Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T23:11:56.995Z Has data issue: false hasContentIssue false

19 - Measuring Hormones: Considerations for Biospecimen Collection, Assay, and Analysis

from Part V - Physiological Measures

Published online by Cambridge University Press:  12 December 2024

John E. Edlund
Affiliation:
Rochester Institute of Technology, New York
Austin Lee Nichols
Affiliation:
Central European University, Vienna
Get access

Summary

This chapter presents a broad overview of the measurement of hormones, spanning from their collection in different biospecimens and the assay of hormones across laboratory strategies to a brief overview of statistical treatment and analysis that extracts the hormone of interest. We organize each section into a description of measurement tools followed by an agnostic analysis of the tools for their strengths, weaknesses, prospects, and pitfalls. We do not view any single approach as “best” or “optimal.” This view is commensurate with the production and cellular conversion of hormones – adaptive physiological processes that are not “best” or “optimal” but rather constantly changing biobehavioral markers that shift according to the demands of the environment. Measuring the hormone is just the beginning of exploring the multifaceted ways that hormones can inform health, development, morbidity, and mortality.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aakvaag, A., & Opstad, P. K. (2019). Hormonal response to prolonged physical strain, effect of calorific deficiency and sleep deprivation. In Fotherby, K. & Pal, S. B. (eds.), Exercise Endocrinology (pp. 2546). De Gruyter.Google Scholar
Altan Ferhatoğlu, Z., Göktay, F., Yaşar, Ş., & Aytekin, S. (2018). Morphology, growth rate, and thickness of the nail plate during the pregnancy. International Journal of Dermatology, 57(10), 12531258.CrossRefGoogle ScholarPubMed
Ammenti, A., Alberici, I., Brugnara, M., Chimenz, R., Guarino, S., La Manna, A., et al. (2020). Updated Italian recommendations for the diagnosis, treatment and follow‐up of the first febrile urinary tract infection in young children. Acta Paediatrica, 109(2), 236247). https://doi.org/10.1111/apa.14988CrossRefGoogle ScholarPubMed
Awad, H., Halawa, F., Mostafa, T., & Atta, H. (2006). Melatonin hormone profile in infertile males. International Journal of Andrology, 29(3), 409413.CrossRefGoogle ScholarPubMed
Bailey, M. T., Dowd, S. E., Galley, J. D., Hufnagle, A. R., Allen, R. G., & Lyte, M. (2011). Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain, Behavior, and Immunity, 25(3), 397407.CrossRefGoogle ScholarPubMed
Barrett, E. S., Tran, V., Thurston, S. W., Frydenberg, H., Lipson, S. F., Thune, I., & Ellison, P. T. (2015). Women who are married or living as married have higher salivary estradiol and progesterone than unmarried women. American Journal of Human Biology, 27(4), 501507.CrossRefGoogle ScholarPubMed
Behr, G. A., Patel, J. P., Coote, M., Moreira, J. C. F., Gelain, D. P., Steiner, M., & Frey, B. N. (2017). A statistical method to calculate blood contamination in the measurement of salivary hormones in healthy women. Clinical Biochemistry, 50(7–8), 436439.CrossRefGoogle ScholarPubMed
Belfiore, A., & LeRoith, D. (2018). Principles of Endocrinology and Hormone Action. Springer.CrossRefGoogle Scholar
Bernhard, A., van der Merwe, C., Ackermann, K., Martinelli, A., Neumann, I. D., & Freitag, C. M. (2018). Adolescent oxytocin response to stress and its behavioral and endocrine correlates. Hormones and Behavior, 105, 157165.CrossRefGoogle ScholarPubMed
Binz, T. M., Gaehler, F., Voegel, C. D., Hofmann, M., Baumgartner, M. R., & Kraemer, T. (2018). Systematic investigations of endogenous cortisol and cortisone in nails by LC-MS/MS and correlation to hair. Analytical and Bioanalytical Chemistry, 410(20), 48954903.CrossRefGoogle ScholarPubMed
Boumba, V. A., Ziavrou, K. S., & Vougiouklakis, T. (2006). Hair as a biological indicator of drug use, drug abuse or chronic exposure to environmental toxicants. International Journal of Toxicology, 25(3), 143163.CrossRefGoogle ScholarPubMed
Carré, J. M., & Archer, J. (2018). Testosterone and human behavior: The role of individual and contextual variables. Current Opinion in Psychology, 19, 149153.CrossRefGoogle ScholarPubMed
Casto, K. V., & Edwards, D. A. (2016). Before, during, and after: How phases of competition differentially affect testosterone, cortisol, and estradiol levels in women athletes. Adaptive Human Behavior and Physiology, 2(1), 1125.CrossRefGoogle Scholar
Coderch, L., Oliver, M. A., Carrer, V., Manich, A. M., & Martí, M. (2019). External lipid function in ethnic hairs. Journal of Cosmetic Dermatology, 18(6), 19121920.CrossRefGoogle ScholarPubMed
Cohen, S., Schwartz, J. E., Epel, E., Kirschbaum, C., Sidney, S., & Seeman, T. (2006). Socioeconomic status, race, and diurnal cortisol decline in the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Psychosomatic Medicine, 68(1), 4150.CrossRefGoogle ScholarPubMed
Cox, K. L., Devanarayan, V., Kriauciunas, A., Manetta, J., Montrose, C., & Sittampalam, S. (2019). Immunoassay methods. In Markossion, S., Grossman, A., Brimacombe, K. et al. (eds.), Assay Guidance Manual [e-book]. Eli Lily. www.ncbi.nlm.nih.gov/books/NBK92434Google Scholar
Crimmins, E. M., Zhang, Y. S., Kim, J. K., Frochen, S., Kang, H., Shim, H., et al. (2020). Dried blood spots: Effects of less than optimal collection, shipping time, heat, and humidity. American Journal of Human Biology, 32(5), e23390.CrossRefGoogle ScholarPubMed
Dai, X., Thavundayil, J., Santella, S., & Gianoulakis, C. (2007). Response of the HPA-axis to alcohol and stress as a function of alcohol dependence and family history of alcoholism. Psychoneuroendocrinology, 32(3), 293305.CrossRefGoogle ScholarPubMed
Dalirirad, S., & Steckl, A. J. (2019). Aptamer-based lateral flow assay for point of care cortisol detection in sweat. Sensors and Actuators B: Chemical, 283, 7986.CrossRefGoogle Scholar
De Dreu, C. K. W., Greer, L. L., Van Kleef, G. A., Shalvi, S., & Handgraaf, M. J. J. (2011). Oxytocin promotes human ethnocentrism. Proceedings of the National Academy of Sciences, 108(4), 12621266.CrossRefGoogle ScholarPubMed
Dmitrieva, N. O., Almeida, D. M., Dmitrieva, J., Loken, E., & Pieper, C. F. (2013). A day-centered approach to modeling cortisol: Diurnal cortisol profiles and their associations among U.S. adults. Psychoneuroendocrinology, 38(10), 23542365.CrossRefGoogle Scholar
Dubey, A., Sonker, A., & Agarwal, P. (2019). A comparison of lancets and evaluation of various manoeuvres in reducing finger prick pain during pre-donation haemoglobin estimation. Transfusion Medicine, 29(4), 279283.CrossRefGoogle ScholarPubMed
Edwards, S., Evans, P., Hucklebridge, F., & Clow, A. (2001). Association between time of awakening and diurnal cortisol secretory activity. Psychoneuroendocrinology, 26(6), 613622.CrossRefGoogle ScholarPubMed
Engert, V., Ragsdale, A. M., & Singer, T. (2018). Cortisol stress resonance in the laboratory is associated with inter-couple diurnal cortisol covariation in daily life. Hormones and Behavior, 98, 183190.CrossRefGoogle ScholarPubMed
Engvall, E., & Perlmann, P. (1972). Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes.Journal of Immunology, 109(1), 129135.CrossRefGoogle ScholarPubMed
Eriksson, H., & Gustafsson, J.-Å. (1972). Excretion of steroid hormones in adults steroids in urine from adults. Clinica Chimica Acta, 41, 7990. https://doi.org/10.1016/0009-8981(72)90498-6CrossRefGoogle ScholarPubMed
Eskander, E. F., Estefan, S. F., & Abd-Rabou, A. A. (2012). How does long term exposure to base stations and mobile phones affect human hormone profiles? Clinical Biochemistry, 45(1–2), 157161.CrossRefGoogle ScholarPubMed
Fernandes, A., Skinner, M. L., Woelfel, T., Carpenter, T., & Haggerty, K. P. (2013). Implementing self-collection of biological specimens with a diverse sample. Field Methods, 25(1). https://doi.org/10.1177/1525822X12453526CrossRefGoogle ScholarPubMed
Field, H. P. (2013). Tandem mass spectrometry in hormone measurement. Methods in Molecular Biology, 1065, 4574.CrossRefGoogle ScholarPubMed
Forghani, B., Schmidt, N. J., & Lennette, E. H. (1976). Sensitivity of a radioimmunoassay method for detection of certain viral antibodies in sera and cerebrospinal fluids. Journal of Clinical Microbiology, 4(6), 470478.CrossRefGoogle ScholarPubMed
Gan, S. D., & Patel, K. R. (2013). Enzyme immunoassay and enzyme-linked immunosorbent assay. Journal of Investigative Dermatology, 133(9), e12.CrossRefGoogle ScholarPubMed
García-Carmona, L., Martín, A., Sempionatto, J. R., Moreto, J. R., González, M. C., Wang, J., & Escarpa, A. (2019). Pacifier biosensor: Toward noninvasive saliva biomarker monitoring. Analytical Chemistry, 91(21), 1388313891.CrossRefGoogle ScholarPubMed
Gildner, T. E. (2021). Reproductive hormone measurement from minimally invasive sample types: Methodological considerations and anthropological importance. American Journal of Human Biology, 33(1), e23535.CrossRefGoogle ScholarPubMed
Gray, C. H., & Bacharach, A. L. (1961). Hormones in Blood. Academic Press.Google Scholar
Gunnar, M. R., Mangelsdorf, S., Larson, M., & Hertsgaard, L. (1989). Attachment, temperament, and adrenocortical activity in infancy: A study of psychoendocrine regulation. Developmental Psychology, 25(3), 355.CrossRefGoogle Scholar
Gustafsson, H. C., Young, A. S., Stamos, G., Wilken, S., Brito, N. H., Thomason, M. E., et al. (2021). Innovative methods for remote assessment of neurobehavioral development. Developmental Cognitive Neuroscience, 52, 101015.CrossRefGoogle ScholarPubMed
Hall, D. L., Blyler, D., Allen, D., Mishel, M. H., Crandell, J., Germino, B. B., & Porter, L. S. (2011). Predictors and patterns of participant adherence to a cortisol collection protocol. Psychoneuroendocrinology, 36(4), 540546.CrossRefGoogle ScholarPubMed
Hannon, W. H., & Therrell, B. L. Jr. (2014). Overview of the history and applications of dried blood samples. In Li, W. & Lee, M. S. (eds.), Dried Blood Spots: Applications and Techniques (pp. 115). John Wiley & Sons.Google Scholar
Harmon, A. G., Hibel, L. C., Rumyantseva, O., & Granger, D. A. (2007). Measuring salivary cortisol in studies of child development: Watch out – what goes in may not come out of saliva collection devices. Developmental Psychobiology, 49(5), 495500.CrossRefGoogle Scholar
Hendelman, T., Chaudhary, A., LeClair, A. C., van Leuven, K., Chee, J., Fink, S. L., et al. (2021). Self-collection of capillary blood using Tasso-SST devices for Anti-SARS-CoV-2 IgG antibody testing. PLOS ONE, 16(9), e0255841.CrossRefGoogle ScholarPubMed
Hill Golden, S., Sánchez, B. N., Desantis, A. S., Wu, M., Castro, C., Seeman, T. E., et al. (2014). Salivary cortisol protocol adherence and reliability by socio-demographic features: The Multi-Ethnic Study of Atherosclerosis. Psychoneuroendocrinology, 43, 3040.CrossRefGoogle ScholarPubMed
Hofman, L. F. (2001). Human saliva as a diagnostic specimen. Journal of Nutrition, 131(5), 1621S1625S.CrossRefGoogle ScholarPubMed
Hulme, E. C., & Trevethick, M. A. (2010). Ligand binding assays at equilibrium: Validation and interpretation. British Journal of Pharmacology, 161(6), 12191237.CrossRefGoogle ScholarPubMed
Hurtado de Catalfo, G. E., Ranieri-Casilla, A., Marra, F. A., de Alaniz, M. J. T., & Marra, C. A. (2007). Oxidative stress biomarkers and hormonal profile in human patients undergoing varicocelectomy. International Journal of Andrology, 30(6), 519530.CrossRefGoogle ScholarPubMed
Institute of Medicine, Board on Population Health and Public Health Practice, & Committee on Public Health Strategies to Improve Health. (2012). For the Public’s Health: Investing in a Healthier Future. National Academies Press.Google Scholar
Juster, R.-P., Raymond, C., Desrochers, A. B., Bourdon, O., Durand, N., Wan, N., et al. (2016). Sex hormones adjust “sex-specific” reactive and diurnal cortisol profiles. Psychoneuroendocrinology, 63, 282290.CrossRefGoogle ScholarPubMed
Khelifa, L., Hu, Y., Jiang, N., & Yetisen, A. K. (2022). Lateral flow assays for hormone detection. Lab on a Chip, 22(13), 24512475.CrossRefGoogle ScholarPubMed
Kirschbaum, C., Pirke, K.-M., & Hellhammer, D. H. (1993). The “Trier Social Stress Test” – a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28(1–2), 7681.CrossRefGoogle Scholar
Kivlighan, K. T., Granger, D. A., Schwartz, E. B., Nelson, V., Curran, M., & Shirtcliff, E. A. (2004). Quantifying blood leakage into the oral mucosa and its effects on the measurement of cortisol, dehydroepiandrosterone, and testosterone in saliva. Hormones and Behavior, 46(1), 3946.CrossRefGoogle ScholarPubMed
Koczula, K. M., & Gallotta, A. (2016). Lateral flow assays. Essays in Biochemistry, 60(1), 111120.Google ScholarPubMed
Kudielka, B. M., Gierens, A., Hellhammer, D. H., Wüst, S., & Schlotz, W. (2012). Salivary cortisol in ambulatory assessment – some dos, some don’ts, and some open questions. Psychosomatic Medicine, 74(4), 418431.CrossRefGoogle ScholarPubMed
Labuschagne, I., Grace, C., Rendell, P., Terrett, G., & Heinrichs, M. (2019). An introductory guide to conducting the Trier Social Stress Test. Neuroscience and Biobehavioral Reviews, 107, 686695.CrossRefGoogle ScholarPubMed
Lim, M. D. (2018). Dried blood spots for global health diagnostics and surveillance: Opportunities and challenges. American Journal of Tropical Medicine and Hygiene, 99(2), 256265.CrossRefGoogle ScholarPubMed
MacLean, E. L., Wilson, S. R., Martin, W. L., Davis, J. M., Nazarloo, H. P., & Carter, C. S. (2019). Challenges for measuring oxytocin: The blind men and the elephant?Psychoneuroendocrinology, 107, 225231.CrossRefGoogle ScholarPubMed
Magon, N., & Kalra, S. (2011). The orgasmic history of oxytocin: Love, lust, and labor. Indian Journal of Endocrinology and Metabolism, 15 (Suppl. 3), S156S161.CrossRefGoogle ScholarPubMed
Marceau, K., Rolan, E., Robertson, O. C., Wang, W., & Shirtcliff, E. A. (2021). Within-person changes of cortisol, dehydroepiandrosterone, testosterone, estradiol, and progesterone in hair across pregnancy, with comparison to a non-pregnant reference group. Comprehensive Psychoneuroendocrinology, 5, 100024.CrossRefGoogle ScholarPubMed
Marceau, K., Ruttle, P. L., Shirtcliff, E. A., Essex, M. J., & Susman, E. J. (2015). Developmental and contextual considerations for adrenal and gonadal hormone functioning during adolescence: Implications for adolescent mental health. Developmental Psychobiology, 57(6), 742768.CrossRefGoogle ScholarPubMed
Marceau, K., Shirtcliff, E. A., Hastings, P. D., Klimes-Dougan, B., Zahn-Waxler, C., Dorn, L. D., & Susman, E. J. (2014). Within-adolescent coupled changes in cortisol with DHEA and testosterone in response to three stressors during adolescence. Psychoneuroendocrinology, 41, 3345.CrossRefGoogle ScholarPubMed
Martí, M., Barba, C., Manich, A. M., Rubio, L., Alonso, C., & Coderch, L. (2016). The influence of hair lipids in ethnic hair properties. International Journal of Cosmetic Science, 38(1), 7784.CrossRefGoogle ScholarPubMed
Mechlin, B., Morrow, A. L., Maixner, W., & Girdler, S. S. (2007). The relationship of allopregnanolone immunoreactivity and HPA-axis measures to experimental pain sensitivity: Evidence for ethnic differences. Pain, 131(1–2), 142152.CrossRefGoogle ScholarPubMed
Meier, M., Lonsdorf, T. B., Lupien, S. J., Stalder, T., Laufer, S., Sicorello, M., et al. (2022). Open and reproducible science practices in psychoneuroendocrinology: Opportunities to foster scientific progress. Comprehensive Psychoneuroendocrinology, 11, 100144.CrossRefGoogle ScholarPubMed
Meijer, W. M., van IJzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2019). Challenging the challenge hypothesis on testosterone in fathers: Limited meta-analytic support. Psychoneuroendocrinology, 110, 104435.CrossRefGoogle ScholarPubMed
Menestrina Dewes, M., Cé da Silva, L., Fazenda Meireles, Y., Viana de Freitas, M., Frank Bastiani, M., Feltraco Lizot, L., et al. (2022). Evaluation of the Tasso-SST® capillary blood microsampling device for the measurement of endogenous uracil levels. Clinical Biochemistry, 107, 16.CrossRefGoogle ScholarPubMed
Mericq, M. V., & Cutler, G. B. Jr. (1998). High fluid intake increases urine free cortisol excretion in normal subjects. Journal of Clinical Endocrinology and Metabolism, 83(2), 682684.CrossRefGoogle ScholarPubMed
Meyer, J. S., & Novak, M. A. (2012). Minireview: Hair cortisol: A novel biomarker of hypothalamic-pituitary-adrenocortical activity. Endocrinology, 153(9), 41204127.CrossRefGoogle ScholarPubMed
Miočević, O., Cole, C. R., Laughlin, M. J., Buck, R. L., Slowey, P. D., & Shirtcliff, E. A. (2017). Quantitative lateral flow assays for salivary biomarker assessment: A review. Frontiers in Public Health, 5, 133.CrossRefGoogle ScholarPubMed
Mirica, A.-C., Stan, D., Chelcea, I.-C., Mihailescu, C. M., Ofiteru, A., & Bocancia-Mateescu, L.-A. (2022). Latest trends in lateral flow immunoassay (LFIA) detection labels and conjugation process. Frontiers in Bioengineering and Biotechnology, 10, 922772.CrossRefGoogle ScholarPubMed
Moody, S. N., van Dammen, L., Wang, W., Greder, K. A., Neiderhiser, J. M., Afulani, P. A., et al. (2022). Impact of hair type, hair sample weight, external hair exposures, and race on cumulative hair cortisol. Psychoneuroendocrinology, 142, 105805.CrossRefGoogle ScholarPubMed
Navazesh, M. (1993). Methods for collecting saliva. Annals of the New York Academy of Sciences, 694, 7277.CrossRefGoogle ScholarPubMed
Neu, M., Goldstein, M., Gao, D., & Laudenslager, M. L. (2007). Salivary cortisol in preterm infants: Validation of a simple method for collecting saliva for cortisol determination. Early Human Development, 83(1), 4754.CrossRefGoogle ScholarPubMed
Nguyen, N. H., Khera, R., Ohno-Machado, L., Sandborn, W. J., & Singh, S. (2021). Prevalence and effects of food insecurity and social support on financial toxicity in and healthcare use by patients with inflammatory bowel diseases. Clinical Gastroenterology and Hepatology, 19(7), 13771386.CrossRefGoogle ScholarPubMed
Ou, F.-S., Michiels, S., Shyr, Y., Adjei, A. A., & Oberg, A. L. (2021). Biomarker discovery and validation: Statistical considerations. Journal of Thoracic Oncology, 16(4), 537545.CrossRefGoogle ScholarPubMed
Padilla, G. A., Calvi, J. L., Taylor, M. K., & Granger, D. A. (2020). Saliva collection, handling, transport, and storage: Special considerations and best practices for interdisciplinary salivary bioscience research. In Granger, D. A. & Taylor, M. K. (eds.), Salivary Bioscience: Foundations of Interdisciplinary Saliva Research and Applications (pp. 2147). Springer.CrossRefGoogle Scholar
Partrick, K. (2018). Acute and repeated exposure to social stress reduces gut microbiota diversity in Syrian hamsters. Physiology & Behavior, 176(1), 100106.Google Scholar
Peng, F.-J., Palazzi, P., Mezzache, S., Bourokba, N., Soeur, J., & Appenzeller, B. M. R. (2022). Profiling steroid and thyroid hormones with hair analysis in a cohort of women aged 25 to 45 years old. European Journal of Endocrinology, 186(5), K9K15.CrossRefGoogle Scholar
Peres, J. C., Rouquette, J. L., Miočević, O., Warner, M. C., Slowey, P. D., & Shirtcliff, E. A. (2015). New techniques for augmenting saliva collection: Bacon rules and lozenge drools. Clinical Therapeutics, 37(3), 515522.CrossRefGoogle ScholarPubMed
Phan, J. M., Van Hulle, C. A., Shirtcliff, E. A., Schmidt, N. L., & Goldsmith, H. H. (2021). Longitudinal effects of family psychopathology and stress on pubertal maturation and hormone coupling in adolescent twins. Developmental Psychobiology, 63(3), 512528.CrossRefGoogle ScholarPubMed
Phillips, R., Kraeuter, A.-K., McDermott, B., Lupien, S., & Sarnyai, Z. (2021). Human nail cortisol as a retrospective biomarker of chronic stress: A systematic review. Psychoneuroendocrinology, 123, 104903.CrossRefGoogle ScholarPubMed
Posthuma-Trumpie, G. A., Korf, J., & van Amerongen, A. (2009). Lateral flow (immuno)assay: Its strengths, weaknesses, opportunities and threats. A literature survey. Analytical and Bioanalytical Chemistry, 393(2), 569582.CrossRefGoogle ScholarPubMed
Pruessner, J. C., Kirschbaum, C., Meinlschmid, G., & Hellhammer, D. H. (2003). Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology, 28(7), 916931.CrossRefGoogle ScholarPubMed
Rej, A., Aziz, I., Tornblom, H., Sanders, D. S., & Simrén, M. (2019). The role of diet in irritable bowel syndrome: Implications for dietary advice. Journal of Internal Medicine, 286(5), 490502.CrossRefGoogle ScholarPubMed
Roadcap, B., Hussain, A., Dreyer, D., Carter, K., Dube, N., Xu, Y., et al. (2020). Clinical application of volumetric absorptive microsampling to the gefapixant development program. Bioanalysis, 12(13), 893904.CrossRefGoogle Scholar
Russell, E., Koren, G., Rieder, M., & Van Uum, S. (2012). Hair cortisol as a biological marker of chronic stress: Current status, future directions and unanswered questions. Psychoneuroendocrinology, 37(5), 589601.CrossRefGoogle ScholarPubMed
Sadeghalvad, M., & Rezaei, N. (2022). Introduction on laboratory tests for diagnosis of infectious diseases and immunological disorders. In Rezaei, N. (ed.), Encyclopedia of Infection and Immunity. Elsevier.Google Scholar
Sauvé, B., Koren, G., Walsh, G., Tokmakejian, S., & Van Uum, S. H. M. (2007). Measurement of cortisol in human hair as a biomarker of systemic exposure. Clinical and Investigative Medicine, 30(5), E183E191.CrossRefGoogle ScholarPubMed
Schiffer, L., Barnard, L., Baranowski, E. S., Gilligan, L. C., Taylor, A. E., Arlt, W., et al. (2019). Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: A comprehensive review. Journal of Steroid Biochemistry and Molecular Biology, 194, 105439.CrossRefGoogle ScholarPubMed
Sheriff, M. J., Krebs, C. J., & Boonstra, R. (2010). Assessing stress in animal populations: Do fecal and plasma glucocorticoids tell the same story? General and Comparative Endocrinology, 166(3), 614619.CrossRefGoogle ScholarPubMed
Shi, J., Lv, Z., Nie, M., Lu, W., Liu, C., Tian, Y., et al. (2018). Human nail stem cells are retained but hypofunctional during aging. Journal of Molecular Histology, 49(3), 303316.CrossRefGoogle ScholarPubMed
Shirtcliff, E. A., Allison, A. L., Armstrong, J. M., Slattery, M. J., Kalin, N. H., & Essex, M. J. (2012). Longitudinal stability and developmental properties of salivary cortisol levels and circadian rhythms from childhood to adolescence. Developmental Psychobiology, 54(5), 493502.CrossRefGoogle ScholarPubMed
Shirtcliff, E. A., Granger, D. A., Schwartz, E., & Curran, M. J. (2001). Use of salivary biomarkers in biobehavioral research: Cotton-based sample collection methods can interfere with salivary immunoassay results. Psychoneuroendocrinology, 26(2), 165173.CrossRefGoogle ScholarPubMed
Smith, L. A., & Gaya, D. R. (2012). Utility of faecal calprotectin analysis in adult inflammatory bowel disease. World Journal of Gastroenterology, 18(46), 67826789.CrossRefGoogle ScholarPubMed
Söderström, M., Ekstedt, M., & Akerstedt, T. (2006). Weekday and weekend patterns of diurnal cortisol, activation and fatigue among people scoring high for burnout.Scandinavian Journal of Work, Environment & Health, 32(2), 3540.Google Scholar
Son, Y. L., Ubuka, T., & Tsutsui, K. (2022). Regulation of stress response on the hypothalamic-pituitary-gonadal axis via gonadotropin-inhibitory hormone. Frontiers in Neuroendocrinology, 64, 100953.CrossRefGoogle ScholarPubMed
Spiller, R., & Garsed, K. (2009). Infection, inflammation, and the irritable bowel syndrome.Digestive and Liver Disease, 41(12), 844849.CrossRefGoogle ScholarPubMed
Stalder, T., Kirschbaum, C., Kudielka, B. M., Adam, E. K., Pruessner, J. C., Wüst, S., et al. (2016). Assessment of the cortisol awakening response: Expert consensus guidelines. Psychoneuroendocrinology, 63, 414432.CrossRefGoogle ScholarPubMed
Stalder, T., Lupien, S. J., Kudielka, B. M., Adam, E. K., Pruessner, J. C., Wüst, S., et al. (2022). Evaluation and update of the expert consensus guidelines for the assessment of the cortisol awakening response (CAR). Psychoneuroendocrinology, 146, 105946.CrossRefGoogle ScholarPubMed
Stanton, S. J., Beehner, J. C., Saini, E. K., Kuhn, C. M., & Labar, K. S. (2009). Dominance, politics, and physiology: Voters’ testosterone changes on the night of the 2008 United States presidential election. PLOS ONE, 4(10), e7543.CrossRefGoogle ScholarPubMed
Talge, N. M., Donzella, B., Kryzer, E. M., Gierens, A., & Gunnar, M. R. (2005). It’s not that bad: Error introduced by oral stimulants in salivary cortisol research. Developmental Psychobiology, 47(4), 369376.CrossRefGoogle Scholar
Tasso, Inc. (n.d.). Tasso-SST [webpage]. www.tassoinc.com/tasso-sst (retrieved October 31, 2022).Google Scholar
Tavalire, H. F., Christie, D. M., Leve, L. D., Ting, N., Cresko, W. A., & Bohannan, B. J. M. (2021). Shared environment and genetics shape the gut microbiome after infant adoption. mBio, 12(2). https://doi.org/10.1128/mBio.00548-21CrossRefGoogle ScholarPubMed
Telford, C., McCarthy-Jones, S., Corcoran, R., & Rowse, G. (2012). Experience sampling methodology studies of depression: The state of the art. Psychological Medicine, 42(6), 11191129.CrossRefGoogle ScholarPubMed
Thompson, G. (2012). Nobel Prizes that Changed Medicine. World Scientific.Google Scholar
Tsivou, M., Livadara, D., Georgakopoulos, D. G., Koupparis, M. A., Atta-Politou, J., & Georgakopoulos, C. G. (2009). Stabilization of human urine doping control samples: II. Microbial degradation of steroids. Analytical Biochemistry, 388(1), 146154.CrossRefGoogle ScholarPubMed
van Dammen, L., Finseth, T. T., McCurdy, B. H., Barnett, N. P., Conrady, R. A., Leach, A. G., et al. (2022). Evoking stress reactivity in virtual reality: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 138, 104709.CrossRefGoogle Scholar
van Thiel, I. A. M., de Jonge, W. J., Chiu, I. M., & van den Wijngaard, R. M. (2020). Microbiota-neuroimmune cross talk in stress-induced visceral hypersensitivity of the bowel. American Journal of Physiology: Gastrointestinal and Liver Physiology, 318(6), G1034G1041.Google Scholar
Veldhuis, J. D., Carlson, M. L., & Johnson, M. L. (1987). The pituitary gland secretes in bursts: Appraising the nature of glandular secretory impulses by simultaneous multiple-parameter deconvolution of plasma hormone concentrations. Proceedings of the National Academy of Sciences, 84(21), 76867690.CrossRefGoogle ScholarPubMed
Voegel, C. D., La Marca-Ghaemmaghami, P., Ehlert, U., Baumgartner, M. R., Kraemer, T., & Binz, T. M. (2018). Steroid profiling in nails using liquid chromatography–tandem mass spectrometry. Steroids, 140, 144150.CrossRefGoogle ScholarPubMed
Wang, W., Moody, S. N., Kiesner, J., Tonon Appiani, A., Robertson, O. C., & Shirtcliff, E. A. (2019). Assay validation of hair androgens across the menstrual cycle. Psychoneuroendocrinology, 101, 175181.CrossRefGoogle ScholarPubMed
Wang, W., van Dammen, L., Moody, S. N., Kiesner, J., Neiderhiser, J. M., Dismukes, A., et al. (2020). The validation of estradiol extraction and analysis from hair [preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/knuxsCrossRefGoogle Scholar
Webb, E. C., White, C. D., Van Uum, S., & Longstaffe, F. J. (2015). Integrating cortisol and isotopic analyses of archeological hair: Reconstructing individual experiences of health and stress. American Journal of Physical Anthropology, 156(4), 577594.CrossRefGoogle ScholarPubMed
Wester, V. L., van der Wulp, N. R. P., Koper, J. W., de Rijke, Y. B., & van Rossum, E. F. C. (2016). Hair cortisol and cortisone are decreased by natural sunlight. Psychoneuroendocrinology, 72, 9496.CrossRefGoogle ScholarPubMed
White, S. F., Lee, Y., Phan, J. M., Moody, S. N., & Shirtcliff, E. A. (2019). Putting the flight in “fight-or-flight”: Testosterone reactivity to skydiving is modulated by autonomic activation. Biological Psychology, 143, 93102.CrossRefGoogle ScholarPubMed
Yalow, R. S. (1982). The limitations of radioimmunoassay (RIA). Trends in Analytical Chemistry, 1(6), 128131.CrossRefGoogle Scholar
Yalow, R. S., & Berson, S. A. (1960). Plasma insulin concentrations in nondiabetic and early diabetic subjects: Determinations by a new sensitive immuno-assay technic. Diabetes, 9, 254260.CrossRefGoogle ScholarPubMed
Yong, E. (2012). Dark side of the love hormone. New Scientist, 213(2851), 3941.CrossRefGoogle Scholar
Zakreski, E., Dismukes, A. R., Tountas, A., Phan, J. M., Moody, S. N., & Shirtcliff, E. A. (2018). Developmental trajectories of HPA-HPG dual axes coupling: Implications for social neuroendocrinology. In Schultheiss, O. & Mehta, P. (eds.), Routledge International Handbook of Social Neuroendocrinology (pp. 608632). Routledge.CrossRefGoogle Scholar
Zhu, C., Yuan, C., Ren, Q., Wei, F., Yu, S., Sun, X., & Zheng, S. (2021). Comparative analysis of the effects of collection methods on salivary steroids. BMC Oral Health, 21(1).CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×