Neurosurgery, and Psychiatry, 88(12), 10601064.Google Scholar
Washton, A. M. & Stone-Washton, N. (1993). Outpatient treatment of cocaine and crack addiction: a clinical perspective. NIDA Research Monograph, 135, 1530.Google Scholar
Winkielman, P., Berridge, K. C. & Wilbarger, J. L. (2005). Unconscious affective reactions to masked happy versus angry faces influence consumption behavior and judgments of value. Personality and Social Psychology Bulletin, 31(1), 121135.Google Scholar
Wolf, M. E. (2010). The Bermuda Triangle of cocaine-induced neuroadaptations. Trends in Neurosciences, 33(9), 391398.Google Scholar
Wyvell, C. L. & Berridge, K. C. (2000). Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. The Journal of Neuroscience, 20(21), 81228130.Google Scholar
Wyvell, C. L. & Berridge, K. C. (2001). Incentive sensitization by previous amphetamine exposure: increased cue-triggered “wanting” for sucrose reward. The Journal of Neuroscience, 21(19), 78317840.Google Scholar
Xi, Z.-X., Li, X., Li, J., et al. (2013). Blockade of dopamine D3 receptors in the nucleus accumbens and central amygdala inhibits incubation of cocaine craving in rats. Addiction Biology, 18(4), 665677.Google Scholar
Xu, X., Aron, A., Brown, L., et al. (2011). Reward and motivation systems: a brain mapping study of early-stage intense romantic love in Chinese participants. Human Brain Mapping, 32(2), 249257.Google Scholar
Zack, M., Featherstone, R. E., Mathewson, S. & Fletcher, P. J. (2014). Chronic exposure to a gambling-like schedule of reward predictive stimuli can promote sensitization to amphetamine in rats. Frontiers in Behavioral Neuroscience, 8, 36.Google Scholar
Zeeb, F. D., Li, Z., Fisher, D. C., Zack, M. H. & Fletcher, P. J. (2017). Uncertainty exposure causes behavioural sensitization and increases risky decision-making in male rats: toward modelling gambling disorder. Journal of Psychiatry & Neuroscience, 42(6), 404413.Google Scholar
Zhang, J., Berridge, K. C., Tindell, A. J., Smith, K. S. & Aldridge, J. W. (2009). A neural computational model of incentive salience. PLoS Computational Biology, 5(7), e1000437.Google Scholar
Zhou, L., Smith, R. J., Do, P. H., Aston-Jones, G. & See, R. E. (2012). Repeated orexin 1 receptor antagonism effects on cocaine seeking in rats. Neuropharmacology, 63(7), 12011207.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×