Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T15:40:40.279Z Has data issue: false hasContentIssue false

11 - Neurobiological Foundations of Behavioral Addictions

from Part III - Levels of Analysis and Etiology

Published online by Cambridge University Press:  13 July 2020

Steve Sussman
Affiliation:
University of Southern California
Get access

Summary

In the past few decades, the notion of what constitutes addictive behavior has expanded to include nonsubstance-related behaviors. The World Health Organization recently recognized gambling and gaming disorders as addictive behaviors, and there has been support in the field to include compulsive sexual behaviors as well. Considerable support for reclassification of these behaviors from impulse-control disorders to addictive behaviors has come from studies showing neurobiological similarities with substance use disorders. Behavioral addictions have been found to have similar neurobiological correlates with each other and with substance use disorders on multiple levels of analysis such as alterations in availability of receptors in mesolimbic pathways, the amplitudes of cue-induced late potentials, and frontostriatal activity during reward-based tasks. The implicated neuropathological features support the inclusion of nonsubstance behaviors as addictive behaviors.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarseth, E., Bean, A. M., Boonen, H., et al. (2017). Scholars’ open debate paper on the World Health Organization ICD-11 Gaming Disorder proposalJournal of Behavioral Addictions, 6(3), 267270.Google Scholar
Andrade, L. F. & Petry, N. M. (2012). Delay and probability discounting in pathological gamblers with and without a history of substance use problems. Psychopharmacology, 219(2), 491499.Google Scholar
American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edition). Arlington, VA: American Psychiatric Publishing.Google Scholar
Balconi, M., Venturella, I. & Finocchiaro, R. (2017). Evidences from rewarding system, FRN and P300 effect in internet-addiction in young people. Brain Sciences, 7(7). doi: 10.3390/brainsci7070081CrossRefGoogle ScholarPubMed
Balodis, I. M., Kober, H., Worhunsky, P. D., et al. (2012). Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biological Psychiatry, 71(8), 749757.CrossRefGoogle ScholarPubMed
Balodis, I. M., Linnet, J., Arshad, F., et al. (2018). A preliminary study relating neural processing of reward and loss prospect to risky decision-making in individuals with and without gambling disorder. International Gambling Studies, 18(2), 269285.Google Scholar
Balodis, I. M. & Potenza, M. N. (2015). Anticipatory reward processing in addicted populations: a focus on the monetary incentive delay task. Biological Psychiatry, 77, 434444.CrossRefGoogle ScholarPubMed
Banca, P., Morris, L. S., Mitchell, S., et al. (2016). Novelty, conditioning and attentional bias to sexual rewards. Journal of Psychiatric Research, 72, 91101.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, A. R., Damasio, H. & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50(1–3), 715.Google Scholar
Beck, A., Schlagenhauf, F., Wustenberg, T., et al. (2009). Ventral striatal activation during reward anticipation correlates with impulsivity in alcoholics. Biological Psychiatry, 66(8), 734742.Google Scholar
Berlin, H. A., Braun, A., Simeon, D., et al. (2013). A double-blind, placebo-controlled trial of topiramate for pathological gambling. The World Journal of Biological Psychiatry: The Official Journal of the World Federation of Societies of Biological Psychiatry, 14(2), 121128.Google Scholar
Berridge, K. C. (2012). From prediction error to incentive salience: mesolimbic computation of reward motivation. European Journal of Neuroscience, 35(7), 11241143.Google Scholar
Black, D. W., Arndt, S., Coryell, W. H., et al. (2007). Bupropion in the treatment of pathological gambling: a randomized, double-blind, placebo-controlled, flexible-dose study. Journal of Clinical Psychopharmacology, 27(2), 143150. https://doi.org/10.1097/01.jcp.0000264985.25109.25Google Scholar
Blanco, C., Petkova, E., Ibanez, A. & Saiz-Ruiz, J. (2002). A pilot placebo-controlled study of fluvoxamine for pathological gambling. Annals of Clinical Psychiatry: Official Journal of the American Academy of Clinical Psychiatrists, 14(1), 915.Google Scholar
Blum, K., Thanos, P. K., Oscar-Berman, M., et al. (2015). Dopamine in the brain: hypothesizing surfeit or deficit links to reward and addiction. Journal of Reward Deficiency Syndrome, 1(3), 95104.CrossRefGoogle ScholarPubMed
Boileau, I., Payer, D., Chugani, B., et al. (2013). The D2/3 dopamine receptor in pathological gambling: a positron emission tomography study with [11C]-(+)-propyl-hexahydro-naphtho-oxazin and [11C]raclopride. Addiction, 108(5), 953963.CrossRefGoogle ScholarPubMed
Bőthe, B., Tóth-Király, I., Orosz, G., et al. (2019). Revisiting the role of impulsivity and compulsivity in problematic sexual behaviors. Journal of Sex Research, 56(2), 166179.Google Scholar
Bostwick, J. M. & Bucci, J. A. (2008). Internet sex addiction treated with naltrexone. Mayo Clinic Proceedings, 83(2), 226230.Google Scholar
Brand, M., Snagowski, J., Laier, C. & Maderwald, S. (2016). Ventral striatum activity when watching preferred pornographic pictures is correlated with symptoms of Internet pornography addiction. NeuroImage, 129, 224232.Google Scholar
Brevers, D., Bechara, A., Cleeremans, A. & Noel, X. (2013). Iowa Gambling Task (IGT): twenty years after – gambling disorder and IGT. Frontiers in Psychology, 4, 665.Google Scholar
Brevers, D., Noel, X., He, Q., Melrose, J. A. & Bechara, A. (2016). Increased ventral-striatal activity during monetary decision making is a marker of problem poker gambling severity. Addiction Biology, 21(3), 688699.Google Scholar
Bullock, S. A. & Potenza, M. N. (2012). Pathological gambling: neuropsychopharmacology and treatment. Current Psychopharmacology, 1(1). doi: 10.2174/2211556011201010067CrossRefGoogle ScholarPubMed
Capurso, N. A. (2017). Naltrexone for the treatment of comorbid tobacco and pornography addiction. The American Journal on Addictions, 26(2), 115117.Google Scholar
Chen, C.-Y., Huang, M.-F., Yen, J.-Y., et al. (2015). Brain correlates of response inhibition in Internet gaming disorder. Psychiatry and Clinical Neurosciences, 69(4), 201209.Google Scholar
Chen, S. H., Weng, L. J., Su, Y. J., Wu, H. M. & Yang, P. F. (2003). Development of a Chinese Internet addiction scale and its psychometric studyChinese Journal of Psychology, 45, 279294.Google Scholar
Choi, J.-S., Park, S. M., Lee, J., et al. (2013). Resting-state beta and gamma activity in Internet addiction. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 89(3), 328333.CrossRefGoogle ScholarPubMed
Clark, L., Stokes, P. R., Wu, K., et al. (2012). Striatal dopamine D(2)/D(3) receptor binding in pathological gambling is correlated with mood-related impulsivity. NeuroImage, 63(1), 4046.Google Scholar
Cole, H. & Griffiths, M. D. (2007). Social interactions in massively multiplayer online role-playing gamers. Cyberpsychology & Behavior: The Impact of the Internet, Multimedia and Virtual Reality on Behavior and Society, 10(4), 575583.Google Scholar
Crockford, D. N., Goodyear, B., Edwards, J., Quickfall, J. & el-Guebaly, N. (2005). Cue-induced brain activity in pathological gamblers. Biological Psychiatry, 58(10), 787795.CrossRefGoogle ScholarPubMed
de Ruiter, M. B., Veltman, D. J., Goudriaan, A. E., et al. (2009). Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 34(4), 10271038.Google Scholar
Derbyshire, K. L. & Grant, J. E. (2015). Compulsive sexual behavior: a review of the literatureJournal of Behavioral Addictions4(2), 3743.Google Scholar
Dieter, J., Hill, H., Sell, M., et al. (2015). Avatar’s neurobiological traces in the self-concept of massively multiplayer online role-playing game (MMORPG) addicts. Behavioral Neuroscience, 129(1), 817.CrossRefGoogle ScholarPubMed
Ding, W., Sun, J., Sun, Y.-W., et al. (2014). Trait impulsivity and impaired prefrontal impulse inhibition function in adolescents with internet gaming addiction revealed by a Go/No-Go fMRI study. Behavioral and Brain Functions, 10, 20.CrossRefGoogle ScholarPubMed
Dong, G., Devito, E. E., Du, X. & Cui, Z. (2012a). Impaired inhibitory control in “internet addiction disorder”: a functional magnetic resonance imaging study. Psychiatry Research, 203(2–3), 153158.Google Scholar
Dong, G., DeVito, E., Huang, J. & Du, X. (2012b). Diffusion tensor imaging reveals thalamus and posterior cingulate cortex abnormalities in internet gaming addicts. Journal of Psychiatric Research, 46(9), 12121216.CrossRefGoogle ScholarPubMed
Dong, G., Hu, Y., Lin, X. & Lu, Q. (2013). What makes Internet addicts continue playing online even when faced by severe negative consequences? Possible explanations from an fMRI study. Biological Psychology, 94(2), 282289.Google Scholar
Dong, G., Huang, J. & Du, X. (2011). Enhanced reward sensitivity and decreased losssensitivity in Internet addicts: an fMRI study during a guessing task. Journal of Psychiatric Research, 45(11), 15251529.CrossRefGoogle Scholar
Dong, G., Lin, X. & Potenza, M. N. (2015). Decreased functional connectivity in an executive control network is related to impaired executive function in Internet gaming disorder. Progress Neuro-Psychopharmacol Biol Psychiatry, 57, 7685.Google Scholar
Dong, G., Lin, X., Zhou, H. & Lu, Q. (2014). Cognitive flexibility in internet addicts: fMRI evidence from difficult-to-easy and easy-to-difficult switching situations. Addictive Behaviors, 39(3), 677683.Google Scholar
Dong, G. & Potenza, M. N. (2016). Risk-taking and risky decision-making in Internet gaming disorder: implications regarding online gaming in the setting of negative consequences. Journal of Psychiatric Research, 73, 18.Google Scholar
Dullur, P. & Starcevic, V. (2017). Internet gaming disorder does not qualify as a mental disorder. Australian & New Zealand Journal of Psychiatry, 52(2), 110111.CrossRefGoogle Scholar
Dunning, J. P., Parvaz, M. A., Hajcak, G., et al. (2011). Motivated attention to cocaine and emotional cues in abstinent and current cocaine users – an ERP study. European Journal of Neuroscience, 33(9), 17161723.Google Scholar
Duven, E. C. P., Muller, K. W., Beutel, M. E. & Wolfling, K. (2015). Altered reward processing in pathological computer gamers – ERP-results from a semi-natural gaming-design. Brain and Behavior, 5(1), 1323.Google Scholar
Dymond, S., Lawrence, N. S., Dunkley, B. T., et al. (2014). Almost winning: induced MEG theta power in insula and orbitofrontal cortex increases during gambling near-misses and is associated with BOLD signal and gambling severity. NeuroImage, 91, 210219.Google Scholar
Eichenbaum, A., Kattner, F., Bradford, D., Gentile, D. A. & Green, C. S. (2015). role-playing and real-time strategy games associated with greater probability of Internet Gaming Disorder. Cyberpsychology, Behavior and Social Networking, 18(8), 480485.Google Scholar
Eisen, S. A., Lin, N., Lyons, M. J., et al. (1998). Familial influences on gambling behavior: an analysis of 3359 twin pairs. Addiction, 93(9), 13751384.Google Scholar
Everitt, B. J. & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neuroscience, 8(11), 14811489.CrossRefGoogle ScholarPubMed
Everitt, B. J. & Robbins, T. W. (2013). From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neuroscience and Biobehavioral Reviews, 37(9 Pt A), 19461954.CrossRefGoogle Scholar
Fong, T., Kalechstein, A., Bernhard, B., Rosenthal, R. & Rugle, L. (2008). A double-blind, placebo-controlled trial of olanzapine for the treatment of video poker pathological gamblers. Pharmacology, Biochemistry, and Behavior, 89(3), 298303.CrossRefGoogle ScholarPubMed
Garrison, K. A., Yip, S. W., Balodis, I. M., et al. (2017). Reward-related frontostriatal activity and smoking behavior among adolescents in treatment for smoking cessation. Drug and Alcohol Dependence, 177, 268276.Google Scholar
Georgiadis, J. R. & Kringelbach, M. L. (2012). The human sexual response cycle: brain imaging evidence linking sex to other pleasures. Progress in Neurobiology, 98(1), 4981.CrossRefGoogle ScholarPubMed
Gescheidt, T., Marecek, R., Mikl, M., et al. (2013). Functional anatomy of outcome evaluation during Iowa Gambling Task performance in patients with Parkinson’s disease: an fMRI study. Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 34(12), 21592166.Google Scholar
Giddens, J. L., Xian, H., Scherrer, J. F., Eisen, S. A. & Potenza, M. N. (2011). Shared genetic contributions to anxiety disorders and pathological gambling in a male population. Journal of Affective Disorders, 132, 406412.Google Scholar
Gola, M. (2016). Decreased LPP for sexual images in problematic pornography users may be consistent with addiction models. Everything depends on the model. (Commentary on Prause, Steele, Staley, Sabatinelli, & Hajcak, 2015). Biological Psychology, 120, 156158.CrossRefGoogle ScholarPubMed
Gola, M., Miyakoshi, M. & Sescousse, G. (2015). Sex, impulsivity, and anxiety: interplay between ventral striatum and amygdala reactivity in sexual behaviors. Journal of Neuroscience, 35(46), 1522715229.CrossRefGoogle ScholarPubMed
Gola, M. & Potenza, M. N. (2016). Paroxetine treatment of problematic pornography use: a case series. Journal of Behavioral Addictions, 5(3), 529532.CrossRefGoogle ScholarPubMed
Gola, M., Wordecha, M., Marchewka, A. & Sescousse, G. (2016). Visual sexual stimuli – cue or reward? A perspective for interpreting brain imaging findings on human sexual behaviorsFrontiers in Human Neuroscience10, 402.Google Scholar
Gola, M., Wordecha, M., Sescousse, G., et al. (2017). Can pornography be addictive? An fMRI study of men seeking treatment for problematic pornography use. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 42(10), 20212031.CrossRefGoogle ScholarPubMed
Goldstein, L., Manowitz, P., Nora, R., Swartzburg, M. & Carlton, P. L. (1985). Differential EEG activation and pathological gambling. Biological Psychiatry, 20(11), 12321234.Google Scholar
Goldstein, R. Z. & Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nature Reviews. Neuroscience, 12(11), 652669.Google Scholar
Goudriaan, A. E., De Ruiter, M. B., Van Den Brink, W., Oosterlaan, J. & Veltman, D. J. (2010). Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study. Addiction Biology, 15, 491503.CrossRefGoogle ScholarPubMed
Grant, J. E., Kim, S. W. & Hartman, B. K. (2008b). A double-blind, placebo-controlled study of the opiate antagonist naltrexone in the treatment of pathological gambling urges. The Journal of Clinical Psychiatry, 69(5), 783789.Google Scholar
Grant, J. E., Kim, S. W., Hollander, E. & Potenza, M. N. (2008a). Predicting response to opiate antagonists and placebo in the treatment of pathological gambling. Psychopharmacology, 200, 521527.CrossRefGoogle ScholarPubMed
Grant, J. E., Kim, S. W. & Odlaug, B. L. (2007). N-acetyl cysteine, a glutamate-modulating agent, in the treatment of pathological gambling: a pilot study. Biological Psychiatry, 62(6), 652657.Google Scholar
Grant, J. E., Kim, S. W., Potenza, M. N., et al. (2003). Paroxetine treatment of pathological gambling: a multi-centre randomized controlled trial. International Clinical Psychopharmacology, 18(4), 243249.Google Scholar
Grant, J. E., Odlaug, B. L., Chamberlain, S. R., et al. (2013). A proof of concept study of tolcapone for pathological gambling: relationships with COMT genotype and brain activationEuropean Neuropsychopharmacology23(11), 15871596.Google Scholar
Grant, J. E., Odlaug, B. L., Chamberlain, S. R., et al. (2014). A randomized, placebo-controlled trial of N-acetylcysteine plus imaginal desensitization for nicotine-dependent pathological gamblers. The Journal of Clinical Psychiatry, 75(1), 3945.Google Scholar
Grant, J. E., Odlaug, B. L., Potenza, M. N., Hollander, E. & Kim, S. W. (2010). A multi-center, double-blind, placebo-controlled study of the opioid antagonist nalmefene in the treatment of pathological gambling. British Journal of Psychiatry, 197, 330331.CrossRefGoogle Scholar
Grant, J. E. & Potenza, M. N. (2006). Escitalopram treatment of pathological gambling with co-occurring anxiety: an open-label pilot study with double-blind discontinuation. International Clinical Psychopharmacology, 21(4), 203209.Google Scholar
Grant, J. E., Potenza, M. N., Hollander, E., et al. (2006). A multicenter investigation of the opioid antagonist nalmefene in the treatment of pathological gambling. American Journal of Psychiatry, 163, 303312.CrossRefGoogle ScholarPubMed
Grant, J. E., Potenza, M. N., Kraus, S. W. & Petrakis, I. L. (2017). Naltrexone and disulfiram treatment response in veterans with alcohol dependence and co-occurring gambling problems. Journal of Clinical Psychiatry, 78(9), e1299e1306.CrossRefGoogle Scholar
Griffiths, M. D., King, D. L. & Demetrovics, Z. (2014). DSM-5 internet gaming disorder needs a unified approach to assessment. Neuropsychiatry, 4(1), 14.Google Scholar
Han, D. H., Kim, Y. S., Lee, Y. S., Min, K. J. & Renshaw, P. F. (2010). Changes in cue-induced, prefrontal cortex activity with video-game play. Cyberpsychology, Behavior and Social Networking, 13(6), 655661.Google Scholar
Han, D. H., Lee, Y. S., Na, C., et al. (2009). The effect of methylphenidate on Internet video game play in children with attention-deficit/hyperactivity disorder. Comprehensive Psychiatry, 50(3), 251256.Google Scholar
Han, D. H.Lee, Y. S.Yang, K. C.et al. (2007). Dopamine genes and reward dependence in adolescents with excessive internet video game playJournal of Addiction Medicine., 1133138.Google Scholar
Han, D. H. & Renshaw, P. F. (2012). Bupropion in the treatment of problematic online game play in patients with major depressive disorderJournal of Psychopharmacology26(5), 689696.Google Scholar
Hariri, A. R., Brown, S. M., Williamson, D. E., et al. (2006). Preference for immediate over delayed rewards is associated with magnitude of ventral striatal activity. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(51), 1321313217.Google Scholar
Hayoun, M. (2014). China: Inside an Internet gaming disorder rehab center. Aljazeera America.Google Scholar
Heidbreder, C. A., Gardner, E. L., Xi, Z.-X., et al. (2005). The role of central dopamine D3 receptors in drug addiction: a review of pharmacological evidence. Brain Research. Brain Research Reviews, 49(1), 77105.Google Scholar
Hewig, J., Kretschmer, N., Trippe, R. H., et al. (2010). Hypersensitivity to reward in problem gamblers. Biological Psychiatry, 67(8), 781783.Google Scholar
Hollander, E., DeCaria, C. M., Finkell, J. N., et al. (2000). A randomized double-blind fluvoxamine/placebo crossover trial in pathologic gambling. Biological Psychiatry, 47(9), 813817.Google Scholar
Hollander, E., DeCaria, C. M., Mari, E., et al. (1998). Short-term single-blind fluvoxamine treatment of pathological gambling. The American Journal of Psychiatry, 155(12), 17811783.Google Scholar
Huffington Post (2013). Porn sites get more visitors each month than Netflix, Amazon and Twitter combined.Google Scholar
Joutsa, J., Johansson, J., Niemela, S., et al. (2012). Mesolimbic dopamine release is linked to symptom severity in pathological gambling. NeuroImage, 60(4), 19921999.CrossRefGoogle ScholarPubMed
Joutsa, J., Saunavaara, J., Parkkola, R., Niemela, S. & Kaasinen, V. (2011). Extensive abnormality of brain white matter integrity in pathological gambling. Psychiatry Research, 194(3), 340346.Google Scholar
Kessler, R. C., Hwang, I., LaBrie, R., et al. (2008). DSM-IV pathological gambling in the National Comorbidity Survey ReplicationPsychological Medicine38(9), 13511360.CrossRefGoogle ScholarPubMed
Kafka, M. P. (2010). Hypersexual disorder: a proposed diagnosis for DSM-VArchives of Sexual Behavior39(2), 377400.Google Scholar
Kim, S. H., Baik, S. H., Park, C. S., et al. (2011). Reduced striatal dopamine D2 receptors in people with Internet addiction. Neuroreport22(8), 407411.Google Scholar
Kim, S. W. (1998). Opioid antagonists in the treatment of impulse-control disorders. The Journal of Clinical Psychiatry, 59(4), 159164.Google Scholar
Kim, S. W., Grant, J. E., Adson, D. E. & Shin, Y. C. (2001). Double-blind naltrexone and placebo comparison study in the treatment of pathological gambling. Biological Psychiatry, 49(11), 914921.CrossRefGoogle ScholarPubMed
Kim, S. W., Grant, J. E., Adson, D. E., Shin, Y. C. & Zaninelli, R. (2002). A double-blind placebo-controlled study of the efficacy and safety of paroxetine in the treatment of pathological gambling. The Journal of Clinical Psychiatry, 63(6), 501507.Google Scholar
Kim, Y. J., Lee, J.-Y., Oh, S., et al. (2017). Associations between prospective symptom changes and slow-wave activity in patients with Internet gaming disorder: a resting-state EEG study. Medicine, 96(8), e6178.Google Scholar
Kim, Y.-R., Son, J.-W., Lee, S.-I., et al. (2012). Abnormal brain activation of adolescent internet addict in a ball-throwing animation task: possible neural correlates of disembodiment revealed by fMRI. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 39(1), 8895.Google Scholar
King, D. L. & Delfabbro, P. H. (2016). Defining tolerance in Internet Gaming disorder: Isn’t it time?Addiction111(11), 20642065.Google Scholar
King, D. L., Delfabbro, P. H., Potenza, M. N., et al. (2018). Internet gaming disorder should qualify as a mental disorder. Australian & New Zealand Journal of Psychiatry, 52(7), 615617.Google Scholar
King, D. L., Haagsma, M. C., Delfabbro, P. H., Gradisar, M. & Griffiths, M. D. (2013). Toward a consensus definition of pathological video-gaming: a systematic review of psychometric assessment toolsClinical Psychology Review33(3), 331342.Google Scholar
King, D. L., Herd, M. C. & Delfabbro, P. H. (2017). Tolerance in Internet gaming disorder: a need for increasing gaming time or something else? Journal of Behavioral Addictions6(4), 525533.Google Scholar
Ko, C.-H., Hsieh, T.-J., Chen, C.-Y., et al. (2014). Altered brain activation during response inhibition and error processing in subjects with Internet gaming disorder: a functional magnetic imaging study. European Archives of Psychiatry and Clinical Neuroscience, 264(8), 661672.Google Scholar
Ko, C.-H., Liu, G.-C., Hsiao, S., et al. (2009). Brain activities associated with gaming urge of online gaming addiction. Journal of Psychiatric Research, 43(7), 739747.Google Scholar
Ko, C.-H., Liu, G.-C., Yen, J.-Y., et al. (2013a). Brain correlates of craving for online gaming under cue exposure in subjects with Internet gaming addiction and in remitted subjects. Addiction Biology, 18(3), 559569.Google Scholar
Ko, C.-H., Liu, G.-C., Yen, J.-Y., et al. (2013b). The brain activations for both cue-induced gaming urge and smoking craving among subjects comorbid with Internet gaming addiction and nicotine dependence. Journal of Psychiatric Research, 47(4), 486493.Google Scholar
Kober, H., Lacadie, C. M., Wexler, B. E., et al. (2016). Brain activity during cocaine craving and gambling urges: an fMRI study. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 41(2), 628637.Google Scholar
Kor, A., Fogel, Y., Reid, R. & Potenza, M. N. (2013). Should hypersexual disorder be classified as an addiction? Sexual Addiction Compulsivity, 20, 2747.Google Scholar
Kraus, S. W., Krueger, R. B., Briken, P., et al. (2018). Compulsive sexual behaviour disorder in the ICD‐11. World Psychiatry, 17, 109-110.Google Scholar
Kraus, S. W., Meshberg-Cohen, S., Martino, S., Quinones, L. J. & Potenza, M. N. (2015). Treatment of compulsive pornography use with naltrexone: a case report. American Journal of Psychiatry, 172(12), 12601261.Google Scholar
Kühn, S. & Gallinat, J. (2014). Brain structure and functional connectivity associated with pornography consumption: the brain on porn. JAMA Psychiatry, 71(7), 827834.Google Scholar
Kuss, D. J. (2013). Internet gaming addiction: current perspectives. Psychology Research and Behavior Management, 6, 125137.Google Scholar
Lang, M., Leménager, T., Streit, F., et al. (2016). Genome-wide association study of pathological gamblingEuropean Psychiatry36, 3846.Google Scholar
Lawrence, A. J., Luty, J., Bogdan, N. A., Sahakian, B. J. & Clark, L. (2009). Problem gamblers share deficits in impulsive decision‐making with alcohol‐dependent individualsAddiction104(6), 10061015.Google Scholar
Lee, J.-Y., Kim, J.-M., Kim, J. W., et al. (2010). Association between the dose of dopaminergic medication and the behavioral disturbances in Parkinson disease. Parkinsonism & Related Disorders, 16(3), 202207.Google Scholar
Leeman, R. F. & Potenza, M. N. (2012). Similarities and differences between pathological gambling and substance use disorders: a focus on impulsivity and compulsivity. Psychopharmacology, 219(2), 469490.CrossRefGoogle ScholarPubMed
Leménager, T., Dieter, J., Hill, H., et al. (2014). Neurobiological correlates of physical self-concept and self-identification with avatars in addicted players of Massively Multiplayer Online Role-Playing Games (MMORPGs). Addictive Behaviors, 39(12), 17891797.Google Scholar
Lim, S., Ha, J., Choi, S.-W., Kang, S.-G. & Shin, Y.-C. (2012). Association study on pathological gambling and polymorphisms of dopamine D1, D2, D3, and D4 receptor genes in a Korean population. Journal of Gambling Studies, 28(3), 481491.Google Scholar
Limbrick-Oldfield, E. H., Mick, I., Cocks, R. E., et al. (2017). Neural substrates of cue reactivity and craving in gambling disorder. Translational Psychiatry, 7(1), e992.Google Scholar
Lin, F., Zhou, Y., Du, Y., et al. (2012). Abnormal white matter integrity in adolescents with internet addiction disorder: a tract-based spatial statistics study. PLoS ONE, 7(1), e30253.Google Scholar
Lin, X., Zhou, H., Dong, G. & Du, X. (2015). Impaired risk evaluation in people with Internet gaming disorder: fMRI evidence from a probability discounting task. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 56, 142148.Google Scholar
Lind, P. A., Zhu, G., Montgomery, G. W., et al. (2013). Genome‐wide association study of a quantitative disordered gambling traitAddiction Biology18(3), 511522.Google Scholar
Linnet, J., Moller, A., Peterson, E., Gjedde, A. & Doudet, D. (2011). Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling. Addiction, 106(2), 383390.Google Scholar
Liu, G.-C., Yen, J.-Y., Chen, C.-Y., et al. (2014). Brain activation for response inhibition under gaming cue distraction in internet gaming disorder. The Kaohsiung Journal of Medical Sciences, 30(1), 4351.Google Scholar
Liu, L., Xue, G., Potenza, M. N., et al. (2017a). Dissociable neural processes during risky decision-making in individuals with Internet-gaming disorder. NeuroImage. Clinical, 14, 741749.Google Scholar
Liu, L., Yip, S. W., Zhang, J.-T., et al. (2017b). Activation of the ventral and dorsal striatum during cue reactivity in Internet gaming disorder. Addiction Biology, 22(3), 791801.Google Scholar
Lobo, D. S. S., Souza, R. P., Tong, R. P., et al. (2010). Association of functional variants in the dopamine D2-like receptors with risk for gambling behaviour in healthy Caucasian subjects. Biological Psychology, 85(1), 3337.CrossRefGoogle ScholarPubMed
Lobo, D. S. S, Vallada, H. P., Knight, J., et al. (2007). Dopamine genes and pathological gambling in discordant sib-pairsJournal of Gambling Studies23(4), 421433.Google Scholar
Majuri, J., Joutsa, J., Johansson, J., et al. (2017a). Dopamine and opioid neurotransmission in behavioral addictions: A comparative PET study in pathological gambling and binge eating. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 42(5), 11691177.Google Scholar
Majuri, J., Joutsa, J., Johansson, J., et al. (2017b). Serotonin transporter density in binge eating disorder and pathological gambling: a PET study with [(11)C]MADAM. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 27(12), 12811288.Google Scholar
McClure, E. A., Gipson, C. D., Malcolm, R. J., Kalivas, P. W. & Gray, K. M. (2014). Potential role of N-acetylcysteine in the management of substance use disorders. CNS Drugs, 28(2), 95106.Google Scholar
McElroy, S. L., Nelson, E. B., Welge, J. A., Kaehler, L. & Keck, P. E. J. (2008). Olanzapine in the treatment of pathological gambling: a negative randomized placebo-controlled trial. The Journal of Clinical Psychiatry, 69(3), 433440.Google Scholar
Meyer, G., Schwertfeger, J., Exton, M. S., et al. (2004). Neuroendocrine response to casino gambling in problem gamblers. Psychoneuroendocrinology, 29(10), 12721280.Google Scholar
Mick, I., Myers, J., Ramos, A. C., et al. (2016). Blunted endogenous opioid release following an oral amphetamine challenge in pathological gamblers. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 41(7), 17421750.Google Scholar
Miedl, S. F., Peters, J. & Buchel, C. (2012). Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Archives of General Psychiatry, 69(2), 177186.Google Scholar
Moccia, L., Pettorruso, M., De Crescenzo, F., et al. (2017). Neural correlates of cognitive control in gambling disorder: a systematic review of fMRI studies. Neuroscience and Biobehavioral Reviews, 78, 104116.Google Scholar
Moeller, S. J., Hajcak, G., Parvaz, M. A., et al. (2012). Psychophysiological prediction of choice: relevance to insight and drug addictionBrain 135(11), 34813494. doi:10.1093/brain/aws252Google Scholar
Moorman, D. E. & Aston-Jones, G. (2014). Orbitofrontal cortical neurons encode expectation-driven initiation of reward-seeking. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(31), 1023410246.Google Scholar
Myrseth, H., Molde, H., Støylen, I., et al. (2011). A pilot study of CBT versus escitalopram combined with CBT in the treatment of pathological gamblers. International Gambling Studies 11(1), 121141.CrossRefGoogle Scholar
Na, E., Choi, I., Lee, T.-H., et al. (2017). The influence of game genre on Internet gaming disorder. Journal of Behavioral Addictions, 1–8.Google Scholar
Nordin, C. & Eklundh, T. (1999). Altered CSF 5-HIAA disposition in pathologic male gamblers. CNS Spectrums, 4(12), 2533.CrossRefGoogle ScholarPubMed
Nutt, D. J., Lingford-Hughes, A., Erritzoe, D. & Stokes, P. R. (2015). The dopamine theory of addiction: 40 years of highs and lowsNature Reviews Neuroscience16(5), 305.Google Scholar
Pallanti, S., Bernardi, S., Quercioli, L., DeCaria, C. & Hollander, E. (2006). Serotonin dysfunction in pathological gamblers: increased prolactin response to oral m-CPP versus placebo. CNS Spectrums, 11(12), 956964.Google Scholar
Park, J. H., Hong, J. S., Han, D. H., et al. (2017a). Comparison of QEEG findings between adolescents with attention deficit hyperactivity disorder (ADHD) without comorbidity and ADHD comorbid with Internet Gaming Disorder. Journal of Korean Medical Science, 32(3), 514521.Google Scholar
Park, S. M., Lee, J. Y., Kim, Y. J., et al. (2017b). Neural connectivity in Internet gaming disorder and alcohol use disorder: a resting-state EEG coherence study. Scientific Reports, 7(1), 1333.Google Scholar
Park, J. H., Lee, Y. S., Sohn, J. H. & Han, D. H. (2016). Effectiveness of atomoxetine and methylphenidate for problematic online gaming in adolescents with attention deficit hyperactivity disorderHuman Psychopharmacology: Clinical and Experimental31(6), 427432.Google Scholar
Petry, N. M. & O'Brien, C. P. (2013). Internet gaming disorder and the DSM- 5Addiction108(7), 11861187.Google Scholar
Petry, N. M., Stinson, F. S. & Grant, B. F. (2005). Comorbidity of DSM-IV pathological gambling and other psychiatric disorders: results from the National Epidemiologic Survey on Alcohol and Related ConditionsThe Journal of Clinical Psychiatry, 66(5), 564574.Google Scholar
Potenza, M. N. (2013a). Neurobiology of gambling behaviors. Current Opinion in Neurobiology, 23(4), 660667.Google Scholar
Potenza, M. N. (2013b) How central is dopamine to pathological gambling or gambling disorder? Frontiers in Behavioral Neuroscience 7,206. (PMC3870289)Google Scholar
Potenza, M. N. (2018) Searching for replicable dopamine-related findings in gambling disorder. Biological Psychiatry, 83, 984986.Google Scholar
Potenza, M. N., Balodis, I. M., Franco, C. A., et al. (2013a). Neurobiological considerations in understanding behavioral treatments for pathological gambling. Psychology of Addictive Behaviors: Journal of the Society of Psychologists in Addictive Behaviors, 27(2), 380392.Google Scholar
Potenza, M. N., Leung, H.-C., Blumberg, H. P., et al. (2003a). An fMRI Stroop task study of ventromedial prefrontal cortical function in pathological gamblers. The American Journal of Psychiatry, 160(11), 19901994.Google Scholar
Potenza, M. N., Steinberg, M. A., Skudlarski, P., et al. (2003b). Gambling urges in pathological gambling: a functional magnetic resonance imaging study. Archives of General Psychiatry, 60(8), 828836.CrossRefGoogle ScholarPubMed
Potenza, M. N., Walderhaug, E., Henry, S., et al. (2013b). Serotonin 1B receptor imaging in pathological gambling. The World Journal of Biological Psychiatry: The Official Journal of the World Federation of Societies of Biological Psychiatry, 14(2), 139145.Google Scholar
Potenza, M. N., Xian, H., Shah, K. R., Scherrer, J. F. & Eisen, S. A. (2005). Shared genetic contributions to pathological gambling and major depression in men. Archives of General Psychiatry, 62, 10151021.Google Scholar
Power, Y., Goodyear, B. & Crockford, D. (2012). Neural correlates of pathological gamblers preference for immediate rewards during the Iowa Gambling Task: an fMRI study. Journal of Gambling Studies, 28(4), 623636.Google Scholar
Prause, N., Steele, V. R., Staley, C., Sabatinelli, D. & Hajcak, G. (2015). Modulation of late positive potentials by sexual images in problem users and controls inconsistent with “porn addiction.” Biological Psychology, 109, 192199.Google Scholar
Qi, X., Du, X., Yang, Y., et al. (2015). Decreased modulation by the risk level on the brain activation during decision making in adolescents with internet gaming disorder. Frontiers in Behavioral Neuroscience, 9, 296.Google Scholar
Rahman, A. S., Xu, J. & Potenza, M. N. (2014). Hippocampal and amygdalar volumetric differences in pathological gambling: a preliminary study of the associations with the behavioral inhibition system. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 39(3), 738745.Google Scholar
Reid, R. C., Carpenter, B. N., Hook, J. N., et al. (2012). Report of findings in a DSM‐5 field trial for hypersexual disorderThe Journal of Sexual Medicine9(11), 28682877.Google Scholar
Reissner, K. J. & Kalivas, P. W. (2010). Using glutamate homeostasis as a target for treating addictive disordersBehavioural Pharmacology, 21(5–6), 514522.Google Scholar
Reuter, J., Raedler, T., Rose, M., et al. (2005). Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nature Neuroscience, 8(2), 147148.Google Scholar
Robinson, M. J., Fischer, A. M., Ahuja, A., Lesser, E. N. & Maniates, H. (2016). Roles of “wanting” and “liking” in motivating behavior: Gambling, food, and drug addictions. Current Topics in Behavioral Neuroscience, 27, 105136.Google Scholar
Rosenberg, O., Dinur, L. K. & Dannon, P. N. (2013). Four-year follow-up study of pharmacological treatment in pathological gamblers. Clinical Neuropharmacology, 36(2), 4245.Google Scholar
Roy, A., Adinoff, B., Roehrich, L., et al. (1988). Pathological gambling: a psychobiological study. Archives of General Psychiatry, 45(4), 369373.Google Scholar
Roy, A., De Jong, J. & Linnoila, M. (1989). Extraversion in pathological gamblers: correlates with indexes of noradrenergic function. Archives of General Psychiatry, 46(8), 679681.Google Scholar
Saiz-Ruiz, J., Blanco, C., Ibanez, A., et al. (2005). Sertraline treatment of pathological gambling: a pilot study. The Journal of Clinical Psychiatry, 66(1), 2833.Google Scholar
Schimmenti, A., Guglielmucci, F., Barbasio, C. & Granieri, A. (2012). Attachment disorganization and dissociation in virtual worlds: a study on problematic Internet use among players of online role playing games. Clinical Neuropsychiatry, 9(5), 187195.Google Scholar
Schwartz, D. G. (2013). Roll the Bones: The History of Gambling. Las Vegas, NV: Winchester Books.Google Scholar
Seok, J. W. & Sohn, J. H. (2015). Neural substrates of sexual desire in individuals with problematic hypersexual behaviorFrontiers in Behavioral Neuroscience9, 321.Google Scholar
Slutske, W. S., Eisen, S., True, W. R., et al. (2000). Common genetic vulnerability for pathological gambling and alcohol dependence in men. Archives of General Psychiatry, 57(7), 666673.Google Scholar
Slutske, W. S., Ellingson, J. M., Richmond-Rakerd, L. S., Zhu, G. & Martin, N. G. (2013). Shared genetic vulnerability for disordered gambling and alcohol use disorder in men and women: evidence from a national community-based Australian Twin Study. Twin Research and Human Genetics: The Official Journal of the International Society for Twin Studies, 16(2), 525534.Google Scholar
Son, K.-L., Choi, J.-S., Lee, J., et al. (2015). Neurophysiological features of Internet gaming disorder and alcohol use disorder: a resting-state EEG study. Translational Psychiatry, 5, e628.Google Scholar
Song, J., Park, J. H., Han, D. H., et al. (2016). Comparative study of the effects of bupropion and escitalopram on Internet gaming disorder. Psychiatry and Clinical Neurosciences, 70(11), 527535.Google Scholar
Steeves, T. D. L., Miyasaki, J., Zurowski, M., et al. (2009). Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET studyBrain132(5), 13761385.Google Scholar
Sun, Y., Ying, H., Seetohul, R. M., et al. (2012). Brain fMRI study of crave induced by cue pictures in online game addicts (male adolescents). Behavioural Brain Research, 233(2), 563576.Google Scholar
Tanabe, J., Thompson, L., Claus, E., et al. (2007). Prefrontal cortex activity is reduced in gambling and nongambling substance users during decision-making. Human Brain Mapping, 28(12), 12761286.Google Scholar
Thalemann, R., Wölfling, K. & Grüsser, S. M. (2007). Specific cue reactivity on computer game-related cues in excessive gamersBehavioral Neuroscience121(3), 614.Google Scholar
Thomas, A., Bonanni, L., Gambi, F., Di Iorio, A. & Onofrj, M. (2010). Pathological gambling in Parkinson disease is reduced by amantadine. Annals of Neurology, 68(3), 400404.Google Scholar
Tian, M., Chen, Q., Zhang, Y., et al. (2014). PET imaging reveals brain functional changes in internet gaming disorder. European Journal of Nuclear Medicine and Molecular Imaging41(7), 13881397.Google Scholar
van Eimeren, T., Pellecchia, G., Cilia, R., et al. (2010). Drug-induced deactivation of inhibitory networks predicts pathological gambling in PD. Neurology, 75(19), 17111716.Google Scholar
van Holst, R. J., de Ruiter, M. B., van den Brink, W., Veltman, D. J. & Goudriaan, A. E. (2012). A voxel-based morphometry study comparing problem gamblers, alcohol abusers, and healthy controls. Drug and Alcohol Dependence, 124(1–2), 142148.Google Scholar
Voon, V., Mole, T. B., Banca, P., et al. (2014). Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviours. PLoS ONE, 9(7), e102419.Google Scholar
Voon, V., Napier, T. C., Frank, M. J., et al. (2017). Impulse control disorders and levodopa-induced dyskinesias in Parkinson’s disease: an update. The Lancet. Neurology, 16(3), 238250.Google Scholar
Voon, V., Sohr, M., Lang, A. E., et al. (2011). Impulse control disorders in Parkinson disease: a multicenter case-control study. Annals of Neurology, 69(6), 986996.Google Scholar
Wang, Y., Wu, L., Wang, L., et al. (2017). Impaired decision-making and impulse control in Internet gaming addicts: evidence from the comparison with recreational Internet game users. Addiction Biology, 22(6), 16101621.Google Scholar
Weintraub, D. & Claassen, D. O. (2017). Impulse control and related disorders in Parkinson’s disease. International Review of Neurobiology, 133, 679717.Google Scholar
Weintraub, D., Koester, J., Potenza, M. N., et al. for the DOMINION Study Group (2010). Impulse control disorders in Parkinson's disease: a cross-sectional study of 3,090 patients. Archives of Neurology, 67, 589595.Google Scholar
Wexler, B. E., Gottschalk, C. H., Fulbright, R. K., et al. (2001). Functional magnetic resonance imaging of cocaine craving. American Journal of Psychiatry158(1), 8695.Google Scholar
Wölfling, K., Morsen, C. P., Duven, E., et al. (2011). To gamble or not to gamble: at risk for craving and relapse--learned motivated attention in pathological gambling. Biological Psychology, 87(2), 275281.Google Scholar
Worhunsky, P. D., Malison, R. T., Rogers, R. D. & Potenza, M. N. (2014). Altered neural correlates of reward and loss processing during simulated slot-machine fMRI in pathological gambling and cocaine dependence. Drug and Alcohol Dependence, 145, 7786.Google Scholar
Xian, H., Giddens, J. L., Scherrer, J. F., Eisen, S. A. & Potenza, M. N. (2014). Environmental factors selectively impact co-occurrence of problem/pathological gambling with specific drug-use disorders in male twins. Addiction, 109(4), 635644.Google Scholar
Yang, B.-Z., Balodis, I. M., Lacadie, C. M., Xu, J. & Potenza, M. N. (2016). A preliminary study of DBH (encoding dopamine beta-hydroxylase) genetic variation and neural correlates of emotional and motivational processing in individuals with and without pathological gambling. Journal of Behavioral Addictions, 5(2), 282292.Google Scholar
Yao, Y.-W., Liu, L., Ma, S.-S., et al. (2017). Functional and structural neural alterations in Internet gaming disorder: a systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 83, 313324.Google Scholar
Yau, Y. H. C., Crowley, M. J., Mayes, L. C. & Potenza, M. N. (2012). Are Internet use and video-game-playing addictive behaviors? Biological, clinical and public health implications for youths and adults. Minerva Psychiatrica, 53(3), 153170.Google Scholar
Yip, S. W., Lacadie, C., Xu, J., et al. (2013). Reduced genual corpus callosal white matter integrity in pathological gambling and its relationship to alcohol abuse or dependence. The World Journal of Biological Psychiatry: The Official Journal of the World Federation of Societies of Biological Psychiatry, 14(2), 129138.CrossRefGoogle ScholarPubMed
Yip, S. W., Morie, K. P., Xu, J., et al. (2017). Shared microstructural features of behavioral and substance addictions revealed in areas of crossing fibers. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 2(2), 188195.Google Scholar
Yip, S. W. & Potenza, M. N. (2014). Treatment of gambling disorders. Current Treatment Options in Psychiatry, 1(2), 189203.Google Scholar
Yip, S. W., Worhsunky, P. D., Xu, J., et al. (2018). Gray-matter relationships to diagnostic and transdiagnostic features of drug and behavioral addictions. Addiction Biology, 23(1), 394402.Google Scholar
Youh, J., Hong, J. S., Han, D. H., et al. (2017). Comparison of electroencephalography (EEG) coherence between major depressive disorder (MDD) without comorbidity and MDD comorbid with Internet Gaming Disorder. Journal of Korean Medical Science, 32(7), 11601165.Google Scholar
Young, K. (2009). Internet addiction: diagnosis and treatment considerationsJournal of Contemporary Psychotherapy39(4), 241246.Google Scholar
Yuan, K., Cheng, P., Dong, T., et al. (2013). Cortical thickness abnormalities in late adolescence with online gaming addiction. PLoS ONE, 8(1), e53055.Google Scholar
Yuan, K., Qin, W., Wang, G., Zeng, F., Zhao, L., Yang, X., … Tian, J. (2011). Microstructure abnormalities in adolescents with internet addiction disorder. PLoS ONE, 6(6), e20708.Google Scholar
Yuan, K., Qin, W., Yu, D., et al. (2016). Core brain networks interactions and cognitive control in internet gaming disorder individuals in late adolescence/early adulthood. Brain Structure & Function, 221(3), 14271442.Google Scholar
Zack, M. & Poulos, C. X. (2007). A D2 antagonist enhances the rewarding and priming effects of a gambling episode in pathological gamblers. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 32(8), 16781686.Google Scholar
Zhang, J.-T., Yao, Y.-W., Potenza, M. N., et al. (2016). Effects of craving behavioral intervention on neural substrates of cue-induced craving in Internet gaming disorder. NeuroImage. Clinical, 12, 591599.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×