Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T15:51:31.077Z Has data issue: false hasContentIssue false

Part I - Concepts of Addiction

Published online by Cambridge University Press:  13 July 2020

Steve Sussman
Affiliation:
University of Southern California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aarts, E., van Holstein, M. & Cools, R. (2011). Striatal dopamine and the interface between motivation and cognition. Frontiers in Psychology, 2, 163.Google Scholar
Akers, R. L., Krohn, M. D., Lanza-Kaduce, L. & Radosevich, M. (1979). Social learning and deviant behavior: a specific test of a general theory. American Sociological Review, 44, 636655.Google Scholar
Al’Absi, M. (Ed., 2007). Stress and Addiction: Biological and Psychological Mechanisms. New York, NY: Elsevier/Academic Press.Google Scholar
Alcoholics Anonymous (1976). Alcoholics Anonymous. New York: Alcoholics Anonymous World Services.Google Scholar
Alexander, B. K. (2012). Addiction: The urgent need for a paradigm shift. Substance Use & Misuse, 47, 14751482.Google Scholar
Angell, J. R. (1906). The important human instincts. In Angell, J. R. (Ed.), Psychology: An Introductory Study of the Structure and Function of Human Consciousness (3rd edition). New York: Henry Holt and Company, pp. 294309.Google Scholar
Baumeister, R. F. & Leary, M. R. (1995). The need to belong: desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117, 497529.CrossRefGoogle ScholarPubMed
Beaver, J. D., Lawrence, A. D., Passamonti, L. & Calder, A. J. (2008). Appetitive motivation predicts the neural response to facial signals of aggression. Journal of Neuroscience, 28, 27192725.Google Scholar
Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nature Neuroscience, 8, 14581463.Google Scholar
Bejerot, N. (1972). A theory of addiction as an artificially induced drive. American Journal of Psychiatry, 128, 842846.CrossRefGoogle ScholarPubMed
Berridge, K. C. (2017). Is addiction a brain disease? Neuroethics, 10, 2933.CrossRefGoogle ScholarPubMed
Blum, K., et al. (2020). Precision behavioral management (PBM): A novel genetically guided therapy to combat reward deficiency syndrome (RDS) relevant to the opiate crisis. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 297306.Google Scholar
Blum, K., Chen, A. L., Giordano, J., et al. (2012). The addicted brain: all roads lead to dopamine. Journal of Psychoactive Drugs, 44, 134143.Google Scholar
Blum, K., Chen, A. L. C., Oscar-Berman, M., et al. (2011). Generational association studies of dopaminergic genes in Reward Deficiency Syndrome (RDS) Subjects: selecting appropriate phenotypes for reward dependence behaviors. International Journal of Environmental Research and Public Health, 8, 44254459.Google Scholar
Blum, K., Cull, J. G., Braverman, E. R. & Comings, D. E. (1996). Reward deficiency syndrome. American Psychologist, 84, 132145.Google Scholar
Brown, S. (2014). Speed: Facing Our Addiction to Fast and Faster – And Overcoming Our Fear of Slowing Down. New York, NY: Berkley Books.Google Scholar
Buss, D. (Ed., 2015). The Handbook of Evolutionary Psychology (2nd edition). Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
Campbell, W. G. (2003). Addiction: a disease of volition caused by a cognitive impairment. Canadian Journal of Psychiatry, 48, 669674.Google Scholar
Cartoni, E., Balleine, B. & Baldassarre, G. (2016). Appetitive Pavlovian-instrumental transfer: a review. Neuroscience & Biobehavioral Reviews, 71, 829848.Google Scholar
Childress, A. R., Mozley, P. D., McElgin, W., et al. (1999). Limbic activation during cue-induced cocaine craving. American Journal of Psychiatry, 156, 1118.Google Scholar
Cohen, S. (1988). Psychosocial models of the role of social support in the etiology of physical disease. Health Psychology, 7, 269297.Google Scholar
Colagiuri, B. & Lovibond, P. F. (2015). How food cues can enhance and inhibit motivation to obtain and consume food. Appetite, 84, 7987.Google Scholar
Collins, L. M., Graham, J. W., Rousculp, S. S. & Hansen, W. B. (1997). Heavy caffeine use and the beginning of the substance use onset process. In Bryant, K., Windle, M. & West, S. (Eds.), The Science of Prevention: Methodological Advances from Alcohol and Substance Abuse Research. Washington, DC: American Psychological Association, pp. 7999.Google Scholar
Courtwright, D. T. (2019). The Age of Addiction: How Bad Habits Became Big Business. Cambridge, MA: Belnap Press-An Imprint of Harvard University Press.Google Scholar
Craig, W. (1917). Appetites and aversions as constituents of instincts. Proceedings of the National Academy of Sciences of the United States of America, 3(12), 685688.Google Scholar
Darwin, C. (1871). The Descent of Man and Selection in Relation to Sex. London: Murray.Google Scholar
Downs, B. W., Chen, A. L. C., Chen, T. J. H., et al. (2009). Nutrigenomic targeting of carbohydrate craving behavior: Can we manage obesity and aberrant craving behaviors with neurochemical pathway manipulation by Immunological Compatible Substances (nutrients) using a Genetic Positioning System (GPS) Map? Medical Hypotheses, 73, 427434.Google Scholar
Ekhtiari, H., Nasseri, P., Yavari, F., Mokri, A. & Monterosso, J. (2016) Neuroscience of drug craving for addiction medicine: from circuits to therapies. Journal of Progress in Brain Research, 223, 115141.Google Scholar
Eng, S. & Woodside, A. G. (2012). Configural analysis of the drinking man: fuzzy-set qualitative comparative analyses. Addictive Behaviors, 37, 541543.Google Scholar
Fave, A. D., Massimini, F. & Bassi, M. (2011). Psychological Selection and Optimal Experience across Cultures: Social Empowerment through Personal Growth, Cross Cultural Advancements in Positive Psychology, 2. New York, NY: Springer.Google Scholar
Fishbein, D. H. (2000). The importance of neurobiological research to the prevention of psychopathology. Prevention Science, 1, 89106.Google Scholar
Foddy, B. & Savulescu, J. (2010a). A liberal account of addiction. Philosophy, Psychiatry, & Psychology, 17, 122.Google Scholar
Foddy, B. & Savulescu, J. (2010b). Relating addiction to disease, disability, autonomy, and the good life. Philosophy, Psychiatry, & Psychology, 17, 3542.Google Scholar
Gable, R. S. (2006). The toxicity of recreational drugs. Scientific American, 94, 206208.Google Scholar
Goeders, N. E. (2004). Stress, motivation, and drug addiction. Current Directions in Psychological Science, 13, 3335.Google Scholar
Griffiths, M. D. (2005). A “components” model of addiction within a biopsychosocial framework. Journal of Substance Use, 10, 191197.Google Scholar
Griffiths, M. S. & Larkin, M. (2004). Conceptualizing addiction: The case for a “complex systems” account. Addiction Research and Theory, 12, 99102.Google Scholar
Hankin, B. L., Wetter, E. K. & Flory, K. (2012). Appetitive motivation and negative emotion reactivity among remitted depressed youth. Journal of Clinical Child and Adolescent Psychology, 41, 611620.CrossRefGoogle ScholarPubMed
Hatterer, L. J. (1982). The addictive process. Psychiatric Quarterly, 54, 149156.Google Scholar
Haylett, S. A., Stephenson, G. M. & Lefever, R. M. H. (2004). Covariation in addictive behaviors: A study of addictive orientations using the shorter PROMIS Questionnaire. Addictive Behaviors, 29, 6171.Google Scholar
Heather, N. (1998). A conceptual framework for explaining drug addiction. Journal of Psychopharmacology, 12, 37.Google Scholar
Hill, E. M. (2013). An evolutionary perspective on addiction. In Miller, P. (Ed.), Principles of Addiction (Volume 1). New York: Elsevier Inc., pp. 4150 (chapter 4).Google Scholar
Hirschman, E. C. (1992). The consciousness of addiction: toward a general theory of compulsive consumption. Journal of Consumer Research, 19, 155179.Google Scholar
Hofstede, G. (1984). The cultural relativity of the quality of life concept. Academy of Management Review, 9, 389398.CrossRefGoogle Scholar
Holden, C. (2001). “Behavioral” addictions: do they exist? Science, 294, 980982.Google Scholar
Jacobs, D. F. (1986). A general theory of addictions: a new theoretical model. Journal of Gambling Behavior, 2, 1531.Google Scholar
Jackson, C. J. & Smillie, L. D. (2004). Appetitive motivation predicts the majority of personality and an ability measure: a comparison of BAS measures and a re-evaluation of the importance of RST. Personality and Individual Differences, 36, 16271636.Google Scholar
Kalivas, P. W. & Volkow, N. D. (2005). The neural basis of addiction: a pathology of motivation and choice. American Journal of Psychiatry, 162, 14031413.Google Scholar
Kandel, D. B. (1990). Parenting styles, drug use, and children’s adjustment in families of young adults. Journal of Marriage and the Family, 52, 183196.Google Scholar
Koob, G. F. & LeMoal, M. (2001). Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology, 24, 97129.Google Scholar
Koob, G. F. & LeMoal, M. (2008). Neurobiological mechanisms for opponent motivational processes in addiction. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 31133123.Google Scholar
Kourosh, A. S., Harrington, C. R. & Adinoff, B. (2010). Tanning as a behavioral addiction. The American Journal of Drug and Alcohol Abuse, 36, 284290.Google Scholar
Lang, P. J. & Bradley, M. M. (2013). Appetitive and defensive motivation: goal-directed or goal-determined? Emotion Review: Journal of International Society for Research on Emotion, 5, 230234.Google Scholar
Laricchiuta, D. & Petrosini, L. (2014). Individual differences in response to positive and negative stimuli: endocannabinoid-based insight on approach and avoidance behaviors. Frontiers in Systems Neuroscience, 8 (238), 22 pages.Google Scholar
Lashley, K. S. (1938). Experimental analysis of instinctive behavior. Psychological Review, 45, 445471.Google Scholar
Loonis, E., Apter, M. J. & Sztulman, H. (2000). Addiction as a function of action system properties. Addictive Behaviors, 25 (3), 477481.Google Scholar
MacLaren, V. V. & Best, L. A. (2010). Multiple addictive behaviors in young adults: student norms for the shorter PROMIS scale. Addictive Behaviors, 35, 252255.Google Scholar
Mahoney, K. D. (2018). http://latin-dictionary.net/definition/822/addictio-addictionis; accessed October 10th, 2018. Latdict Group.Google Scholar
Marks, I. (1990). Behaviour (non-chemical) addictions. British Journal of Addiction, 85, 13891394.Google Scholar
Maslow, A. H. (1943). A theory of human motivation. Psychological Review, 50, 370396.Google Scholar
Maslow, A. H. (1954). Instinct Theory Reexamined: Motivation and Personality. New York: Harper & Row.Google Scholar
Maslow, A. H. (1996). Critique of self-actualization theory. In: Hoffman, E. (Ed.), Future Visions: The Unpublished Papers of Abraham Maslow. Sage Publications, Inc., pp. 2632.Google Scholar
McClelland, D. C. (1961). The Achieving Society. New York: NY: Free Press.Google Scholar
McClelland, D. C. (1987). Human Motivation. Cambridge, Great Britain: Cambridge University Press.Google Scholar
McClelland, D. C., Davis, W. N., Kalin, R. & Wanner, E. (1972). The Drinking Man: Alcohol and Human Motivation. New York, NY: Free Press.Google Scholar
McDaniel, P. A., Intinarelli, G. & Malone, R. E. (2008). Tobacco industry issues management organizations: creating a global corporate network to undermine public health. Globalization and Health: Biomed Central, 4 (2), 18 pages.Google Scholar
McDougall, W. (1932). The Energies of Men: A Study of the Fundamentals of Dynamic Psychology. London, Great Britain: Methuen.Google Scholar
Murray, H. A. (1938). Explorations in Personality. New York, NY: Oxford University Press.Google Scholar
Myles, I. A. (2014). Fast food fever: reviewing the impacts of Western diet on immunity. Nutrition Journal: Biomed Central, 13 (61), 17 pages.Google Scholar
Nathan, P. E., Conrad, M. & Skinstad, A. H. (2016). History of the concept of addiction. Annual Review of Clinical Psychology, 12, 2951.Google Scholar
Nestler, E. J. & Landsman, D. (2001). Learning about addiction from the genome. Nature, 409, 834835.Google Scholar
Newlin, D. B. (2002). The self-perceived survival ability and reproductive fitness (SPFit) theory of substance use disorders. Addiction, 97, 427445.Google Scholar
Olney, J. J., Warlow, S. M., Naffziger, E. E. & Berridge, K. C. (2018). Current perspectives on incentive salience and applications to clinical disorders. Current Opinion in Behavioral Science, 22, 5969.Google Scholar
Orford, J. (2001). Addiction as excessive appetite. Addiction, 96, 1531.Google Scholar
Panksepp, J. & Moskal, J. (2008 ). Dopamine and SEEKING: Subcortical “reward” systems and appetitive urges. In: Elliot, A. J. (Ed.), Handbook of Approach and Avoidance Motivation. New York: Taylor & Francis Group, pp. 6787 (chapter 5).Google Scholar
Pearson, M. M. & Little, R. B. (1969). The addictive process in unusual addictions: a further elaboration of etiology. American Journal of Psychiatry, 125, 11661171.Google Scholar
Potenza, M. N., Hong, K. I. A., Lacadie, C. M., et al. (2012). Neural correlates of stress-induced and cue-induced drug craving: influences of sex and cocaine dependence. American Journal of Psychiatry, 169, 406414.Google Scholar
PROMIS Clinics (2018). www.s-p-q.com; accessed October 31st, 2018.Google Scholar
Rawson, R. A. & Condon, T. P. (2007). Why do we need an Addiction supplement focused on methamphetamine? Addiction, 102 (Supplement 1), 14.Google Scholar
Richards, R. J. (2018). Instinct. In Vonk, J. and Shackelford, T. (Eds.), Encyclopedia of Animal Cognition and Behavior. New York: Springer International Publishing.Google Scholar
Robinson, T. E. & Berridge, K. C. (2000). The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction, 95, 91117.Google Scholar
Rosenblatt, P. C., Anderson, R. M. & Johnson, P. A. (1984). The meaning of “cabin fever.” The Journal of Social Psychology, 123, 4353.Google Scholar
Ryan, R. M. & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55, 6878.Google Scholar
Ryan, R. M. & Frederick, C. M. (1997). On energy, personality, and health: subjective vitality as a dynamic reflection of well-being. Journal of Personality, 65, 529565.Google Scholar
Sinha, R. (2008). Chronic stress, drug use, and vulnerability to addiction. Annals of the New York Academy of Sciences, 114, 105130.Google Scholar
Stacy, A. W. & Ames, S. L. (2001). Implicit cognition theory in drug use and driving under the influence interventions. In Sussman, S. (Ed.), Handbook of Program Development in Health Behavior Research and Practice. Sage, pp. 107130.Google Scholar
Stacy, A. W., Pike, J. & Lee, A. Y. (2020). Multiple memory systems, addiction, and health habits: New routes for translational science. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 152170.Google Scholar
Sunderwirth, S. G. & Milkman, H. (1991). Behavioral and neurochemical commonalities in addiction. Contemporary Family Therapy, 13, 421433.CrossRefGoogle Scholar
Sussman, S. (2007). Sexual addiction among teens: A review. Sexual Addiction & Compulsivity: The Journal of Treatment and Prevention, 14, 257278.Google Scholar
Sussman, S. (2012). Steve Sussman on Matilda Hellman’s “Mind the Gap!” Failure in understanding key dimensions of an addicted drug user’s life: addictive Effects. Substance Use & Misuse, 47, 16611665.Google Scholar
Sussman, S. (2017). Substance and Behavioral Addictions: Concepts, Causes, and Cures. Cambridge, Great Britain: Cambridge University Press.Google Scholar
Sussman, S. Y. & Ames, S. L. (2008). Drug Abuse: Concepts, Prevention, and Cessation. Cambridge, Great Britain: Cambridge University Press.Google Scholar
Sussman, S. & Arnett, J. (2014). Emerging adulthood: Developmental period facilitative of the addictions. Evaluation & the Health Professions, 37, 147155.Google Scholar
Sussman, S. & Moran, M. B. (2013). Hidden addiction: Television. Journal of Behavioral Addictions, 2, 125132.Google Scholar
Sussman, S. & Sussman, A. N. (2011). Considering the definition of addiction. International Journal of Environmental Research and Public Health, 8, 40254038.Google Scholar
Sussman, S., Leventhal, A., Bluthenthal, R. N., Freimuth, M., Forster, M. & Ames, S. L. (2011). A framework for the specificity of addictions. International Journal of Environmental Research and Public Health, 8, 33993415.Google Scholar
Sussman, S., Lisha, N. & Griffiths, M. (2011). Prevalence of the addictions: a problem of the majority or the minority? Evaluation & the Health Professions, 34, 356.Google Scholar
Sussman, S., Reynaud, M., Aubin, H. J. & Leventhal, A. M. (2011). Drug addiction, love, and the Higher Power. Evaluation & the Health Professions, 34, 362370.Google Scholar
Sussman, S., Rozgonjuk, D. & van den Eijnden, R. (2017). Substance and behavioral addictions may share a similar underlying process of dysregulation. Addiction, 112, 17171718.Google Scholar
Tay, L. & Diener, E. (2011). Needs and subjective well-being around the world. Journal of Personality and Social Psychology, 101, 354365.Google Scholar
Vaccaro, A. G. & Potenza, M. N. (2020). Neurobiological foundations of behavioral addictions. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 136151.Google Scholar
Vandenbergh, D. J., O’Connor, R. J., Grang, M. D., et al. (2007) Dopamine receptor genes (DRD2, DRD3, DRD4) and gene-gene interactions associated with smoking-related behaviors. Addiction Biology, 12, 106116.Google Scholar
Verhulst, B., Neale, M. C. & Kendler, K. S. (2015). The heritability of alcohol use disorders: a meta-analysis of twin and adoption studies. Psychological Medicine, 45, 10611072.Google Scholar
Wahlstrom, D., White, T. & Luciana, M. (2010). Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neuroscience Biobehavior Review, 34, 631648.Google Scholar
Walther, B., Morgenstern, M. & Hanewinkel, R. (2012). Co-occurrence of addictive behaviors: personality factors related to substance use, gambling and computer gaming. European Addiction Research, 18, 167174.Google Scholar
Warlow, S. M., et al. (2020). Chapter 3 of the current Handbook.Google Scholar
Wiers, R. W., Bartholow, B. D., Wildenberg, E.v.d., et al. (2007). Automatic and controlled processes and the development of addictive behaviors in adolescents: a review and a model. Pharmacology Biochemistry and Behavior, 86 (2), 263283.Google Scholar
World Health Organization [WHO] (2018). ICD-11 for Mortality and Morbidity Statistics (ICD-11 MMS). Geneva, Switzerland: WHO (https://icd.who.int/).Google Scholar
Zilberman, N., Lavidor, M., Yadid, G. & Rassovsky, Y. (2019). Qualitative review and quantitative effect size meta-analyses in brain regions identified by cue-reactivity addiction studies. Neuropsychology, 33, 319334.Google Scholar

References

Abela, A. R. & Chudasama, Y. (2013). Dissociable contributions of the ventral hippocampus and orbitofrontal cortex to decision-making with a delayed or uncertain outcome. European Journal of Neuroscience, 37, 640647.Google Scholar
Acuff, S. F. & Murphy, J. G. (2017). Further examination of the temporal stability of alcohol demand. Behavioural Processes, 141, 3341.Google Scholar
Ainslie, G. & Herrnstein, R. J. (1981). Preference reversal and delayed reinforcement. Animal Learning and Behavior, 9(4), 476482.Google Scholar
Ashare, R. L. & Hawk, L. W. Jr. (2012). Effects of smoking abstinence on impulsive behavior among smokers high and low in ADHD-like symptoms. Psychopharmacology, 219(2), 537547.Google Scholar
Audrain-McGovern, J., Rodriguez, D., Epstein, L. H., et al. (2009). Does delay discounting play an etiological role in smoking or is it a consequence of smoking? Drug and Alcohol Dependence, 103(3), 99106. doi:10.1016/j.drugalcdep.2008.12.019Google Scholar
Bickel, W. K. & Madden, G. J. (1999a). The behavioral economics of smoking. In Chaloupka, F. J., Grossman, M., Bickel, W. K. & Saffer, H. (Eds.), The Economic Analysis of Substance Use and Abuse: An Integration of Econometric and Behavioral Economic Research. Chicago: University of Chicago Press, pp. 3161.Google Scholar
Bickel, W. K. & Madden, G. J. (1999b). A comparison of measures of relative reinforcing efficacy and behavioral economics: Cigarettes and money in smokers. Behavioural Pharmacology, 10(6-7), 627637.Google Scholar
Bickel, W. K. & Madden, G. J. (1999c). Similar consumption and responding across single and multiple sources of drug. Journal of the Experimental Analysis of Behavior, 72(3), 299316.Google Scholar
Bickel, W. K. & Marsch, L. A. (2001). Toward a behavioral economic understanding of drug dependence: Delay discounting processes. Addiction, 96(1), 7386. doi:10.1046/j.1360-0443.2001.961736.xGoogle Scholar
Bickel, W. K. & Vuchinich, R. E. (2000). Reframing Health Behavior Change with Behavioral Economics. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.Google Scholar
Bickel, W. K. & Yi, R. (2008). Temporal discounting as a measure of executive function: Insights from the competing neuro-behavioral decision system hypothesis of addiction. In Houser, D. & McCabe, K. (Eds.), Neuroeconomics: Advances in Health Services Research (Volume 20). Bingley, UK: Emerald Group Publishing, pp. 289309.Google Scholar
Bickel, W. K., Jarmolowicz, D. P., MacKillop, J., et al. (2012a). The behavioral economics of reinforcement pathologies. In Shaffer, H. J. (Ed.), Addiction Syndrome Handbook. Washington, DC: American Psychological Association.Google Scholar
Bickel, W. K., Jarmolowicz, D. P., Mueller, E. T., et al. (2012b). Altruism in time: Social temporal discounting differentiates smokers from problem drinkers. Psychopharmacology, 224(1), 109120. doi:10.1007/s00213-012-2745-6Google Scholar
Bickel, W. K., Jarmolowicz, D. P., Mueller, E. T. & Gatchalian, K. M. (2011a). The behavioral economics and neuroeconomics of reinforcer pathologies: Implications for etiology and treatment of addiction. Current Psychiatry Reports, 13(5), 406415. doi:10.1007/s11920-011-0215-1Google Scholar
Bickel, W. K., Jarmolowicz, D. P., Mueller, E. T., Gatchalian, K. M. & McClure, S. M. (2012c). Are executive function and impulsivity antipodes? A conceptual reconstruction with special reference to addiction. Psychopharmacology, 221(3), 361387.Google Scholar
Bickel, W. K., Jarmolowicz, D. P., Mueller, E. T., Koffarnus, M. N. & Gatchalian, K. M. (2012d). Excessive discounting of delayed reinforcers as a trans-disease process contributing to addiction and other disease-related vulnerabilities: Emerging evidence. Pharmacology and Therapeutics 134(3), 287297. doi:10.1016/j.pharmthera.2012.02.004Google Scholar
Bickel, W. K., Miller, M. L., Yi, R., et al. (2007). Behavioral and neuroeconomics of drug addiction: Competing neural systems and temporal discounting processes. Drug and Alcohol Dependence, 90S, S85S91. doi:10.1016/j.drugalcdep.2006.09.016Google Scholar
Bickel, W. K., Odum, A. L. & Madden, G. J. (1999). Impulsivity and cigarette smoking: Delay discounting in current, never, and ex-smokers. Psychopharmacology, 146(4), 447454. doi:10.1007/PL00005490Google Scholar
Bickel, W. K., Yi, R., Kowal, B. P. & Gatchalian, K. M. (2008). Cigarette smokers discount past and future rewards symmetrically and more than controls: Is discounting a measure of impulsivity? Drug and Alcohol Dependence, 96(3), 256262. doi:10.1016/j.drugalcdep.2008.03.009Google Scholar
Bickel, W. K., Yi, R., Landes, R. D., Hill, P. F. & Baxter, C. (2011b). Remember the future: Working memory training decreases delay discounting among stimulant addicts. Biological Psychiatry, 69(3), 260265. doi:10.1016/j.biopsych.2010.08.017Google Scholar
Bjork, J. M., Hommer, D. W., Grant, S. J. & Danube, C. (2004). Impulsivity in abstinent alcohol-dependent patients: Relation to control subjects and type 1-/type 2 like traits. Alcohol, 34(2–3), 133150.Google Scholar
Black, A. C. & Rosen, M. I. (2011). A money management-based substance use treatment increases valuation of future rewards. Addictive Behaviors, 36(1–2), 125128. doi:10.1016/j.addbeh.2010.08.014Google Scholar
Bruce, J. M., Bruce, A. S., Catley, D., et al. (2016). Being kind to your future self: Probability discounting of health decision-making. Annals of Behavioral Medicine, 50, 297309.Google Scholar
Bruce, J. M., Jarmolowicz, D. P., Lynch, S., et al. (2018). How patients with multiple sclerosis weigh treatment risks and benefits. Health Psychology, 37, 680690.Google Scholar
Coffey, S. F., Gudleski, G. D., Saladin, M. E. & Brady, K. T. (2003). Impulsivity and rapid discounting of delayed hypothetical rewards in cocaine-dependent individuals. Experimental and Clinical Psychopharmacology, 11(1), 1825.Google Scholar
Cowan, J. A. & Devine, C. M. (2012). Process evaluation of an environmental and educational nutrition intervention in residential drug-treatment facilities. Public Health Nutrition, 15, 11591167.Google Scholar
Cowan, J. A. & Devine, C. M. (2013). Diet and body composition outcomes of an environmental and educational intervention among men in treatment for substance addiction. Journal of Nutrition Education and Behavior, 45, 154158.Google Scholar
Dallery, J. & Raiff, B. R. (2007). Delay discounting predicts cigarette smoking in a laboratory model of abstinence reinforcement. Psychopharmacology, 190, 485496.Google Scholar
Dembo, R., Belenko, S., Childs, K. & Wareham, J. (2009). Drug use and sexually transmitted diseases among female and male arrested youths. Journal of Behavioral Medicine, 32, 129141.Google Scholar
Dixon, M. R., Marley, J. & Jacobs, E. A. (2003). Delay discounting by pathological gamblers. Journal of Applied Behavior Analysis, 36(4), 449458.Google Scholar
Du, W., Green, L. & Myerson, J. (2002). Cross-cultural comparisons of discounting delayed and probabilistic rewards. The Psychological Record, 52, 479492.Google Scholar
Epstein, L. H., Salvy, S. J., Carr, K. A., Dearing, K. K. & Bickel, W. K. (2010). Food reinforcement, delay discounting and obesity. Physiology and Behavior, 100(5), 438445. doi:10.1016/j.physbeh.2010.04.029Google Scholar
Eysenck, S. B. G. & Eysenck, H. J. (1978). Impulsiveness and venturesomeness: Their position in a dimensional system of personality description. Psychological Reports, 43, 12471255.Google Scholar
Few, L. R., Acker, J., Murphy, J. G. & MacKillop, J. (2012). Temporal stability of a cigarette purchase task. Nicotine and Tobacco Research, 14, 761765.Google Scholar
Franck, C. T., Koffarnus, M. N., House, L. L. & Bickel, W. K. (2015). Accurate characterization of delay discounting: A multiple model approach using approximate Bayesian model selection and a unified discounting measure. Journal of the Experimental Analysis of Behavior, 103, 218233.Google Scholar
Grace, R. C., Kivell, B. M. & Laugesen, M. (2015). Assessing the temporal stability of a cigarette purchase task after an excise tax increase for factory-made and roll-your-own smokers. Nicotine & Tobacco Research: Official Journal of the Society for Research on Nicotine and Tobacco, 17, 13931396.Google Scholar
Green, L. & Estle, S. J. (2003). Preference reversals with food and water reinforcers in rats. Journal of the Experimental Analysis of Behavior, 79(2), 233242. doi:10.1901/jeab.2003.79-233Google Scholar
Green, L. & Myerson, J. (2004). A discounting framework for choice with delayed and probabilistic rewards. Psychological Bulletin, 130(5), 769792.Google Scholar
Green, L. & Myerson, J. (2013). How many impulsivities? A discounting perspective. Journal of the Experimental Analysis of Behavior, 99, 313.Google Scholar
Green, L., Fisher, E. B., Perlow, S. & Sherman, L. (1981). Preference reversal and self-control: Choice as a function of reward amount and delay. Behaviour Analysis Letters, 1(1), 4351.Google Scholar
Green, L., Myerson, J., Oliveira, L. & Chang, S. E. (2014). Discounting of delayed and probabilistic losses over a wide range of amounts. Journal of the Experimental Analysis of Behavior, 101, 186200.Google Scholar
Green, R. & Ray, L. A. (2018). Effects of varenicline on subjective craving and relative reinforcing value of cigarettes. Drug and Alcohol Dependence, 188, 5359.Google Scholar
Greenwald, M. K. & Hursh, S. R. (2006). Behavioral economic analysis of opioid consumption in heroin-dependent individuals: Effects of unit price and pre-session drug supply. Drug and Alcohol Dependence, 85(1), 3548. doi:Doi 10.1016/J.Drugalcdep.2006.03.007Google Scholar
Hariri, A. (2009). The neurobiology of individual differences in complex behavioral traits. Annual Review of Neuroscience, 32, 225247.Google Scholar
Hariri, A. R., Brown, S. M., Williamson, D. E., et al. (2006). Preference for immediate over delayed rewards is associated with magnitude of ventral striatal activity. Journal of Neuroscience, 26(51), 1321313217.Google Scholar
Heil, S. H., Johnson, M. W., Higgins, S. T. & Bickel, W. K. (2006). Delay discounting in currently using and currently abstinent cocaine-dependent outpatients and non-drug-using matched controls. Addictive Behaviors, 31(7), 12901294.Google Scholar
Holt, D. D., Green, L. & Myerson, J. (2003). Is discounting impulsive? Evidence from temporal and probability discounting in gambling and non-gambling college students. Behavioural Processes, 64(3), 355367. doi:10.1016/S0376-6357(03)00141-4Google Scholar
Holtyn, A. F., DeFulio, A. & Silverman, K. (2015). Academic skills of chronically unemployed drug-addicted adults. Journal of Vocational Rehabilitation, 42, 6774.Google Scholar
Hursh, S. R. (1980). Economic concepts for the analysis of behavior. Journal of the Experimental Analysis of Behavior, 34(2), 219238.Google Scholar
Hursh, S. R. (1984). Behavioral economics. Journal of the Experimental Analysis of Behavior, 42(3), 435452.Google Scholar
Hursh, S. R. (1991). Behavioral economics of drug self-administration and drug abuse policy. Journal of the Experimental Analysis of Behavior, 56(2), 377393. doi:10.1901/jeab.1991.56-377Google Scholar
Hursh, S. R. & Silberberg, A. (2008). Economic demand and essential value. Psychological Review, 115(1), 186198. doi:2008-00265-008 [pii] 10.1037/0033-295X.115.1.186Google Scholar
Hursh, S. R., Raslear, T. G., Shurtleff, D., Bauman, R. & Simmons, L. (1988). A cost-benefit analysis of demand for food. Journal of the Experimental Analysis of Behavior, 50(3), 419440. doi:10.1901/jeab.1988.50-419Google Scholar
Jacobs, E. A. & Bickel, W. K. (1999). Modeling drug consumption in the clinic via simulation procedures: Demand for heroin and cigarettes in opioid-dependent outpatients. Journal of Experimental and Clinical Psychopharmacology, 7(4), 412426.Google Scholar
Jarmolowicz, D. P., Bruce, A. S., Glusman, M., et al. (2017). On how patients with multiple sclerosis weigh side effect severity and treatment efficacy when making treatment decisions. Experimental and Clinical Psychopharmacology, 25, 479484.Google Scholar
Jarmolowicz, D. P., Lemley, S. M., Mateos, A. & Sofis, M. J. (2016a). A multiple-stimulus-without-replacement assessment for sexual partners: Purchase task validation. Journal of Applied Behavior Analysis, 48(3), 723729.Google Scholar
Jarmolowicz, D. P., Mueller, E. T., Koffarnus, M. N., et al. (2013). Executive dysfunction in addiction. In MacKillop, J. & de Wit, H. (Eds.), The Wiley-Blackwell Handbook of Addiction Psychopharmacology. Oxford: Wiley-Blackwell.Google Scholar
Jarmolowicz, D. P., Reed, D. D., Bruce, A. S., et al. (2016b). Using EP50 to forecast treatment adherence in individuals with multiple sclerosis. Behavioural Processes, 132, 9499.Google Scholar
Jarmolowicz, D. P., Reed, D. D., Bruce, A. S., et al. (2018). Modeling effects of side-effect probability, side effect severity, and medication efficacy on patients with multiple sclerosis medication choice. Experimental and Clinical Psychopharmacology, 26(6), 599.Google Scholar
Jarmolowicz, D. P., Reed, D. D., DiGennaro Reed, F. D. & Bickel, W. K. (2016c). The behaviroal and neuroeconomics of reinforcer pathologies: Implications for manigerial and health decision making. Managerial and Decision Economics, 37, 274293. doi:10.1002/mde.2716Google Scholar
Jo, S., Kim, K. U., Lee, D. & Jung, M. W. (2013). Effect of orbitofrontal cortex lesions on temporal discounting in rats. Behavioural Brain Research, 245, 2228. doi:10.1016/j.bbr.2013.02.014Google Scholar
Johnson, M. W. & Bickel, W. K. (2003). The behavioral economics of cigarette smoking: The concurrent presence of a substitute and an independent reinforcer. Behavioral Pharmacology, 14(2), 137144.Google Scholar
Johnson, M. W. & Bickel, W. K. (2006). Replacing relative reinforcing efficacy with behavioral economic demand curves. Journal of the Experimental Analysis of Behavior, 85(1), 7393.Google Scholar
Johnson, M. W., Bickel, W. K., Baker, F., et al. (2010). Delay discounting in current and former marijuana-dependent individuals. Experimental and Clinical Psychopharmacology, 18(1), 99107.Google Scholar
Jones, J. L., Esber, G. R., McDannald, M. A., et al. (2012). Orbitofrontal cortex supports behavior and learning using inferred but not cached values. Science, 338(6109), 953-956. doi:10.1126/science.1227489Google Scholar
Kalivas, P. W. & Volkow, N. D. (2005). The neural basis of addiction: A pathology of motivation and choice. The American Journal of Psychiatry, 162(8), 14031413.Google Scholar
Kirby, K. N. (2009). One-year temporal stability of delay-discount rates. Psychonomic Bulletin and Review, 16(3), 457462. doi: 10.3758/Pbr.16.3.457Google Scholar
Kirby, K. N. & Marakovic, N. N. (1996). Delay-discounting probabilistic rewards: rates decrease as amounts increase. Psychonomic Bulletin and Review, 33, 100104.Google Scholar
Kirby, K. N., Petry, N. M. & Bickel, W. K. (1999). Heroin addicts have higher discount rates for delayed rewards than non-drug using controls. Journal of Experimental Psychology: General, 128(1), 7887.Google Scholar
Koffarnus, M. N. & Bickel, W. K. (2014). A 5-trial adjusting delay discounting task: Accurate discount rates in less than one minute. Experimental and clinical psychopharmacology, 22, 222228.Google Scholar
Koffarnus, M. N., Franck, C. T., Stein, J. S. & Bickel, W. K. (2015). A modified exponential behavioral economic demand model to better describe consumption data. Experimental and Clinical Psychopharmacology, 23, 504512.Google Scholar
Koffarnus, M. N., Jarmolowicz, D. P., Mueller, E. T. & Bickel, W. K. (2013). Changing discounting in light of the competing neurobehavioral decision systems theory Journal of the Experimental Analysis of Behavior, 99(1), 3257.Google Scholar
Kringelbach, M. L. (2005). The orbitofrontal cortex: Linking reward to hedonic experience. Nature Reviews Neuroscience, 6, 691702.Google Scholar
Lin, X., Zhou, H., Dong, G. & Du, X. (2015). Impaired risk evaluation in people with Internet gaming disorder: fMRI evidence from a probability discounting task. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 56, 142148.Google Scholar
Loewenstein, G. F. (1988). Frames of the mind in intertemporal choice. Management Science, 34(2), 200214.Google Scholar
MacKillop, J. & Murphy, J. G. (2007). A behavioral economic measure of demand for alcohol predicts brief intervention outcomes. Drug and Alcohol Dependence, 89(2–3), 227233.Google Scholar
MacKillop, J. & Tidey, J. W. (2011). Cigarette demand and delayed reward discounting in nicotine-dependent individuals with schizophrenia and controls: An initial study. Psychopharmacology, 216(1), 9199.Google Scholar
Mackillop, J., Amlung, M. T., Acker, J., et al. (2014). The neuroeconomics of alcohol demand: An initial investigation of the neural correlates of alcohol cost-benefit decision making in heavy drinking men. Neuropsychopharmacology. doi:10.1038/npp.2014.47Google Scholar
MacKillop, J., Few, L. R., Murphy, J. G., et al. (2012). High-resolution behaviroal economic analysis of cigarette demand to inform tax policy. Addiction, 107(12), 21912200.Google Scholar
MacKillop, J., Murphy, C. M., Martin, R. A., et al. (2016). Predictive validity of a cigarette purchase task in a randomized controlled trial of contingent vouchers for smoking in individuals with substance use disorders. Nicotine & Tobacco Research: Official Journal of the Society for Research on Nicotine and Tobacco, 18, 531537.Google Scholar
MacKillop, J., Murphy, J. G., Ray, L. A., et al. (2008). Further validation of a cigarette purchase task for assessing the relative reinforcing efficacy of nicotine in college smokers. Experimental and Clinical Psychopharmacology, 16(1), 5765. doi:10.1037/1064-1297.16.1.57Google Scholar
MacKillop, J., Murphy, J. G., Tidey, J. W., et al. (2009). Latent structure of facets of alcohol reinforcement from a behavioral economic demand curve. Psychopharmacology, 203(1), 3340.Google Scholar
MacKillop, J., O'Hagen, S., Lisman, S. A., et al. (2010). Behavioral economic analysis of cue-elicited craving for alcohol. Addiction, 105(9), 15991607. doi:10.1111/j.1360-0443.2010.03004.xGoogle Scholar
Madden, G. J. & Bickel, W. K. (1999). Abstinence and price effects on demand for cigarettes: A behavioral-economic analysis. Addiction, 94(4), 577588.Google Scholar
Madden, G. J. & Bickel, W. K. (2009). Impulsivity: The Behavioral and Neurological Science of Discounting. Washington, DC: APA.Google Scholar
Madden, G. J. & Kalman, D. (2010). Effects of bupropion on simulated demand for cigarettes and the subjective effects of smoking. Nicotine and Tobacco Research, 12, 416422.Google Scholar
Madden, G. J., Bickel, W. K. & Jacobs, E. A. (2000). Three predictions of the economic concept of unit price in a choice context. Journal of the Experimental Analysis of Behavior, 73(1), 4564.Google Scholar
Madden, G. J., Petry, N. M., Badger, G. J. & Bickel, W. K. (1997). Impulsive and self-control choices in opioid-dependent patients and non-drug-using control participants: Drug and monetary rewards. Experimental and Clinical Psychopharmacology, 5(3), 256262.Google Scholar
Madden, G. J., Petry, N. M. & Johnson, P. S. (2009). Pathological gamblers discount probabilistic rewards less steeply than matched controls. Experimental and Clinical Psychopharmacology, 17(5), 283290. doi:10.1037/a0016806Google Scholar
Manuck, S. B., Flory, J. D., Muldoon, M. F. & Ferrell, R. E. (2003). A neurobiology of intertemporal choice. In Loewenstein, G., Read, D. & Baumeister, R. (Eds.), Time and Decision: Economic and Psychological Perspectives on Intertemporal Choice. New York: Russell Sage Foundation, pp. 139172.Google Scholar
Mazur, J. E. (1987). An adjusting procedure for studying delayed reinforcement. In Commons, M. L., Mazur, J. E., Nevin, J. A. & Rachlin, H. (Eds.), Quantitative Analysis of Behavior (Volume 5). Hillsdale, NJ: Erlbaum, pp. 5573.Google Scholar
McKerchar, T. L., Green, L., Myerson, J., et al. (2009). A comparison of four models of delay discounting in humans. Behavioural Processes, 81(2), 256259. doi:10.1016/j.beproc.2008.12.017Google Scholar
McLellan, A. T., Luborsky, L., Cacciola, J., et al. (1985). New data from the Addiction Severity Index: Reliability and validity in three centers. Journal of Nervous and Mental Disorders, 173(7), 412423.Google Scholar
Miedl, S. F., Peters, J. & Buchel, C. (2012a). Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Archives of General Psychiatry, 69(2), 177186.Google Scholar
Miedl, S. F., Peters, J. & Buchel, C. (2012b). Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. JAMA Psychiatry, 69, 177186.Google Scholar
Monterosso, J. & Ainslie, G. (2007). The behavioral economics of will in recovery from addiction. Drug and Alcohol Dependence, 90 (Supplement 1), S100–111. doi:10.1016/j.drugalcdep.2006.09.004Google Scholar
Morrison, K. L., Madden, G. J., Odum, A. L., Friedel, J. E. & Twohig, M. P. (2014). Altering impulsive decision making with an acceptance-based procedure. Behavior Therapy, 45, 630639.Google Scholar
Murphy, C. M., MacKillop, J., Martin, R. A., et al. (2017). Effects of varenicline versus transdermal nicotine replacement therapy on cigarette demand on quit day in individuals with substance use disorders. Psychopharmacology, 234, 24432452.Google Scholar
Murphy, J. G. & MacKillop, J. (2006). Relative reinforcing efficacy of alcohol among college student drinkers. Experimental and Clinical Psychopharmacology, 14(2), 219227. doi:10.1037/1064-1297.14.2.219Google Scholar
Myerson, J. & Green, L. (1995). Discounting of delayed rewards: Models of individual choice. Journal of the Experimental Analysis of Behavior, 64(3), 263276.Google Scholar
Myerson, J., Green, L. & Warusawitharana, M. (2001). Area under the curve as a measure of discounting. Journal of the Experimental Analysis of Behavior, 76(2), 235243. doi: 10.1901/jeab.2001.76-235Google Scholar
O'Doherty, J. P. (2004). Reward representations and reward-related learning in the human brain: insights from neuroimaging. Current Opinion in Neurobiology, 14, 769776.Google Scholar
Odum, A. L. (2011). Delay discounting: Trait variable? Behavioral Processes, 87, 19.CrossRefGoogle ScholarPubMed
Odum, A. L. & Baumann, A. A. (2007). Cigarette smokers show steeper discounting of both food and cigarettes than money. Drug and Alcohol Dependence, 91(2–3), 293296.Google Scholar
Peters, J. & Buchel, C. (2009). Overlapping and distinct neural systems code for subjective value during intertemporal and risky decision making. The Journal of Neuroscience, 29, 1572715734.Google Scholar
Petry, N. M. (2001a). Delay discounting of money and alcohol in actively using alcoholics, currently abstinent alcoholics, and controls. Psychopharmacology, 154(3), 243250.Google Scholar
Petry, N. M. (2001b). Pathological gamblers, with and without substance use disorders, discount delayed rewards at high rates. Journal of Abnormal Psychology, 110(3), 482487.Google Scholar
Petry, N. M. & Casarella, R. (1999). Excessive discounting of delayed rewards in substance abusers with gambling problems. Drug and Alcohol Dependence, 56(1), 2532.Google Scholar
Porrino, L. J. & Lyons, D. (2000). Orbital and medial prefrontal cortex and psychostimulant abuse: studies in animal models. Cerebral Cortex, 10(3), 326333.CrossRefGoogle ScholarPubMed
Rachlin, H. (2006). Notes on discounting. Journal of the Experimental Analysis of Behavior, 85(3), 425435. doi: 10.1901/jeab.2006.85-05Google Scholar
Rachlin, H., Raineri, A. & Cross, D. (1991). Subjective probability and delay. Journal of the Experimental Analysis of Behavior, 55(2), 233244. doi: 10.1901/jeab.1991.55-233Google Scholar
Reed, D. D., Kaplan, B. A., Becirevic, A., Roma, P. G. & Hursh, S. R. (2016). Toward quantifying the abuse liability of ultraviolet tanning: A behavioral economic approach to tanning addiction. Journal of the Experimental Analysis of Behavior, 106, 93106.Google Scholar
Reed, D. D., Naudé, G. P. Gelino, B. W. & Amlung, M. (2020). Behavioral economic considerations of novel addictions and nonaddictive behavior: Research and analytic methods. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 7386.Google Scholar
Reynolds, B., Richards, J. B., Horn, K. & Karraker, K. (2004). Delay discounting and probability discounting as related to cigarette smoking status in adults. Behavioral Processes, 30(65), 3542. doi:10.1016/S0376-6357(03)00109-8Google Scholar
Reynolds, B., Richards, J. B. & de Witt, H. (2006). Acute-alcohol effects on the Experiential Discounting Task (EDT) and a question-based measure of delay discounting. Pharmacology, Biochemistry, and Behavior, 83(2), 194202.Google Scholar
Richards, J. B., Zhang, L., Mitchell, S. H. & de Wit, H. (1999). Delay or probability discounting in a model of impulsive behavior: Effect of alcohol. Journal of the Experimental Analysis of Behavior, 71(2), 121143.Google Scholar
Ritschel, F., King, J. A., Geisler, D., et al. (2015). Temporal delay discounting in acutely ill and weight-recovered patients with anorexia nervosa. Psychological Medicine, 45(6), 12291239.Google Scholar
Romer, D. (2010). Adolescent risk taking, impulsivity, and brain development: Implications for prevention. Developmental Psychobiology, 52, 263276.Google Scholar
Samuelson, P. (1937). A note on measurement of utility. The Review of Economic Studies, 4, 155161.Google Scholar
Schoenbaum, G. & Esber, G. R. (2010). How do you (estimate you will) like them apples? Integration as a defining trait of orbitofrontal function. Current Opinion in Neurobiology, 20(2), 205211. doi:10.1016/j.conb.2010.01.009Google Scholar
Shahan, T. A., Bickel, W. K., Badger, G. J. & Giordano, L. A. (2001). Sensitivity of nicotine-containing and de-nicotinized cigarette consumption to alternative non-drug reinforcement: A behavioral economic analysis. Behavioral Pharmacology, 12(4), 277284.Google Scholar
Shahan, T. A., Bickel, W. K., Madden, G. J. & Badger, G. J. (1999). Comparing the reinforcing efficacy of nicotine containing and de-nicotinized cigarettes: A behavioral economics analysis. Psychopharmacology, 147(2), 210216.Google Scholar
Shahan, T. A., Odum, A. L. & Bickel, W. K. (2000). Nicotine gum as a substitute for cigarettes: A behavioral economics analysis. Behavioral Pharmacology, 11(1), 7176.Google Scholar
Sheffer, C. E., Christensen, D. R., Landes, R. D., et al. (2014). Delay discountin rates: A strong prognastic indicator of smoking relapse. Addictive Behaviors, 39, 16821689.Google Scholar
Sheffer, C. E., MacKillop, J., McGeary, J., et al. (2012). Delay discounting, locus of control, and cognitive impulsiveness independently predict tobacco dependence treatment outcomes in a highly dependent, lower socioeconomic group of smokers. American Journal on Addictions, 21(3), 221232.Google Scholar
Sofis, M. J., Carrillo, A. & Jarmolowicz, D. P. (2016). Maintained physical activity induced changes in delay discounting. Behavioral Modification. doi:10.1177/0145445516685047Google Scholar
Sobell, L. C., Ellingstad, T. P. & Sobell, M. B. (2000). Natural recovery from alcohol and drug problems: Methodological review of the research with suggestions for future directions. Addiction, 95(5), 749764.Google Scholar
Takahashi, T. (2006). Time-estimation error following Weber–Fechner law may explain subadditive time-discounting. Medical Hypotheses, pp. 1372–1374.Google Scholar
Takahashi, T., Furukawa, A., Miyakawa, T., Maesato, H. & Higuchi, S. (2007). Two-month stability of hyperbolic discount rates for delayed monetary gains in abstinent inpatient alcoholics. Neuroendocrinology Letters, 28(2), 131136.Google Scholar
Takahashi, T., Takahashi, H., Nishinaka, H., Makino, T. & Fukui, H. (2014). Neuroeconomics of psychopathy: Risk taking in probability discounting of gain and loss predicts psychopathy. Neuroendocrinology Letters, 35, 510517.Google Scholar
Volkow, N. D. & Fowler, J. S. (2000). Addiction, a disease of compulsion and drive: Involvement of the orbitofrontal cortex. Cerebral Cortex, 10(3), 318325. doi:10.1093/cercor/10.3.318Google Scholar
Washio, Y., Higgins, S. T., Heil, S. H., et al. (2011). Delay discounting is associated with treatment response among cocaine-dependent outpatients. Experimental and Clinical Psychopharmacology. doi:10.1037/a0023617CrossRefGoogle Scholar
Watson, D. S. & Holman, M. A. (1977). Price Theory and Its Uses (4th edition.). Boston: Houghton Mifflin.Google Scholar
Yi, R., Chase, W. D. & Bickel, W. K. (2007). Probability discounting among cigarette smokers and nonsmokers: Molecular analysis discerns group differences. Behavioural Pharmacology, 18(7), 633639. doi:10.1097/FBP.0b013e3282effbd3 [doi]:00008877-200711000-00006 [pii]Google Scholar
Yi, R., Matusiewicz, A. K. & Tyson, A. (2016). Delay discounting and preference reversals by cigarette smokers. The Psychological Record, 66, 235242.Google Scholar

References

Anselme, P. (2016). Motivational control of sign-tracking behaviour: a theoretical framework. Neuroscience and Biobehavioral Reviews, 65, 120.Google Scholar
Anselme, P. & Robinson, M. J. F. (2013). What motivates gambling behavior? Insight into dopamine’s role. Frontiers in Behavioral Neuroscience, 7, 182.Google Scholar
Avena, N. M. & Hoebel, B. G. (2003). Amphetamine-sensitized rats show sugar-induced hyperactivity (cross-sensitization) and sugar hyperphagia. Pharmacology, Biochemistry, and Behavior, 74(3), 635639.Google Scholar
Barker, J. M. & Taylor, J. R. (2019). Sex differences in incentive motivation and the relationship to the development and maintenance of alcohol use disorders. Physiology & Behavior, 203, 9199.Google Scholar
Barrett, S. P., Pihl, R. O., Benkelfat, C., et al. (2008). The role of dopamine in alcohol self-administration in humans: individual differences. European Neuropsychopharmacology, 18(6), 439447.Google Scholar
Bartlett, E., Hallin, A., Chapman, B. & Angrist, B. (1997). Selective sensitization to the psychosis-inducing effects of cocaine: a possible marker for addiction relapse vulnerability? Neuropsychopharmacology, 16(1), 7782.Google Scholar
Bartoshuk, L. (2014). The measurement of pleasure and pain. Perspectives on Psychological Science : A Journal of the Association for Psychological Science, 9(1), 9193.Google Scholar
Becker, J. B. (2016). Sex differences in addiction. Dialogues in Clinical Neuroscience, 18(4), 395402.Google Scholar
Becker, J. B. & Hu, M. (2008). Sex differences in drug abuse. Frontiers in Neuroendocrinology, 29(1), 3647.Google Scholar
Benotsch, E. G., Kalichman, S. C. & Kelly, J. A. (1999). Sexual compulsivity and substance use in HIV-seropositive men who have sex with men: prevalence and predictors of high-risk behaviors. Addictive Behaviors, 24(6), 857868.Google Scholar
Berger, S. P., Hall, S., Mickalian, J. D., et al. (1996). Haloperidol antagonism of cue-elicited cocaine craving. The Lancet, 347(9000), 504508.Google Scholar
Berridge, K. C. (2012). From prediction error to incentive salience: mesolimbic computation of reward motivation. The European Journal of Neuroscience, 35(7), 11241143.Google Scholar
Berridge, K. C. (2009). “liking” and “wanting” food rewards: brain substrates and roles in eating disorders. Physiology & Behavior, 97(5), 537550.Google Scholar
Berridge, K. C. & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology, 199(3), 457480.Google Scholar
Berridge, K. C. & Robinson, T. E. (2016). Liking, wanting, and the incentive-sensitization theory of addiction. The American Psychologist, 71(8), 670679.Google Scholar
Berridge, K. C. & Robinson, T. E. (2003). Parsing reward. Trends in Neurosciences, 26(9), 507513.Google Scholar
Berridge, K. C. & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research. Brain Research Reviews, 28(3), 309369.Google Scholar
Berridge, K. C. & Valenstein, E. S. (1991). What psychological process mediates feeding evoked by electrical stimulation of the lateral hypothalamus? Behavioral Neuroscience, 105(1), 314.Google Scholar
Berridge, K. C., Ho, C.-Y., Richard, J. M. DiFeliceantonio, A. G. (2010). The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Research, 1350, 4364.Google Scholar
Berridge, K. C., Venier, I. L. & Robinson, T. E. (1989). Taste reactivity analysis of 6-hydroxydopamine-induced aphagia: implications for arousal and anhedonia hypotheses of dopamine function. Behavioral Neuroscience, 103(1), 3645.Google Scholar
Bindra, D. (1978). How adaptive behavior is produced: a perceptual-motivational alternative to response reinforcements. Behavioral and Brain Sciences, 1(01), 41.Google Scholar
Blum, K., et al. (2020). Chapter 24 of the Handbook.Google Scholar
Boakes, R. A., Poli, M., Lockwood, M. J. & Goodall, G. (1978). A study of misbehavior: token reinforcement in the rat. Journal of the Experimental Analysis of Behavior, 29(1), 115134.Google Scholar
Boileau, I., Dagher, A., Leyton, M., et al. (2007). Conditioned dopamine release in humans: a positron emission tomography [11C]raclopride study with amphetamine. The Journal of Neuroscience, 27(15), 39984003.Google Scholar
Boileau, I., Payer, D., Chugani, B., et al. (2014). In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: a positron emission tomography study with [(11)C]-(+)-PHNO. Molecular Psychiatry, 19(12), 13051313.Google Scholar
Boileau, I., Payer, D., Rusjan, P. M., et al. (2016). Heightened dopaminergic response to amphetamine at the D3 dopamine receptor in methamphetamine users. Neuropsychopharmacology, 41(13), 29943002.Google Scholar
Bostwick, J. M., Hecksel, K. A., Stevens, S. R., Bower, J. H. & Ahlskog, J. E. (2009). Frequency of new-onset pathologic compulsive gambling or hypersexuality after drug treatment of idiopathic Parkinson disease. Mayo Clinic Proceedings, 84(4), 310316.Google Scholar
Brauer, L. H. & de Wit, H. (1997). High dose pimozide does not block amphetamine-induced euphoria in normal volunteers. Pharmacology, Biochemistry, and Behavior, 56(2), 265272.Google Scholar
Brevers, D., Cleeremans, A., Bechara, A., et al. (2014a). Impaired metacognitive capacities in individuals with problem gambling. Journal of Gambling Studies, 30(1), 141152.Google Scholar
Brevers, D., Koritzky, G., Bechara, A. & Noël, X. (2014b). Cognitive processes underlying impaired decision-making under uncertainty in gambling disorder. Addictive Behaviors, 39(10), 15331536.Google Scholar
Browman, K. E., Badiani, A. & Robinson, T. E. (1998). Modulatory effect of environmental stimuli on the susceptibility to amphetamine sensitization: a dose-effect study in rats. The Journal of Pharmacology and Experimental Therapeutics, 287(3), 10071014.Google Scholar
Brown, P. L. & Jenkins, H. M. (1968). Auto-shaping of the pigeon’s key-peck. Journal of the Experimental Analysis of Behavior, 11(1), 18.Google Scholar
Cabanac, M. (1971). Physiological role of pleasure. Science, 173(4002), 11031107.Google Scholar
Cabanac, M. & Lafrance, L. (1990). Postingestive alliesthesia: the rat tells the same story. Physiology & Behavior, 47(3), 539543.Google Scholar
Cacioppo, S., Bianchi-Demicheli, F., Frum, C., Pfaus, J. G. & Lewis, J. W. (2012). The common neural bases between sexual desire and love: a multilevel kernel density fMRI analysis. The Journal of Sexual Medicine, 9(4), 10481054.Google Scholar
Calipari, E. S., Ferris, M. J., Zimmer, B. A., Roberts, D. C. S. & Jones, S. R. (2013). Temporal pattern of cocaine intake determines tolerance vs sensitization of cocaine effects at the dopamine transporter. Neuropsychopharmacology, 38(12), 23852392.Google Scholar
Callesen, M. B., Scheel-Krüger, J., Kringelbach, M. L. & Møller, A. (2013). A systematic review of impulse control disorders in Parkinson’s disease. Journal of Parkinson’s Disease, 3(2), 105138.Google Scholar
Cameron, C. M., Wightman, R. M. & Carelli, R. M. (2014). Dynamics of rapid dopamine release in the nucleus accumbens during goal-directed behaviors for cocaine versus natural rewards. Neuropharmacology, 86, 319328.Google Scholar
Carlson, J. N. & Drew Stevens, K. (2006). Individual differences in ethanol self-administration following withdrawal are associated with asymmetric changes in dopamine and serotonin in the medial prefrontal cortex and amygdala. Alcoholism, Clinical and Experimental Research, 30(10), 16781692.Google Scholar
Casey, K. F., Benkelfat, C., Young, S. N. & Leyton, M. (2006). Lack of effect of acute dopamine precursor depletion in nicotine-dependent smokers. European Neuropsychopharmacology, 16(7), 512520.Google Scholar
Castner, S. A. & Goldman-Rakic, P. S. (1999). Long-lasting psychotomimetic consequences of repeated low-dose amphetamine exposure in rhesus monkeys. Neuropsychopharmacology, 20(1), 1028.Google Scholar
Castro, D. C. & Berridge, K. C. (2014). Opioid hedonic hotspot in nucleus accumbens shell: mu, delta, and kappa maps for enhancement of sweetness “liking” and “wanting.” The Journal of Neuroscience, 34(12), 42394250.Google Scholar
Castro, D. C. & Berridge, K. C. (2017). Opioid and orexin hedonic hotspots in rat orbitofrontal cortex and insula. Proceedings of the National Academy of Sciences of the United States of America, 114(43), E9125E9134.Google Scholar
Castro, D. C., Cole, S. L. & Berridge, K. C. (2015). Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Frontiers in Systems Neuroscience, 9, 90.Google Scholar
Castro, D. C., Terry, R. A. & Berridge, K. C. 2016. Orexin in rostral hotspot of nucleus accumbens enhances sucrose “liking” and intake but scopolamine in caudal shell shifts “liking” toward “disgust” and “fear.” Neuropsychopharmacology, 41(8), 21012111.Google Scholar
Chang, S. E. & Smith, K. S. (2016). An omission procedure reorganizes the microstructure of sign-tracking while preserving incentive salience. Learning & Memory, 23(4), 151155.Google Scholar
Charboneau, E. J., Dietrich, M. S., Park, S., et al. (2013). Cannabis cue-induced brain activation correlates with drug craving in limbic and visual salience regions: preliminary results. Psychiatry Research, 214(2), 122131.Google Scholar
Childress, A. R., Ehrman, R. N., Wang, Z., et al. (2008). Prelude to passion: limbic activation by “unseen” drug and sexual cues. PLos ONE, 3(1), e1506.Google Scholar
Claus, E. D., Ewing, S. W. F., Filbey, F. M., Sabbineni, A. & Hutchison, K. E. (2011). Identifying neurobiological phenotypes associated with alcohol use disorder severity. Neuropsychopharmacology, 36(10), 20862096.Google Scholar
Corbit, L. H. & Janak, P. H. (2007). Ethanol-associated cues produce general pavlovian-instrumental transfer. Alcoholism, Clinical and Experimental Research, 31(5), 766774.Google Scholar
Costikyan, G. (2013). Uncertainty in Games. MIT Press.Google Scholar
Cousijn, J., Goudriaan, A. E., Ridderinkhof, K. R., et al. (2013). Neural responses associated with cue-reactivity in frequent cannabis users. Addiction Biology, 18(3), 570580.Google Scholar
Cowlishaw, S., Nespoli, E., Jebadurai, J. K., Smith, N. & Bowden-Jones, H. (2018). Episodic and binge gambling: an exploration and preliminary quantitative study. Journal of Gambling Studies, 34(1), 8599.Google Scholar
Cox, S. M. L., Benkelfat, C., Dagher, A., et al. (2009). Striatal dopamine responses to intranasal cocaine self-administration in humans. Biological Psychiatry, 65(10), 846850.Google Scholar
Crombag, H. S., Badiani, A., Chan, J., et al. (2001). The ability of environmental context to facilitate psychomotor sensitization to amphetamine can be dissociated from its effect on acute drug responsiveness and on conditioned responding. Neuropsychopharmacology, 24(6), 680690.Google Scholar
Crombag, H. S., Badiani, A., Maren, S. & Robinson, T. E. (2000). The role of contextual versus discrete drug-associated cues in promoting the induction of psychomotor sensitization to intravenous amphetamine. Behavioural Brain Research, 116(1), 122.Google Scholar
Cromwell, H. C. & Berridge, K. C. (1993). Where does damage lead to enhanced food aversion: the ventral pallidum/substantia innominata or lateral hypothalamus? Brain Research, 624(1–2), 110.Google Scholar
Cruz, F. C., Quadros, I. M., Hogenelst, K., Planeta, C. S. & Miczek, K. A. (2011). Social defeat stress in rats: escalation of cocaine and “speedball” binge self-administration, but not heroin. Psychopharmacology, 215(1), 165175.Google Scholar
Cunningham, S. T. & Kelley, A. E. (1992). Opiate infusion into nucleus accumbens: contrasting effects on motor activity and responding for conditioned reward. Brain Research, 588(1), 104114.Google Scholar
Dai, X., Brendl, C. M. & Ariely, D. 2010. Wanting, liking, and preference construction. Emotion, 10(3), 324334.Google Scholar
Davis, C. & Carter, J. C. (2009). Compulsive overeating as an addiction disorder. A review of theory and evidence. Appetite, 53(1), 18.Google Scholar
Delamater, R. J. & McNamara, J. R. (1986). The social impact of assertiveness. Research findings and clinical implications. Behavior Modification, 10(2), 139158.Google Scholar
Delpont, B., Lhommée, E., Klinger, H., et al. (2017). Psychostimulant effect of dopaminergic treatment and addictions in Parkinson’s disease. Movement Disorders, 32(11), 15661573.Google Scholar
Deluchi, M., Costa, F. S., Friedman, R., Gonçalves, R. & Bizarro, L. (2017). Attentional bias to unhealthy food in individuals with severe obesity and binge eating. Appetite, 108, 471476.Google Scholar
Derevensky, J. L. (2020). The prevention and treatment of gambling disorders: some art, some science. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 241253.Google Scholar
DiFeliceantonio, A. G. & Berridge, K. C. (2012). Which cue to “want”? Opioid stimulation of central amygdala makes goal-trackers show stronger goal-tracking, just as sign-trackers show stronger sign-tracking. Behavioural Brain Research, 230(2), 399408.Google Scholar
Doran, N. (2014). Sex differences in smoking cue reactivity: craving, negative affect, and preference for immediate smoking. The American Journal on Addictions, 23(3), 211217.Google Scholar
Evans, A. H. & Lees, A. J. (2004). Dopamine dysregulation syndrome in Parkinson’s disease. Current Opinion in Neurology, 17(4), 393398.Google Scholar
Evans, A. H., Pavese, N., Lawrence, A. D., et al. (2006). Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Annals of Neurology, 59(5), 852858.Google Scholar
Fattore, L., Melis, M., Fadda, P. & Fratta, W. (2014). Sex differences in addictive disorders. Frontiers in Neuroendocrinology, 35(3), 272284.Google Scholar
Filbey, F. M., Schacht, J. P., Myers, U. S., Chavez, R. S. & Hutchison, K. E. (2009). Marijuana craving in the brain. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 1301613021.Google Scholar
Finlayson, G. (2017). Food addiction and obesity: unnecessary medicalization of hedonic overeating. Nature Reviews Endocrinology, 13(8), 493498.Google Scholar
Fiorillo, C. D. (2011). Transient activation of midbrain dopamine neurons by reward risk. Neuroscience, 197, 162171.Google Scholar
Fiorillo, C. D., Tobler, P. N. & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science. 299(5614), 18981902.Google Scholar
Fischman, M. W. & Foltin, R. W. (1992). Self-administration of cocaine by humans: a laboratory perspective. Ciba Foundation Symposium, 166, 165173; discussion 173.Google Scholar
Flagel, S. B. & Robinson, T. E. (2017). Neurobiological basis of individual variation in stimulus-reward learning. Current Opinion in Behavioral Sciences, 13, 178185.Google Scholar
Flagel, S. B., Akil, H. & Robinson, T. E. (2009). Individual differences in the attribution of incentive salience to reward-related cues: Implications for addiction. Neuropharmacology, 56 (Supplement 1), 139148.Google Scholar
Flagel, S. B., Clark, J. J., Robinson, T. E., et al. (2011). A selective role for dopamine in stimulus-reward learningNature469(7328), 5357.Google Scholar
Flagel, S. B., Watson, S. J., Akil, H. & Robinson, T. E. (2008). Individual differences in the attribution of incentive salience to a reward-related cue: influence on cocaine sensitization. Behavioural Brain Research, 186(1), 4856.Google Scholar
Fox, H. C., Sofuoglu, M., Morgan, P. T., Tuit, K. L. & Sinha, R. (2013). The effects of exogenous progesterone on drug craving and stress arousal in cocaine dependence: impact of gender and cue type. Psychoneuroendocrinology, 38(9), 15321544.Google Scholar
Friedman, J. H. & Chang, V. (2013). Crack cocaine use due to dopamine agonist therapy in Parkinson disease. Neurology, 80(24), 22692270.Google Scholar
Galimov, A. & Black, D. W. (2020). Prevention and treatment of compulsive buying disorder. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 271279.Google Scholar
Garcia, J., Lasiter, P. S., Bermudez-Rattoni, F. & Deems, D. A. (1985). A general theory of aversion learning. Annals of the New York Academy of Sciences, 443, 821.Google Scholar
Garcia-Keller, C., Martinez, S. A., Esparza, M. A., et al. (2013). Cross-sensitization between cocaine and acute restraint stress is associated with sensitized dopamine but not glutamate release in the nucleus accumbens. The European Journal of Neuroscience, 37(6), 982995.Google Scholar
Gearhardt, A. N., Corbin, W. R. & Brownell, K. D. (2009). Food addiction: an examination of the diagnostic criteria for dependence. Journal of Addiction Medicine, 3(1), 17.Google Scholar
Gearhardt, A. N., Yokum, S., Orr, P. T., et al. (2011). Neural correlates of food addiction. Archives of General Psychiatry, 68(8), 808816.Google Scholar
Georgiadis, J. R. & Kringelbach, M. L. (2012). The human sexual response cycle: brain imaging evidence linking sex to other pleasures. Progress in Neurobiology, 98(1), 4981.Google Scholar
Gerstein, D., Hoffmann, J., Larison, C., et al. 1999. Gambling impact and behavior study. Report to the National Gambling Impact Study Commission. National Opinion Research Center at the University of Chicago, Chicago.Google Scholar
Giroux, I., Faucher-Gravel, A., St-Hilaire, A., Boudreault, C., Jacques, C. & Bouchard, S. (2013). Gambling exposure in virtual reality and modification of urge to gamble. Cyberpsychology, Behavior and Social Networking, 16(3), 224231.Google Scholar
Goudriaan, A. E., de Ruiter, M. B., van den Brink, W., Oosterlaan, J. & Veltman, D. J. (2010). Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study. Addiction Biology, 15(4), 491503.Google Scholar
Grill, H. J. & Norgren, R. (1978). The taste reactivity test. I. Mimetic responses to gustatory stimuli in neurologically normal rats. Brain Research, 143(2), 263279.Google Scholar
Hellberg, S. N., Levit, J. D. & Robinson, M. J. F. (2018). Under the influence: Effects of adolescent ethanol exposure and anxiety on motivation for uncertain gambling-like cues in male and female rats. Behavioural Brain Research, 337, 1733.Google Scholar
Hernandez, L. & Hoebel, B. G. (1988). Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens. Physiology & Behavior, 44(4–5), 599606.Google Scholar
Hickey, C. & Peelen, M. V. (2015). Neural mechanisms of incentive salience in naturalistic human vision. Neuron, 85(3), 512518.Google Scholar
Ho, C.-Y. & Berridge, K. C. (2013). An orexin hotspot in ventral pallidum amplifies hedonic “liking” for sweetness. Neuropsychopharmacology, 38(9), 16551664.Google Scholar
Holmes, N. M., Marchand, A. R. & Coutureau, E. (2010). Pavlovian to instrumental transfer: a neurobehavioural perspective. Neuroscience and Biobehavioral Reviews, 34(8), 12771295.Google Scholar
Holst, van, R. J., Sescousse, G., Janssen, L. K., et al. (2018). Increased striatal dopamine synthesis capacity in gambling addiction. Biological Psychiatry, 83(12), 10361043.Google Scholar
Holst, van, R. J., Veltman, D. J., van den Brink, W. & Goudriaan, A. E. (2012). Right on cue? Striatal reactivity in problem gamblers. Biological Psychiatry, 72(10), e23–24.Google Scholar
Horger, B. A., Giles, M. K. & Schenk, S. (1992). Preexposure to amphetamine and nicotine predisposes rats to self-administer a low dose of cocaine. Psychopharmacology, 107(2–3), 271276.Google Scholar
Hu, M. & Becker, J. B. (2008). Acquisition of cocaine self-administration in ovariectomized female rats: effect of estradiol dose or chronic estradiol administration. Drug and Alcohol Dependence, 94(1–3), 5662.Google Scholar
Ihssen, N., Cox, W. M., Wiggett, A., Fadardi, J. S. & Linden, D. E. J. (2011). Differentiating heavy from light drinkers by neural responses to visual alcohol cues and other motivational stimuli. Cerebral Cortex, 21(6), 14081415.Google Scholar
Itoga, C. A., Berridge, K. C. & Aldridge, J. W. (2016). Ventral pallidal coding of a learned taste aversion. Behavioural Brain Research, 300, 175183.Google Scholar
Joutsa, J., Johansson, J., Niemelä, S., et al. (2012). Mesolimbic dopamine release is linked to symptom severity in pathological gambling. Neuroimage, 60(4), 19921999.Google Scholar
Joyner, M. A., Kim, S. & Gearhardt, A. N. (2017). Investigating an incentive-sensitization model of eating behavior: Impact of a simulated fast-food laboratory. Clinical Psychological Science, p. 216770261771882.Google Scholar
Kai, N., Nishizawa, K., Tsutsui, Y., Ueda, S. & Kobayashi, K. (2015). Differential roles of dopamine D1 and D2 receptor-containing neurons of the nucleus accumbens shell in behavioral sensitization. Journal of Neurochemistry, 135(6), 12321241.Google Scholar
Kalivas, P. W. & Duffy, P. (1990). Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse, 5(1), 4858.Google Scholar
Kalivas, P. W. & Stewart, J. (1991). Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Research. Brain Research Reviews, 16(3), 223244.Google Scholar
Kalivas, P. W., Volkow, N. & Seamans, J. (2005). Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron, 45(5), 647650.Google Scholar
Kaplan, J. M., Roitman, M. & Grill, H. J. (2000). Food deprivation does not potentiate glucose taste reactivity responses of chronic decerebrate rats. Brain Research, 870(1–2), 102108.Google Scholar
Kawa, A. B., Bentzley, B. S. & Robinson, T. E. (2016). Less is more: prolonged intermittent access cocaine self-administration produces incentive-sensitization and addiction-like behavior. Psychopharmacology, 233(19–20), 35873602.Google Scholar
Kelley, A. E. & Berridge, K. C. (2002). The neuroscience of natural rewards: relevance to addictive drugs. The Journal of Neuroscience, 22(9), 33063311.Google Scholar
Keyes, K. M., Martins, S. S., Blanco, C. & Hasin, D. S. (2010). Telescoping and gender differences in alcohol dependence: new evidence from two national surveys. The American Journal of Psychiatry, 167(8), 969976.Google Scholar
Koob, G. F. & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology, 35(1), 217238.Google Scholar
Kühn, S. & Gallinat, J. (2011). Common biology of craving across legal and illegal drugs – a quantitative meta-analysis of cue-reactivity brain response. The European Journal of Neuroscience, 33(7), 13181326.Google Scholar
LeBlanc, K. H., Ostlund, S. B. & Maidment, N. T. (2012). Pavlovian-to-instrumental transfer in cocaine seeking rats. Behavioral Neuroscience, 126(5), 681689.Google Scholar
Leeman, R. F. & Potenza, M. N. (2012). Similarities and differences between pathological gambling and substance use disorders: a focus on impulsivity and compulsivity. Psychopharmacology, 219(2), 469490.Google Scholar
Lemmens, S. G. T., Schoffelen, P. F. M., Wouters, L., et al. (2009). Eating what you like induces a stronger decrease of “wanting” to eat. Physiology & Behavior, 98(3), 318325.Google Scholar
Leyton, M. & Vezina, P. (2013). Striatal ups and downs: their roles in vulnerability to addictions in humans. Neuroscience and Biobehavioral Reviews, 37(9 Pt A), 19992014.Google Scholar
Leyton, M., Boileau, I., Benkelfat, C., et al. (2002). Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: a PET/[11C]raclopride study in healthy men. Neuropsychopharmacology, 27(6), 10271035.Google Scholar
Leyton, M., Casey, K. F., Delaney, J. S., Kolivakis, T. & Benkelfat, C. (2005). Cocaine craving, euphoria, and self-administration: a preliminary study of the effect of catecholamine precursor depletion. Behavioral Neuroscience, 119(6), 16191627.Google Scholar
Leyton, M., aan het Rot, M., Booij, L., et al. (2007). Mood-elevating effects of d-amphetamine and incentive salience: the effect of acute dopamine precursor depletion. Journal of Psychiatry & Neuroscience, 32(2), 129136.Google Scholar
Leyton, M., Young, S. N., Blier, P., et al. (2000). Acute tyrosine depletion and alcohol ingestion in healthy women. Alcoholism, Clinical and Experimental Research, 24(4), 459464.Google Scholar
Li, P., Wu, P., Xin, X., et al. (2015). Incubation of alcohol craving during abstinence in patients with alcohol dependence. Addiction Biology, 20(3), 513522.Google Scholar
Li, X., Zeric, T., Kambhampati, S., Bossert, J. M. & Shaham, Y. (2015). The central amygdala nucleus is critical for incubation of methamphetamine craving. Neuropsychopharmacology, 40(5), 12971306.Google Scholar
Litt, A., Khan, U. & Shiv, B. (2010). Lusting while loathing: parallel counterdriving of wanting and liking. Psychological Science, 21(1), 118125.Google Scholar
Lovic, V., Saunders, B. T., Yager, L. M. & Robinson, T. E. (2011). Rats prone to attribute incentive salience to reward cues are also prone to impulsive action. Behavioural Brain Research, 223(2), 255261.Google Scholar
Lu, L., Hope, B. T., Dempsey, J., et al. (2005). Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nature Neuroscience, 8(2), 212219.Google Scholar
Lu, L., Uejima, J. L., Gray, S. M., Bossert, J .M. & Shaham, Y. (2007). Systemic and central amygdala injections of the mGluR(2/3) agonist LY379268 attenuate the expression of incubation of cocaine craving. Biological Psychiatry, 61(5), 591598.Google Scholar
Mahler, S. V. & Berridge, K. C. (2009). Which cue to “want?” Central amygdala opioid activation enhances and focuses incentive salience on a prepotent reward cue. The Journal of Neuroscience, 29(20), 65006513.Google Scholar
Mahler, S. V. & Berridge, K. C. (2012). What and when to “want?” Amygdala-based focusing of incentive salience upon sugar and sex. Psychopharmacology, 221(3), 407426.Google Scholar
Mascia, P., Neugebauer, N. M., Brown, J., et al. (2019). Exposure to conditions of uncertainty promotes the pursuit of amphetamine. Neuropsychopharmacology, 44(2), 274280.Google Scholar
McBride, W. J. (2002). Central nucleus of the amygdala and the effects of alcohol and alcohol-drinking behavior in rodents. Pharmacology, Biochemistry, and Behavior, 71(3), 509515.Google Scholar
Metrik, J., Aston, E. R., Kahler, C. W., et al. (2016). Cue-elicited increases in incentive salience for marijuana: craving, demand, and attentional bias. Drug and Alcohol Dependence, 167, 8288.Google Scholar
Mick, I., Myers, J., Stokes, P. R. A., et al. (2014). Amphetamine induced endogenous opioid release in the human brain detected with [11C]carfentanil PET: replication in an independent cohort. The International Journal of Neuropsychopharmacology, 17(12), 20692074.Google Scholar
Miller, K. A. & Mays, D. (2020). Tanning as an addiction: The state of the research and implications for intervention. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 362372.Google Scholar
Munafò, M. R., Zetteler, J. I. & Clark, T. G. (2007). Personality and smoking status: a meta-analysis. Nicotine & Tobacco Research, 9(3), 405413.Google Scholar
Myrick, H., Anton, R. F., Li, X., et al. (2004). Differential brain activity in alcoholics and social drinkers to alcohol cues: relationship to craving. Neuropsychopharmacology, 29(2), 393402.Google Scholar
Nowak, D. E. & Aloe, A. M. (2014). The prevalence of pathological gambling among college students: a meta-analytic synthesis, 2005–2013. Journal of Gambling Studies, 30(4), 819843.Google Scholar
O’Daly, O. G., Joyce, D., Tracy, D. K., et al. (2014). Amphetamine sensitization alters reward processing in the human striatum and amygdala. PLos ONE, 9(4), e93955.Google Scholar
Oginsky, M. F., Goforth, P. B., Nobile, C. W., Lopez-Santiago, L. F. & Ferrario, C. R. (2016a). Eating “junk-food” produces rapid and long-lasting increases in nac cp-ampa receptors: implications for enhanced cue-induced motivation and food addiction. Neuropsychopharmacology, 41(13), 29772986.Google Scholar
Oginsky, M. F., Maust, J. D., Corthell, J. T. & Ferrario, C. R. (2016b). Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not in adolescent rats susceptible to diet-induced obesity. Psychopharmacology, 233(5), 773784.Google Scholar
Ondo, W. G. & Lai, D. (2008). Predictors of impulsivity and reward seeking behavior with dopamine agonists. Parkinsonism & Related Disorders, 14(1), 2832.Google Scholar
Ostlund, S. B., LeBlanc, K. H., Kosheleff, A. R., Wassum, K. M. & Maidment, N. T. (2014). Phasic mesolimbic dopamine signaling encodes the facilitation of incentive motivation produced by repeated cocaine exposure. Neuropsychopharmacology, 39(10), 24412449.Google Scholar
O’Sullivan, S. S., Wu, K., Politis, M., et al. (2011). Cue-induced striatal dopamine release in Parkinson’s disease-associated impulsive-compulsive behaviours. Brain: A Journal of Neurology, 134(Part 4), 969978.Google Scholar
Park, C.-B., Park, S. M., Gwak, A. R., et al. (2015). The effect of repeated exposure to virtual gambling cues on the urge to gamble. Addictive Behaviors, 41, 6164.Google Scholar
Parker, L. A. (2014). Conditioned flavor avoidance and conditioned gaping: rat models of conditioned nausea. European Journal of Pharmacology, 722, 122133.Google Scholar
Pascoli, V., Turiault, M. & Lüscher, C. (2011). Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature, 481(7379), 7175.Google Scholar
Paulson, P. E. & Robinson, T. E. (1995). Amphetamine-induced time-dependent sensitization of dopamine neurotransmission in the dorsal and ventral striatum: a microdialysis study in behaving rats. Synapse, 19(1), 5665.Google Scholar
Paulson, P. E., Camp, D. M. & Robinson, T. E. (1991). Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology, 103(4), 480492.Google Scholar
Peciña, S. & Berridge, K. C. (2000). Opioid site in nucleus accumbens shell mediates eating and hedonic “liking” for food: map based on microinjection Fos plumes. Brain Research, 863(1–2), 7186.Google Scholar
Peciña, S. & Berridge, K. C. (2005). Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? The Journal of Neuroscience, 25(50), 1177711786.Google Scholar
Peciña, S. & Berridge, K. C. (2013). Dopamine or opioid stimulation of nucleus accumbens similarly amplify cue-triggered “wanting” for reward: entire core and medial shell mapped as substrates for PIT enhancement. The European Journal of Neuroscience, 37(9), 15291540.Google Scholar
Peciña, S., Cagniard, B., Berridge, K. C., Aldridge, J. W. & Zhuang, X. (2003). Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. The Journal of Neuroscience, 23(28), 93959402.Google Scholar
Petit, A., Lejoyeux, M., Reynaud, M. & Karila, L. (2014). Excessive indoor tanning as a behavioral addiction: a literature review. Current Pharmaceutical Design, 20(25), 40704075.Google Scholar
Petry, N. M. & Blanco, C. (2013). National gambling experiences in the United States: will history repeat itself? Addiction, 108(6), 10321037.Google Scholar
Pfaus, J. G., Damsma, G., Nomikos, G. G., et al. (1990). Sexual behavior enhances central dopamine transmission in the male rat. Brain Research, 530(2), 345348.Google Scholar
Piazza, P. V., Deminière, J. M., Le Moal, M. & Simon, H. (1989). Factors that predict individual vulnerability to amphetamine self-administration. Science, 245(4925), 15111513.Google Scholar
Piazza, P. V., Deminiere, J. M., Le Moal, M. & Simon, H. (1990). Stress- and pharmacologically-induced behavioral sensitization increases vulnerability to acquisition of amphetamine self-administration. Brain Research, 514(1), 2226.Google Scholar
Piazza, P. V., Deroche-Gamonent, V., Rouge-Pont, F. & Le Moal, M. (2000). Vertical shifts in self-administration dose-response functions predict a drug-vulnerable phenotype predisposed to addiction. The Journal of Neuroscience, 20(11), 42264232.Google Scholar
Pickens, C. L., Airavaara, M., Theberge, F., et al. (2011). Neurobiology of the incubation of drug craving. Trends in Neurosciences, 34(8), 411420.Google Scholar
Politis, M., Loane, C., Wu, K., et al. (2013). Neural response to visual sexual cues in dopamine treatment-linked hypersexuality in Parkinson’s disease. Brain: A Journal of Neurology, 136(Part 2), 400411.Google Scholar
Popien, A., Frayn, M., von Ranson, K. M. & Sears, C. R. (2015). Eye gaze tracking reveals heightened attention to food in adults with binge eating when viewing images of real-world scenes. Appetite, 91, 233240.Google Scholar
Potenza, M. N. (2008). The neurobiology of pathological gambling and drug addiction: an overview and new findings. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1507), 31813189.Google Scholar
Prisciandaro, J. J., Joseph, J. E., Myrick, H., et al. (2014). The relationship between years of cocaine use and brain activation to cocaine and response inhibition cues. Addiction, 109(12), 20622070.Google Scholar
Robbins, T. W. (1976). Relationship between reward-enhancing and stereotypical effects of psychomotor stimulant drugs. Nature, 264(5581), 5759.Google Scholar
Robinson, M. J. F. & Berridge, K. C. (2013). Instant transformation of learned repulsion into motivational “wanting.” Current Biology, 23(4), 282289.Google Scholar
Robinson, M. J. F., Anselme, P., Fischer, A. M. & Berridge, K. C. (2014a). Initial uncertainty in Pavlovian reward prediction persistently elevates incentive salience and extends sign-tracking to normally unattractive cues. Behavioural Brain Research, 266, 119130.Google Scholar
Robinson, M. J. F., Anselme, P., Suchomel, K. & Berridge, K. C. (2015a). Amphetamine-induced sensitization and reward uncertainty similarly enhance incentive salience for conditioned cues. Behavioral Neuroscience, 129(4), 502511.Google Scholar
Robinson, M. J. F., Burghardt, P. R., Patterson, C. M., et al. (2015b). Individual differences in cue-induced motivation and striatal systems in rats susceptible to diet-induced obesity. Neuropsychopharmacology, 40(9), 21132123.Google Scholar
Robinson, M. J. F., Warlow, S. M. & Berridge, K. C. (2014b). Optogenetic excitation of central amygdala amplifies and narrows incentive motivation to pursue one reward above another. The Journal of Neuroscience, 34(50), 1656716580.Google Scholar
Robinson, T. E. & Becker, J. B. (1986). Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Research, 396(2), 157198.Google Scholar
Robinson, T. E. & Berridge, K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Research. Brain Research Reviews, 18(3), 247291.Google Scholar
Robinson, T. E. & Berridge, K. C. (2008). Review. The incentive sensitization theory of addiction: some current issues. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1507), 31373146.Google Scholar
Robinson, T. E. & Flagel, S. B. (2009). Dissociating the predictive and incentive motivational properties of reward-related cues through the study of individual differences. Biological Psychiatry, 65(10), 869873.Google Scholar
Robinson, T. E. & Kolb, B. (2004). Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology, 47 (Supplement 1), 3346.Google Scholar
Rømer Thomsen, K., Fjorback, L. O., Møller, A. & Lou, H. C. (2014). Applying incentive sensitization models to behavioral addiction. Neuroscience and Biobehavioral Reviews, 45, 343349.Google Scholar
Rosse, R. B., Fay-McCarthy, M., Collins, J. P., Alim, T. N. & Deutsch, S. I. (1994). The relationship between cocaine-induced paranoia and compulsive foraging: a preliminary report. Addiction, 89(9), 10971104.Google Scholar
Rosse, R. B., Fay-McCarthy, M., Collins, J. P., et al. (1993). Transient compulsive foraging behavior associated with crack cocaine use. The American Journal of Psychiatry, 150(1), 155156.Google Scholar
Rougé-Pont, F., Piazza, P. V., Kharouby, M., Le Moal, M. & Simon, H. (1993). Higher and longer stress-induced increase in dopamine concentrations in the nucleus accumbens of animals predisposed to amphetamine self-administration. A microdialysis study. Brain Research, 602(1), 169174.Google Scholar
Rozin, E. (2000). The flavor principle: comment on use of the concept by Pliner and Stallberg-White (2000). Appetite, 34(2), 224; discussion 225–226.Google Scholar
Saal, D., Dong, Y., Bonci, A. & Malenka, R. C. (2003). Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron, 37(4), 577582.Google Scholar
Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A. & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257262.Google Scholar
Saunders, B. T. & Robinson, T. E. (2010). A cocaine cue acts as an incentive stimulus in some but not others: implications for addiction. Biological Psychiatry, 67(8), 730736.Google Scholar
Saunders, B. T. & Robinson, T. E. (2011). Individual variation in the motivational properties of cocaine. Neuropsychopharmacology, 36(8), 16681676.Google Scholar
Schlaepfer, T. E., Cohen, M. X., Frick, C., et al. (2008). Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology, 33(2), 368377.Google Scholar
Schmidt, R., Lüthold, P., Kittel, R., Tetzlaff, A. & Hilbert, A. (2016). Visual attentional bias for food in adolescents with binge-eating disorder. Journal of Psychiatric Research, 80, 2229.Google Scholar
Schmitz, F., Naumann, E., Trentowska, M. & Svaldi, J. (2014). Attentional bias for food cues in binge eating disorder. Appetite, 80, 7080.Google Scholar
Shin, A. C., Pistell, P. J., Phifer, C. B. and Berthoud, H. R. (2010). Reversible suppression of food reward behavior by chronic mu-opioid receptor antagonism in the nucleus accumbens. Neuroscience, 170(2), 580588.Google Scholar
Sienkiewicz-Jarosz, H., Scinska, A., Swiecicki, L., et al. (2013). Sweet liking in patients with Parkinson’s disease. Journal of the Neurological Sciences, 329(1–2), 1722.Google Scholar
Singer, B. F., Scott-Railton, J. & Vezina, P. (2012). Unpredictable saccharin reinforcement enhances locomotor responding to amphetamine. Behavioural Brain Research, 226(1), 340344.Google Scholar
Singer, B. F., Tanabe, L. M., Gorny, G., et al. (2009). Amphetamine-induced changes in dendritic morphology in rat forebrain correspond to associative drug conditioning rather than nonassociative drug sensitization. Biological Psychiatry, 65(10), 835840.Google Scholar
Sinha, R. (2013). The clinical neurobiology of drug craving. Current Opinion in Neurobiology, 23(4), 649654.Google Scholar
Small, D. M., Zatorre, R. J., Dagher, A., Evans, A. C. & Jones-Gotman, M. (2001). Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain: A Journal of Neurology, 124(Pt 9), 17201733.Google Scholar
Smith, K. S. & Berridge, K. C. (2007). Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. The Journal of Neuroscience, 27(7), 15941605.Google Scholar
Smith, K. S. & Berridge, K. C. (2005). The ventral pallidum and hedonic reward: neurochemical maps of sucrose “liking” and food intake. The Journal of Neuroscience, 25(38), 86378649.Google Scholar
Smith, K. S., Berridge, K. C. & Aldridge, J. W. (2011). Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proceedings of the National Academy of Sciences of the United States of America, 108(27), E255–264.Google Scholar
Söderpalm, A. H. & Berridge, K. C. (2000). The hedonic impact and intake of food are increased by midazolam microinjection in the parabrachial nucleus. Brain Research, 877(2), 288297.Google Scholar
Sperling, I., Baldofski, S., Lüthold, P. & Hilbert, A. (2017). Cognitive food processing in binge-eating disorder: an eye-tracking study. Nutrients, 9(8), 903.Google Scholar
Steiner, J. E. (1973). The gustofacial response: observation on normal and anencephalic newborn infants. Symposium on Oral Sensation and Perception, 4, 254278.Google Scholar
Steiner, J. E., Glaser, D., Hawilo, M. E. & Berridge, K. C. (2001). Comparative expression of hedonic impact: affective reactions to taste by human infants and other primates. Neuroscience and Biobehavioral Reviews, 25(1), 5374.Google Scholar
Steketee, J. D. & Kalivas, P. W. (2011). Drug wanting: behavioral sensitization and relapse to drug-seeking behavior. Pharmacological Reviews, 63(2), 348365.Google Scholar
Stuber, G. D., Hopf, F. W., Hahn, J., et al. (2008). Voluntary ethanol intake enhances excitatory synaptic strength in the ventral tegmental area. Alcoholism, Clinical and Experimental Research, 32(10), 17141720.Google Scholar
Sussman, S. & Bolshakova, M. (2020). Treatment of alcohol, tobacco, and other drug (ATOD) misuse. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 215229.Google Scholar
Sussman, S., Rozgonjuk, D. & van den Eijnden, R. J. J. M. (2017). Substance and behavioral addictions may share a similar underlying process of dysregulation. Addiction, 112(10), 17171718.Google Scholar
Tapert, S. F., Cheung, E. H., Brown, G. G., et al. (2003). Neural response to alcohol stimuli in adolescents with alcohol use disorder. Archives of General Psychiatry, 60(7), 727735.Google Scholar
Terraneo, A., Leggio, L., Saladini, M., et al. (2016). Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: A pilot study. European Neuropsychopharmacology, 26(1), 3744.Google Scholar
Thomas, M. J., Kalivas, P. W. & Shaham, Y. (2008). Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. British Journal of Pharmacology, 154(2), 327342.Google Scholar
Tindell, A. J., Berridge, K. C., Zhang, J., Peciña, S. & Aldridge, J. W. (2005). Ventral pallidal neurons code incentive motivation: amplification by mesolimbic sensitization and amphetamine. The European Journal of Neuroscience, 22(10), 26172634.Google Scholar
Tom, R. L., Ahuja, A., Maniates, H., Freeland, C. M. & Robinson, M. J. F. (2019). Optogenetic activation of the central amygdala generates addiction-like preference for reward. The European Journal of Neuroscience, 50(3), 20862100.Google Scholar
Tournier, B. B., Tsartsalis, S., Dimiziani, A., Millet, P. & Ginovart, N. (2016). Time-dependent effects of repeated THC treatment on dopamine D2/3 receptor-mediated signalling in midbrain and striatum. Behavioural Brain Research, 311, 322329.Google Scholar
Uslaner, J. M., Acerbo, M. J., Jones, S. A. & Robinson, T. E. (2006). The attribution of incentive salience to a stimulus that signals an intravenous injection of cocaine. Behavioural Brain Research, 169(2), 320324.Google Scholar
Vela, L., Martínez Castrillo, J. C., García Ruiz, P., et al. (2016). The high prevalence of impulse control behaviors in patients with early-onset Parkinson’s disease: a cross-sectional multicenter study. Journal of the Neurological Sciences, 368, 150154.Google Scholar
Venniro, M., Caprioli, D. & Shaham, Y. (2016). Animal models of drug relapse and craving: From drug priming-induced reinstatement to incubation of craving after voluntary abstinence. Progress in Brain Research, 224, 2552.Google Scholar
Versace, F., Kypriotakis, G., Basen-Engquist, K. & Schembre, S. M. (2016). Heterogeneity in brain reactivity to pleasant and food cues: evidence of sign-tracking in humans. Social Cognitive and Affective Neuroscience, 11(4), 604611.Google Scholar
Vezina, P. & Leyton, M. (2009). Conditioned cues and the expression of stimulant sensitization in animals and humans. Neuropharmacology, 56 (Supplement 1), 160168.Google Scholar
Volkow, N. D., Koob, G. F. & McLellan, A. T. (2016). Neurobiologic advances from the brain disease model of addiction. The New England Journal of Medicine, 374(4), 363371.Google Scholar
Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D. & Baler, R. (2012). Food and drug reward: overlapping circuits in human obesity and addiction. Current Topics in Behavioral Neurosciences, 11, 124.Google Scholar
Voon, V., Napier, T. C., Frank, M. J., et al. (2017). Impulse control disorders and levodopa-induced dyskinesias in Parkinson’s disease: an update. Lancet Neurology, 16(3), 238250.Google Scholar
Wachtel, S. R., Ortengren, A. & de Wit, H. (2002). The effects of acute haloperidol or risperidone on subjective responses to methamphetamine in healthy volunteers. Drug and Alcohol Dependence, 68(1), 2333.Google Scholar
Wang, G., Shi, J., Chen, N., et al. (2013). Effects of length of abstinence on decision-making and craving in methamphetamine abusers. PLos ONE, 8(7), e68791.Google Scholar
Warlow, S. M., Robinson, M. J. F. & Berridge, K. C. (2017). Optogenetic central amygdala stimulation intensifies and narrows motivation for cocaine. The Journal of Neuroscience, 37(35), 83308348.Google Scholar
Warren, N., O’Gorman, C., Lehn, A. & Siskind, D. (2017). Dopamine dysregulation syndrome in Parkinson’s disease: a systematic review of published cases. Journal of Neurology, Neurosurgery, and Psychiatry, 88(12), 10601064.Google Scholar
Washton, A. M. & Stone-Washton, N. (1993). Outpatient treatment of cocaine and crack addiction: a clinical perspective. NIDA Research Monograph, 135, 1530.Google Scholar
Winkielman, P., Berridge, K. C. & Wilbarger, J. L. (2005). Unconscious affective reactions to masked happy versus angry faces influence consumption behavior and judgments of value. Personality and Social Psychology Bulletin, 31(1), 121135.Google Scholar
Wolf, M. E. (2010). The Bermuda Triangle of cocaine-induced neuroadaptations. Trends in Neurosciences, 33(9), 391398.Google Scholar
Wyvell, C. L. & Berridge, K. C. (2000). Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. The Journal of Neuroscience, 20(21), 81228130.Google Scholar
Wyvell, C. L. & Berridge, K. C. (2001). Incentive sensitization by previous amphetamine exposure: increased cue-triggered “wanting” for sucrose reward. The Journal of Neuroscience, 21(19), 78317840.Google Scholar
Xi, Z.-X., Li, X., Li, J., et al. (2013). Blockade of dopamine D3 receptors in the nucleus accumbens and central amygdala inhibits incubation of cocaine craving in rats. Addiction Biology, 18(4), 665677.Google Scholar
Xu, X., Aron, A., Brown, L., et al. (2011). Reward and motivation systems: a brain mapping study of early-stage intense romantic love in Chinese participants. Human Brain Mapping, 32(2), 249257.Google Scholar
Zack, M., Featherstone, R. E., Mathewson, S. & Fletcher, P. J. (2014). Chronic exposure to a gambling-like schedule of reward predictive stimuli can promote sensitization to amphetamine in rats. Frontiers in Behavioral Neuroscience, 8, 36.Google Scholar
Zeeb, F. D., Li, Z., Fisher, D. C., Zack, M. H. & Fletcher, P. J. (2017). Uncertainty exposure causes behavioural sensitization and increases risky decision-making in male rats: toward modelling gambling disorder. Journal of Psychiatry & Neuroscience, 42(6), 404413.Google Scholar
Zhang, J., Berridge, K. C., Tindell, A. J., Smith, K. S. & Aldridge, J. W. (2009). A neural computational model of incentive salience. PLoS Computational Biology, 5(7), e1000437.Google Scholar
Zhou, L., Smith, R. J., Do, P. H., Aston-Jones, G. & See, R. E. (2012). Repeated orexin 1 receptor antagonism effects on cocaine seeking in rats. Neuropharmacology, 63(7), 12011207.Google Scholar

References

Africa, T. W. (1961). The opium addiction of Marcus Aurelius. Journal of the History of Ideas, 22 , 97102.Google Scholar
Ainslie, G. (2000). A research-based theory of addictive motivation. Law and Philosophy, 19, 77115.Google Scholar
Alexander, B. K. (2008). The Globalization of Addiction: A Study in the Poverty of the Spirit. Oxford: Oxford University Press.Google Scholar
Alexander, B. K., Beyerstein, B. L., Hadaway, P. F. & Coambs, R. B. (1981). Effect of early and later colony housing on oral ingestion of morphine in rats. Pharmacology Biochemistry & Behavior, 15, 571576.Google Scholar
Alexander, B. K. & Schweighofer, A .R. F. (1988). Defining “addiction.” Canadian Psychology/Psychologie Canadienne, 29, 151162.Google Scholar
American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edition). Arlington, VA: American Psychiatric Publishing.Google Scholar
Aristotle, . (2004). The Nicomachean Ethics (Penguin Classics Edition), trans. Thomson, J. A. K.. London: Penguin.Google Scholar
Atiyah, P. S. (1982). Economic duress and the overborne will. Law Quarterly Review, 98, 197.Google Scholar
St. Augustine, (2002). Confessions (Penguin Classics Edition), trans. Pine-Coffin, R. S.. London: Penguin.Google Scholar
Bird, A. & Tobin, E. (2018). Natural kinds. In Zalta, E. N. (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2018 Edition). https://plato.stanford.edu/archives/spr2018/entries/natural-kinds/Google Scholar
Bliss, R. & Trogdon, K. (2016). Metaphysical grounding. In Zalta, E. N. (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2016 Edition). https://plato.stanford.edu/archives/win2016/entries/grounding/Google Scholar
Boorse, C. (1975). On the distinction between disease and illness. Philosophy and Public Affairs, 5, 4968.Google Scholar
Boorse, C. (1977). Health as a theoretical concept. Philosophy of Science, 44, 542573.Google Scholar
Bowers, J. M. (1990). Augustine as addict: Sex and texts in the Confessions. Exemplaria, 2, 403448.Google Scholar
Boyd, R. (1991). Realism, anti-foundationalism and the enthusiasm for natural kinds. Philosophical Studies, 61, 127148.Google Scholar
Boyd, R. (1999). Homeostasis, species, and higher taxa. In Wilson, R. (Ed.), Species: New Interdisciplinary Essays. Cambridge: MIT Press, pp. 141186.Google Scholar
Brandom, R. B. (2008). Between Saying and Doing: Towards and Analytic Pragmatism. Oxford: Oxford University Press.Google Scholar
Davidson, D. C. (1970). How is weakness of the will possible? In Davidson, D. C. (1980) Essays on Actions and Events. Oxford: Clarendon Press, pp. 2142.Google Scholar
Davidson, D. C. (1974). On the very idea of a conceptual scheme. Proceedings and Addresses of the American Philosophical Association, 47, 520.Google Scholar
Davidson, D. C. (1982). Paradoxes of irrationality. In Davidson, D. C. (2004) Problems of Rationality. Oxford: Clarendon Press, pp. 169187.Google Scholar
Davies, J. B. (1997). The Myth of Addiction (2nd edition). Amsterdam: Harwood Academic Publishers.Google Scholar
Dupré, J. (1995). The Disorder of Things: Metaphysical Foundations of the Disunity of Science. Cambridge MA: Harvard University Press.Google Scholar
Durrant, R., Adamson, S., Todd, F. & Sellman, D. (2009). Drug use and addiction: Evolutionary perspective. Australian and New Zealand Journal of Psychiatry, 43, 10491056.Google Scholar
Eliot, T. S. (1922). The Waste Land. New York: Horace Liveright.Google Scholar
Engelhart, H. T. (1976). Ideology and etiology. Journal of Medicine and Philosophy, 1, 256268.Google Scholar
Epstein, B. (2015). The Ant Trap: Rebuilding the Foundations of the Social Sciences. Oxford: Oxford University Press.Google Scholar
Foddy, B. (2010). Addiction and its sciences – philosophy. Addiction, 106, 2531.Google Scholar
Foddy, B. & Savulescu, J. (2010a). A liberal account of addiction. Philosophy, Psychiatry, & Psychology, 17, 122.Google Scholar
Foddy, B. & Savulescu, J. (2010b). Relating addiction to disease, disability, autonomy, and the good life. Philosophy, Psychiatry, & Psychology, 17, 3542.Google Scholar
Glackin, S. N. (2010). Tolerance and illness: The politics of medical and psychiatric classification. Journal of Medicine and Philosophy, 35, 449465.Google Scholar
Glackin, S. N. (2012). Kind-making, objectivity, and political neutrality; the case of Solastalgia. Studies in History and Philosophy of Biological and Biomedical Sciences, 43, 209218.Google Scholar
Glackin, S. N. (2019). Grounded disease: The biological and the social in medicine. The Philosophical Quarterly, 69, 258276.Google Scholar
Godfrey-Smith, P. (2011). Induction, samples, and kinds. In Campbell, J. K., O’Rourke, M. & Slater, M. H. (Eds.), Carving Nature at Its Joints: Natural Kinds in Metaphysics and Science. Cambridge: MIT Press, pp. 3352.Google Scholar
Goodman, N. (1978). Ways of Worldmaking. Indianapolis: Hackett.Google Scholar
Griffiths, M. D. (2013). Is loss of control always a consequence of addiction? Frontiers in Psychiatry, 4, 36.Google Scholar
Griffiths, P. E. (2016). Proximate and ultimate information in biology. In Pfeifer, J. & Couch, M. (Eds.), The Philosophy of Philip Kitcher. Oxford: Oxford University Press, pp. 7493.Google Scholar
Hacking, I. (1986). Making up people. In Heller, T., Sosna, M. & Wellberry, D. (Eds.), Reconstructing Individualism. Stanford CA: Stanford University Press, pp. 222236.Google Scholar
Hacking, I. (1995). The looping effects of human kinds. In Sperber, D. & Premark, A. (Eds.), Causal Cognition. Oxford: Clarendon Press, pp. 351394.Google Scholar
Hacking, I. (2004). Historical Ontology. Cambridge, MA and London: Harvard University Press.Google Scholar
Hammersley, R. & Reid, M. (2002). Why the pervasive addiction myth is still believed. Addiction Research & Theory, 10, 730.Google Scholar
Hare, R. M. (1952). The Language of Morals. Oxford: Clarendon Press.Google Scholar
Hare, R. M. (1963). Freedom and Reason. Oxford: Clarendon Press.Google Scholar
Heather, N. & Segal, G. (2013). Understanding addiction: Donald Davidson and the problem of akrasia. Addiction Research & Theory, 21, 445452.Google Scholar
Heather, N. & Segal, G. (2015). Is addiction a myth? Donald Davidson’s solution to the problem of akrasia says not. The International Journal of Alcohol and Drug Research, 4, 7783.Google Scholar
Hempel, C. G. (1994). Fundamentals of taxonomy. In Sadler, J. S., Wiggins, O. P. & Schwartz, M. A. (Eds.), Philosophical Perspectives on Psychiatric Diagnostic Classification. Baltimore: Johns Hopkins University Press, pp. 315331.Google Scholar
Holton, R. (1999). Intention and weakness of will. Journal of Philosophy, 96, 241262.Google Scholar
Holton, R. (2009). Willing, Wanting, Waiting. Oxford: Oxford University Press.Google Scholar
Husak, D. (1999). Addiction and criminal liability. Law and Philosophy, 18, 655684.Google Scholar
James, F. A. III (1987). Augustine’s sex-life change: From profligate to celibate. Christian History, 15.Google Scholar
James, W. (1890). Principles of Psychology. New York: Henry Holt.Google Scholar
Kim, J. (1984). Concepts of supervenience. Philosophy and Phenomenological Research, 45, 153176.Google Scholar
Kingma, E. (2007). What is it to be healthy? Analysis, 67, 128133.Google Scholar
Kitcher, P. (2003). Battling the undead: How (and how not) to resist genetic determinism. In In Mendel’s Mirror: Philosophical Reflections on Biology. Oxford: Oxford University Press, pp. 283300.Google Scholar
Kukla, R. (2014). Medicalization, “normal function,” and the definition of health. In Arras, J. D., Fenton, E. & Kukla, R. (Eds.), The Routledge Companion to Bioethics. London: Routledge.Google Scholar
Leibowitz, J. O. (1967). Studies in the history of alcoholism II: Acute alcoholism in Ancient Greek and Roman medicine. British Journal of Addiction to Alcohol and Other Drugs, 62, 8386.Google Scholar
Leshner, A. I. (1997). Addiction is a brain disease, and it matters. Science, 278, 4547.Google Scholar
Levy, N. (2011). Addiction, responsibility, and ego depletion. In Poland, J. & Graham, G. (Eds.), Addiction and Responsibility. Cambridge, MA: MIT Press, pp. 89111.Google Scholar
Levy, N. (2013). Addiction is not a brain disease (and it matters). Frontiers in Psychiatry, 4, 24. In Poland, J. & Graham, G. (Eds.), Addiction and Responsibility. Cambridge, MA: MIT Press, pp. 89–111.Google Scholar
McLaughlin, B. & Bennett, K. (2018). Supervenience. In Zalta, E. N. (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2018 Edition). https://plato.stanford.edu/archives/spr2018/entries/supervenience/Google Scholar
Millikan, R. G. (1989). In defense of proper functions. Philosophy of Science, 56, 288302.Google Scholar
Millikan, R. G. (2017). Beyond Concepts: Unicepts, Language, and Natural Information. Oxford: Oxford University Press.Google Scholar
Morris, T. (2011). Interview with a Philosopher: Aristotle and Wittgenstein walk into a bar – Philosophy and addiction. Huffington Post. 10/12/2011. www.huffingtonpost.com/tom-morris/philosophy-and-addiction_b_999933.htmlGoogle Scholar
Morse, S. (2000). Hooked on hype: Addiction and responsibility. Law and Philosophy, 19, 349.Google Scholar
Murphy, D. (2017). Philosophy of psychiatry. In Zalta, E. N. (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2017 Edition). https://plato.stanford.edu/archives/spr2017/entries/psychiatry/Google Scholar
Nagel, E. (1961). The Structure of Science. London: Routledge and Kegan Paul.Google Scholar
Nagel, T. (1979). Moral luck. In Mortal Questions. Cambridge: Cambridge University Press, pp. 2438.Google Scholar
Nordenfelt, L. (2018). Functions and health: Towards a praxis-oriented conception of health. Biological Theory, 13, 1016.Google Scholar
Paul, L. A. (2015a). What you can’t expect when you’re expecting. Res Philosophica, 92, 123.Google Scholar
Paul, L. A. (2015b). Transformative Experience. Oxford: Oxford University Press.Google Scholar
Pickard, H. (2009) Mental illness is indeed a myth. In Bortolotti, L. & Broome, M. (Eds.), Psychiatry as Cognitive Science: Philosophical Perspectives. Oxford: Oxford University Press, pp. 83101.Google Scholar
Pickard, H. (2012). The purpose in chronic addiction. AJOB Neuroscience, 3, 4049.Google Scholar
Pickard, H. (2016). Addiction. In Timpe, K., Griffith, M & Levy, N. (Eds.), The Routledge Companion to Free Will. London: Routledge, pp. 454468.Google Scholar
Pickard, H. (2017). Responsibility without blame for addiction. Neuroethics, 10, 169180.Google Scholar
Pickard, H. (2018). The puzzle of addiction. In Pickard, H. & Ahmed, S. H. (Eds.), The Routledge Handbook of Philosophy and Science of Addiction. London: Routledge.Google Scholar
Pickard, H. & Pearce, S. (2014). Addiction in context: Philosophical lessons from a personality disorder clinic. In Levy, N. (Ed.), Addiction and Self-Control: Perspectives from Philosophy, Psychology, and Neuroscience. Oxford: Oxford University Press, pp. 165189.Google Scholar
Plato, (2003). The Republic (Penguin Classics Edition), trans. Lee, H. D. P.. London: Penguin.Google Scholar
Plato, (2005). Phaedrus (Penguin Classics Edition), trans. Rowe, C.. London: Penguin.Google Scholar
Plato, (2009). Protagoras (Oxford World’s Classics), trans. Taylor, C .C. W.. Oxford: Oxford University Press.Google Scholar
Pober, J. M. (2013). Addiction is not a natural kind. Frontiers in Psychiatry, 4, 123.Google Scholar
Quine, W. V. (1969). Natural kinds. Ontological Relativity & Other Essays. New York: Columbia Press.Google Scholar
Radoilska, L. (2013). Addiction and Weakness of Will. Oxford: Oxford University Press.Google Scholar
Ross, D. Sharp, C., Vuchinich, R. E. & Spurrett, D. E. (2012). Midbrain Mutiny: The Picoeconomics and Neuroeconomics of Disordered Gambling: Economic Theory and Cognitive Science. Cambridge, MA: MIT Press.Google Scholar
Schaffer, J. (2009). On what grounds what. In Manley, D., Chalmers, D. J. & Wasserman, R. (Eds.), Metametaphysics: New Essays on the Foundations of Ontology. Oxford: Oxford University Press, pp. 347383.Google Scholar
Segal, G. (2013). Alcoholism, disease, and insanity. Philosophy, Psychiatry, & Psychology, 20, 297315.Google Scholar
Sinnott-Armstrong, W. & Pickard, H. (2013). What is addiction? In Fulford, K. W. M., Davies, M., Gipps, R. T., Graham, G., Sadler, J. Z., Stanghellini, G. & Thornton, T. (Eds.), The Oxford Handbook of Philosophy and Psychiatry. Oxford: Oxford University Press, pp. 851864.Google Scholar
Soble, A. G. (2002). Correcting some misconceptions about St. Augustine’s sex life. Journal of the History of Sexuality, 11, 545569.Google Scholar
Sripada, C. S. (2018), Addiction and fallibility. Journal of Philosophy, 115, 569587.Google Scholar
Sterelny, K. & Griffiths, P. E. (1999). Sex and Death: An Introduction to Philosophy of Biology. Chicago: University of Chicago Press.Google Scholar
Stotz, K. & Griffiths, P. E. (2016). A niche for the genome. Biology and Philosophy, 31, 143157.Google Scholar
Szasz, T. (1960). The myth of mental illness. American Psychologist, 15, 113118.Google Scholar
Szasz, T. (2006). Defining disease: The Gold Standard of Disease versus the Fiat Standard of Diagnosis. The Independent Review, 10, 325336.Google Scholar
Trancas, B., Borja Santos, N. & Patrício, L.D. (2004). O Uso do Ópio na Sociedade Romana e a Dependência do Princeps Marco Aurélio. Acta Médica Portuguesa, 21, 581590.Google Scholar
Virchow, R. (1860). Cellular Pathology as based upon Physiological and Pathological Histology. London: John Churchill.Google Scholar
Vrecko, S. (2010). “Civilizing Technologies” and the control of deviance. BioSocieties, 5, 3651.Google Scholar
Wakefield, J. C. (1992). The concept of mental disorder: On the boundary between biological facts and social values. American Psychologist, 47, 373388.Google Scholar
Watson, G. (1999). Excusing addiction. Law and Philosophy, 18, 589619.Google Scholar
Williams, B. A. O. (1976). Moral luck. Proceedings of the Aristotelian Society, Supplementary volumes, 50, 115135.Google Scholar
Whitehead, A. N. (1929). Process and Reality: An Essay in Cosmology. Gifford Lectures Delivered in the University of Edinburgh During the Session 1927–1928. Cambridge: Cambridge University Press.Google Scholar
Wittgenstein, L. (1953). Philosophical Investigations. Oxford: Blackwell.Google Scholar
Yaffe, G. (2011). Lowering the bar for addicts. In Poland, J. & Graham, G. (Eds.), Addiction and Responsibility. Cambridge, MA: MIT Press, pp. 113138.Google Scholar
Yaffe, G. (2013). Are addicts akratic? Interpreting the neuroscience of reward. In Levy, N. (Ed.), Addiction and Self-Control: Perspectives from Philosophy, Psychology, and Neuroscience. Oxford: Oxford University Press, pp. 190213.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Concepts of Addiction
  • Edited by Steve Sussman, University of Southern California
  • Book: The Cambridge Handbook of Substance and Behavioral Addictions
  • Online publication: 13 July 2020
  • Chapter DOI: https://doi.org/10.1017/9781108632591.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Concepts of Addiction
  • Edited by Steve Sussman, University of Southern California
  • Book: The Cambridge Handbook of Substance and Behavioral Addictions
  • Online publication: 13 July 2020
  • Chapter DOI: https://doi.org/10.1017/9781108632591.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Concepts of Addiction
  • Edited by Steve Sussman, University of Southern California
  • Book: The Cambridge Handbook of Substance and Behavioral Addictions
  • Online publication: 13 July 2020
  • Chapter DOI: https://doi.org/10.1017/9781108632591.003
Available formats
×