Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T14:20:10.787Z Has data issue: false hasContentIssue false

Section III - Measuring Speech

Published online by Cambridge University Press:  11 November 2021

Rachael-Anne Knight
Affiliation:
City, University of London
Jane Setter
Affiliation:
University of Reading
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

10.7 References

Adank, P., van Hout, R. & Smits, R. (2001). A comparison between human vowel normalization strategies and acoustic vowel transformation techniques. In Proceedings of the 7th International Conference on Speech Communication and Technology (Eurospeech 2001). Aalborg, Vol. I. pp. 481–4.Google Scholar
Best, C. T. (1995). A direct realist perspective on cross-language speech perception. In Strange, W., ed., Speech Perception and Linguistic Experience: Issues in Cross-Language Research. Timonium, MD: York Press, pp. 167200.Google Scholar
Best, C. T. & Tyler, M. D. (2007). Nonnative and second-language speech perception: Commonalities and complementarities. In Munro, M. J. & Bohn, O.-S., eds., Language Experience in Second Language Speech Learning: In honor of James Emil Flege. Amsterdam: John Benjamins, pp. 1334.Google Scholar
Bigi, B. & Hirst, D. (2019). Speech phonetization alignment and syllabification (SPPAS): A tool for the automatic analysis of speech prosody. www.sppas.org/.Google Scholar
Boersma, P. & Weenink, D. (2019). Praat: Doing Phonetics by Computer [computer program]. www.fon.hum.uva.nl/praat/.Google Scholar
Bohn, O.-S. (2017). Cross-language and second language speech perception. In Fernandez, E. M. & Cairns, H. S., eds., The Handbook of Psycholinguistics. New York: John Wiley and Sons, pp. 213–39.Google Scholar
Catford, J. C. (1994). A Practical Introduction to Phonetics. Oxford: Oxford University Press.Google Scholar
Chiba, T. & Kajiyama, M. (1941). The Vowel, Its Nature and Structure. Tokyo: TokyoKaiseikan.Google Scholar
Delattre, P. (1948). Un triangle acoustique des voyelles orales du Français. The French Review, 21(6), 477–84.Google Scholar
Durand, J., Gut, U. & Kristoffersen, G. (2017). The Oxford Handbook of Corpus Phonology. Oxford: Oxford University Press.Google Scholar
Fant, G. (1960). Acoustic Theory of Speech Production. The Hague: Mouton.Google Scholar
Fant, G. (1967). A note on vocal tract size factors and non-uniform F-pattern scaling. Speech Transmission Laboratory: Quarterly Progress and Status Reports, 4, 2230.Google Scholar
Fant, G. (1973). Speech Sounds and Features. Boston, MA: MIT Press.Google Scholar
Flege, J. E. (1995). Second language speech learning: Theory, findings, and problems. In Strange, W., ed., Speech Perception and Linguistic Experience: Issues in Cross-Language Research. Timonium, MD: York Press, pp. 233–77.Google Scholar
Flege, J. E. (1999). Age of learning and constraints on second-language speech. In Birdsong, D., ed., Second Language Acquisition and the Critical Period Hypothesis. Mahwah, NJ: Lawrence Erlbaum Associates, pp. 101–31.Google Scholar
Flynn, N. (2011). Comparing vowel formant normalisation procedures. York Papers in Linguistics Series, 2(11), 128.Google Scholar
Fowler, C. A. & Housum, J. (1987). Talkers’ signalling of ‘new’ and ‘old’ words in speech and listeners’ perception and use of the distinction. Journal of Memory and Language, 26, 489504.Google Scholar
Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G., Pallett, D. S., Dahlgren, N. L. et al. (1993). TIMIT. Acoustic-phonetic continuous speech corpus. https://catalog.ldc.upenn.edu/LDC93S1.Google Scholar
Gick, B., Wilson, I. & Derrick, D. (2013). Articulatory Phonetics. Chichester, UK: Wiley-Blackwell.Google Scholar
Hagiwara, R. (1997). Dialect variation and formant frequency: The American English vowels revisited. Journal of the Acoustical Society of America, 102 (1), 655–8.Google Scholar
Harrington, J. (2006). Phonetic Analysis of Speech Corpora. Malden, MA: Blackwell.Google Scholar
Hermann, L. (1894). Beiträge zur Lehre von der Klangwahrnehmung. Pflügers Arch., 56, 467–99.Google Scholar
Hillenbrand, J., Getty, L. A., Clark, M. J. & Wheeler, K. (1995). Acoustic characteristics of American English vowels. Journal of the Acoustical Society of America, 97(5), 3099–111.Google Scholar
International Phonetic Association. (2019). IPA Chart. www.internationalphoneticassociation.org/content/ipa-chart.Google Scholar
Johnson, K., Flemming, E. & Wright, R. (1993). The hyperspace effect: Phonetic targets are hyperarticulated. Language, 69(3), 505–28.Google Scholar
Jones, D. (1917). An English Pronouncing Dictionary. London: Dent.Google Scholar
Joos, M. (1948). Acoustic phonetics. Language Monographs, 23, 136.Google Scholar
Keen, J. A. (1940). A note on the comparative size of the cochlear canal in mammals. Journal of Anatomy, 73(4), 524–7.Google Scholar
Kreiman, J. & Gerratt, B. R. (2010). Perceptual sensitivity to first harmonic amplitude in the voice source. Journal of the Acoustical Society of America, 128(4), 2085–9.Google Scholar
Ladefoged, P. (2001). Vowels and Consonants: An Introduction to the Sounds of Languages. Malden, MA: Blackwell.Google Scholar
Ladefoged, P. & Maddieson, I. (1996). The Sounds of the World’s Languages. Malden, MA: Blackwell.Google Scholar
Lindblom, B. (1990). Explaining phonetic variation: A sketch of the H-H theory. In Hardcastle, W. J. & Marchal, A., eds., Speech Production and Speech Modelling. London: Kluwer Academic Press, pp. 403–39.Google Scholar
Lindblom, B. & Sundberg, J. (1971). Acoustical consequences of lip, tongue, jaw, and larynx movement. Journal of the Acoustical Society of America, 50, 1166–79.Google Scholar
Lobanov, B. M. (1971). Classification of Russian vowels spoken by different speakers. Journal of the Acoustical Society of America, 49(2B), 606–8.Google Scholar
Maddieson, I. (1984). Patterns of Sounds. Cambridge: Cambridge University Press.Google Scholar
Nordström, P. E. & Lindblom, B. (1975). A normalization procedure for vowel formant data. In Proceedings of the 8th International Congress of Phonetic Sciences in Leeds, August, paper 212.Google Scholar
Öhman, S. (1964). Note on palatalization in Russian. MIT Quarterly Progress Report, 73, 167–71.Google Scholar
Passy, P. (1888). Our revised alphabet. The Phonetic Teacher, 7–8, 5760.Google Scholar
Peterson, G. E. & Barney, H. L. (1952). Control methods used in a study of the vowels. Journal of the Acoustical Society of America, 24, 175–84.Google Scholar
Pfitzinger, H. & Niebuhr, O. (2011). Historical development of phonetic vowel systems: The last 400 years. In Proceedings of the 17th International Congress of Phonetic Sciences, Hong Kong, China, 160–3.Google Scholar
Pisoni, D. B. (1975). Auditory short-term memory and vowel perception. Memory and Cognition, 3, 718.Google Scholar
Pitt, M. A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W., Hume, E. & Fosler-Lussier, E. (2007). Buckeye Corpus of Conversational Speech (2nd release). Columbus, OH: Department of Psychology, Ohio State University. https://buckeyecorpus.osu.edu/.Google Scholar
Potter, R. K. & Steinberg, J. C. (1950). Towards the specification of speech. Journal of the Acoustical Society of America, 22, 803–23.CrossRefGoogle Scholar
Reetz, H. & Jongman, A. (2009). Phonetics: Transcription, Production, Acoustics, and Perception. Chichester, UK: Wiley-Blackwell.Google Scholar
Renwick, M. E. L. & Ladd, D. R. (2016). Phonetic distinctiveness vs. lexical contrastiveness in non-robust phonemic contrasts. Laboratory Phonology, 7(1), 129.Google Scholar
Sóskuthy, M. (2019). Generalised Additive Mixed Models for Dynamic Analysis in Linguistics: A Practical Introduction [Computing Research Repository]. https://arxiv.org/abs/1703.05339v1.Google Scholar
Stevens, S. S., Volkmann, J. & Newman, E. B. (1937). A scale for the measurement of the psychological magnitude pitch. Journal of the Acoustical Society of America, 8(3), 185–90.CrossRefGoogle Scholar
Stevens, K. N., Kasowski, S. & Fant, G. (1953). An electrical analog of the vocal tract. Journal of the Acoustical Society of America, 25(4), 734–42.Google Scholar
Titze, I. R. (2011). Vocal fold mass is not a useful quantity for describing f0 in vocalization. Journal of Speech, Language, and Hearing Research, 54(2), 520–2.Google Scholar
Traunmüller, H. (1990). Analytical expressions for the tonotopic sensory scale. Journal of the Acoustical Society of America, 88(1), 97100.Google Scholar
Van Hoof, S. & Verhoeven, J. (2011). Intrinsic vowel f0, the size of vowel inventories and second language acquisition. Journal of Phonetics, 39, 168–77.Google Scholar
Vilain, C., Berthommier, F. & Boë, L.-J. (2015). A brief history of articulatory–acoustic vowel representation. In 1st International Workshop on the History of Speech Communication Research (HSCR 2015), Dresden, France.Google Scholar
Watt, D. & Fabricius, A. (2002). Evaluation of a technique for improving the mapping of multiple speakers’ vowel spaces in the F1~F2 plane. Leeds Working Papers in Linguistics and Phonetics, 9, 159–73.Google Scholar
Whalen, D. H. & Levitt, A. G. (1995). The universality of intrinsic f0 of vowels. Journal of Phonetics, 23, 349–66.Google Scholar
Whalen, D. H., Magen, H. S., Pouplier, M., Kang, A. M. & Iskarous, K. (2004a). Vowel production and perception: Hyperarticulation without a hyperspace effect. Language and Speech, 47(2), 155–74.Google Scholar
Whalen, D. H., Magen, H. S., Pouplier, M., Kang, A. M. & Iskarous, K. (2004b). Vowel target without a hyperspace effect. Language, 80(3), 377–80.Google Scholar
Wood, S. N. (2006). Generalised Additive Mixed Models: An Introduction, with R. Boca Raton, FL: CRC Press.Google Scholar
Wright, R. (2003). Factors of lexical competition in vowel articulation. In Local, J., Ogden, R. & Temple, R., eds., Papers in Laboratory Phonology VI. Cambridge: Cambridge University Press, pp. 7587.Google Scholar
Yang, B. (1990). Development of Vowel Normalization Procedures: English and Korean. Doctoral dissertation, University of Texas at Austin. http://fonetiks.info/bgyang/db/yangphd.pdf.Google Scholar
Yang, B. (1996). A comparative study of American English and Korean vowels produced by male and female speakers. Journal of Phonetics, 24(2), 245–61.Google Scholar
Yang, B. (2006). Discrimination of synthesised English vowels by American and Korean listeners. Phonetics and Speech Sciences, 13(1), 727.Google Scholar
Yang, B. (2009a). Formant trajectories of English vowels produced by American males. Phonetics and Speech Sciences, 1(3), 6572.Google Scholar
Yang, B. (2009b). English vowel spaces produced and perceived by Americans and Koreans. In Lee, C., Simpson, G. B. & Kim, Y., eds., The Handbook of East Asian Psycholinguistics. Volume III: Korean. New York: Cambridge University Press, pp. 390–7.Google Scholar
Yang, B. (2010). Formant trajectories of English high tense and lax vowels produced by Korean and American speakers. Korean Journal of Linguistics, 35(2), 407–21.Google Scholar
Yang, B. (2018). Pitch trajectories of English vowels produced by American men, women, and children. Phonetics and Speech Sciences, 10(4), 31–7.Google Scholar
Yang, B. (2019). A comparison of normalized formant trajectories of English vowels produced by American men and women. Phonetics and Speech Sciences, 11(1), 18.Google Scholar
Yang, B. & Whalen, D. H. (2015). Perception and production of English vowels by American males and females. Australian Journal of Linguistics, 35(2), 121–41.Google Scholar
Yost, W. A. (2000). Fundamentals of Hearing: An Introduction. London: Academic Press.Google Scholar
Yun, W., Yoon, K., Park, S., Lee, J., Cho, S., Kang, D. et al. (2015). The Korean corpus of spontaneous speech. Phonetics and Speech Sciences, 7(2), 103–9.CrossRefGoogle Scholar
Zwicker, E. (1961). Subdivision of the audible frequency range into critical bands. Journal of the Acoustical Society of America, 33(2), 248.Google Scholar
Zwicker, E. & Terhardt, E. (1980). Analytical expressions for critical-band rate and critical bandwidth as a function of frequency. Journal of the Acoustical Society of America, 68(5), 1523–5.Google Scholar

11.7 References

Abramson, A. S. & Whalen, D. H. (2017). Voice Onset Time (VOT) at 50: Theoretical and practical issues in measuring voicing distinctions. Journal of Phonetics, 63, 7586.CrossRefGoogle ScholarPubMed
Ashby, M. & Maidment, J. (2005). Introducing Phonetic Science. Cambridge: Cambridge University Press.Google Scholar
Bauer, M. (2005). Lenition of the flap in American English. University of Pennsylvania Working Papers in Linguistics, 10(2), 3143.Google Scholar
Behrens, S. J. & Blumstein, S. E. (1988). Acoustic characteristics of English voiceless fricatives: A descriptive analysis. Journal of Phonetics, 16(3), 295–98.CrossRefGoogle Scholar
Bennett, R. (2010). Contrast and laryngeal states in Tz’utujil. In McGuire, G., ed., UC Santa Cruz Linguistics Research Center Annual Report. Santa Cruz, CA: LRC Publications, pp. 93120.Google Scholar
Bevier, Jr., L. (1900). The acoustic analysis of the vowels from the phonographic record. Physical Review (Series I), 10(4), 193203.Google Scholar
Bjorndahl, C. (2015). The phonetics and phonology of segment classification: A case study of /v/. In Raimy, E. and Cairns, C. E., eds., The Segment in Phonetics and Phonology. Malden, MA: John Wiley & Sons, pp. 236–50.Google Scholar
Blumstein, S. E. & Stevens, K. N. (1979). Acoustic invariance in speech production: Evidence from measurements of the spectral characteristics of stop consonants. Journal of the Acoustical Society of America, 66(4), 1001–17.Google Scholar
Blumstein, S.E., Cooper, W.E., Zurif, E.B. & Caramazza, A. (1977). The perception and production of voice-onset time in aphasia. Neuropsychologia, 15(3), 371–83.Google Scholar
Boersma, P. & Weenink, D. (2018). Praat: Doing Phonetics by Computer [computer program]. Version 6.0.39, www.praat.org/.Google Scholar
Carballo, G. & Mendoza, E. (2000). Acoustic characteristics of trill productions by groups of Spanish children. Clinical Linguistics & Phonetics, 14(8), 587601.Google Scholar
Carrasco, P., Hualde, J. I. & Simonet, M. (2012). Dialectal differences in Spanish voiced obstruent allophony: Costa Rican versus Iberian Spanish. Phonetica, 69(3), 149–79.Google Scholar
Chen, M. & Clumeck, H. (1975). Denasalization in Korean: A search for universals. In Hyman, L. M. and Ohala, J. J., eds., Nasálfest: Papers from a Symposium on Nasals and Nasalization. Stanford, CA: Stanford University Press, pp. 125–31.Google Scholar
Cho, T. & Ladefoged, P. (1999). Variation and universals in VOT: Evidence from 18 languages. Journal of Phonetics, 27(2), 207–29.Google Scholar
Cho, T., Jun, S. A. & Ladefoged, P. (2002). Acoustic and aerodynamic correlates of Korean stops and fricatives. Journal of Phonetics, 30(2), 193228.Google Scholar
Chodroff, E. & Wilson, C. (2014). Burst spectrum as a cue for the stop voicing contrast in American English. Journal of the Acoustical Society of America, 136(5), 2762–72.Google Scholar
Cooper, F. S., Delattre, P. C., Liberman, A. M., Borst, J. M. & Gerstman, L. J. (1952). Some experiments on the perception of synthetic speech sounds. Journal of the Acoustical Society of America, 24(6), 597606.Google Scholar
Cordeiro, G. F., Montagnoli, A. N., Ubrig, M. T., Menezes, M. H. M. & Tsuji, D. H. (2015). Comparison of tongue and lip trills with phonation of the sustained vowel /ε/ regarding the periodicity of the electroglottographic waveform and the amplitude of the electroglottographic signal. Open Journal of Acoustics, 5(04), 226–38.Google Scholar
Crandall, I. B. & Sacia, C. F. (1924). A dynamical study of the vowel sounds. Bell System Technical Journal, 3(2), 232–7.Google Scholar
Delattre, P. C., Liberman, A. M. & Cooper, F. S. (1955). Acoustic loci and transitional cues for consonants. Journal of the Acoustical Society of America, 27(4), 769–73.Google Scholar
Derrick, D. & Schultz, B. (2013). Acoustic correlates of flaps in North American English. In Proceedings of Meetings on Acoustics ICA2013, Montreal, Canada, pp. 15.Google Scholar
Donders, F. C. (1864). Zur Klangfarbe der Vocale. Vorläufige Notiz. Annalen der Physik, 199(11), 527–8.CrossRefGoogle Scholar
Donders, F. C. (1870). De Physiologie der Spraakklanken: in het bijzonder van die der Nederlandsche taal geschetst. Utrecht: van der Post, Jr.Google Scholar
Dorman, M. F., Raphael, L. J. & Isenberg, D. (1980). Acoustic cues for a fricative-affricate contrast in word-final position. Journal of Phonetics, 8(4), 397405.Google Scholar
Eliason, N. E. (1942). Two notes on vowel and consonant quantity. American Speech, 17(3), 166–8.Google Scholar
Fant, G. (1960). Acoustic Theory of Speech Production. The Hague: Mouton.Google Scholar
Figueroa, M., Painequeo, J., Márquez, C., Salamanca, G. & Bertín, D. (2019). Evidencia del contraste interdental/alveolar en el mapudungun hablado en la costa: un estudio acústico-estadístico. Onomázein, 44(09), 191216.Google Scholar
Fourier, J. B. J. (1822), Théorie Analytique de la Chaleur. Paris: Firmin Didot.Google Scholar
Fujimura, O. (1962). Analysis of nasal consonants. Journal of the Acoustical Society of America, 34(12), 1865–75.Google Scholar
Garnes, S. (1975). An acoustic analysis of double articulations in Ibibio. In Herbert, R. K., ed., Proceedings of the 6th Conference on African Linguistics. Columbus: Ohio State, pp. 44–5.Google Scholar
Geng, P., Gu, W. & Fujisaki, H. (2018). Acoustic and perceptual characteristics of Mandarin speech in homosexual and heterosexual male speakers. In Proceedings of INTERSPEECH 2018, Hyderabad, India, pp. 1726–30.Google Scholar
Gick, B., Wilson, I. & Derrick, D. (2012). Articulatory Phonetics. Malden, MA: John Wiley & Sons.Google Scholar
Gordon, M., Barthmaier, P. & Sands, K. (2002). A cross-linguistic acoustic study of voiceless fricatives. Journal of the International Phonetic Association, 32(2), 141–74.Google Scholar
Hedrick, M. S. & Ohde, R. N. (1993). Effect of relative amplitude of frication on perception of place of articulation. Journal of the Acoustical Society of America, 94(4), 2005–26.Google Scholar
Heinz, J. M. & Stevens, K. N. (1961). On the properties of voiceless fricative consonants. Journal of the Acoustical Society of America, 33(5), 589–96.Google Scholar
Hualde, J. I., Simonet, M., Shosted, R. & Nadeu, M. (2010). Quantifying Iberian spirantization: Acoustics and articulation. In 40th Linguistic Symposium on Romance Languages, Seattle, WA, pp. 26–8.Google Scholar
Hughes, G. W. & Halle, M. (1956). Spectral properties of fricative consonants. Journal of the Acoustical Society of America, 28(2), 303–10.Google Scholar
Husain, R. A. & Husain, T. M. (2017). Acoustic measurement of voiced implosives: Evidence of voiced implosives in a US dialect. Southern Journal of Linguistics, 41(1), 6287.Google Scholar
Impieri, D., Tønseth, K. A., Hide, Ø. , Brinck, E. L., Høgevold, H. E. & Filip, C. (2018). Impact of orthognathic surgery on velopharyngeal function by evaluating speech and cephalometric radiographs. Journal of Plastic, Reconstructive & Aesthetic Surgery, 71(12), 1786–95.Google Scholar
Iskarous, K., Fowler, C. A. & Whalen, D. H. (2010). Locus equations are an acoustic expression of articulator synergy. Journal of the Acoustical Society of America, 128(4), 2021–32.Google Scholar
Jannedy, S. & Weirich, M. (2017). Spectral moments vs. discrete cosine transformation coefficients: Evaluation of acoustic measures distinguishing two merging German fricatives. Journal of the Acoustical Society of America, 142(1), 395405.Google Scholar
Jenkin, F. & Ewing, J. A. (1878). On the harmonic analysis of certain vowel sounds. Transactions of The Royal Society of Edinburgh, 28(3), 745–75.Google Scholar
Jessen, M. (2002). An acoustic study of contrasting plosives and click accompaniments in Xhosa. Phonetica, 59(2–3), 150–79.Google Scholar
Johnson, K. (1993). Acoustic and auditory analyses of Xhosa clicks and pulmonics. UCLA Working Papers in Phonetics, 83, 3345.Google Scholar
Johnson, K. (2012). Acoustic and Auditory Phonetics, 3rd ed. Oxford: Wiley-Blackwell.Google Scholar
Jongman, A., Wayland, R. & Wong, S. (2000). Acoustic characteristics of English fricatives. Journal of the Acoustical Society of America, 108(3), 1252–63.Google Scholar
Kewley-Port, D. & Preston, M. S. (1974). Early apical stop production: A voice onset time analysis. Journal of Phonetics, 2, 195210.Google Scholar
Kim, H. (2001). The place of articulation of the Korean plain affricate in intervocalic position: An articulatory and acoustic study. Journal of the International Phonetic Association, 31(2), 229–57.Google Scholar
Kim, Y. S. (2011). An Acoustic, Aerodynamic, and Perceptual Investigation of Word-initial Denasalization in Korean. Unpublished doctoral dissertation, University College London.Google Scholar
Kingston, J. (2008). Lenition. In Colantoni, L. & Steelem, J., eds., Selected Proceedings of the 3rd Conference on Laboratory Approaches to Spanish Phonology. Somerville, MA: Cascadilla Proceedings Project, pp. 131.Google Scholar
Kurowski, K. & Blumstein, S. E. (1987). Acoustic properties for place of articulation in nasal consonants. Journal of the Acoustical Society of America, 81(6), 1917–27.Google Scholar
Ladefoged, P. (2003). Phonetic Data Analysis: An Introduction to Fieldwork and Instrumental Techniques. Malden, MA: Blackwell.Google Scholar
Ladefoged, P. & Johnson, K. (2011). A Course in Phonetics, 6th ed. Boston, MA: Wadsworth.Google Scholar
Ladefoged, P. & Maddieson, I. (1996). Sounds of the World’s Languages. Oxford: Blackwell.Google Scholar
Laver, J. (1994). Principles of Phonetics. Cambridge: Cambridge University Press.Google Scholar
Lee, H. & Jongman, A. (2016). A diachronic investigation of the vowels and fricatives in Korean: An acoustic comparison of the Seoul and South Kyungsang dialects. Journal of the International Phonetic Association, 46(2), 157–84.Google Scholar
Li, F., Bunta, F. & Tomblin, J. B. (2017). Alveolar and postalveolar voiceless fricative and affricate productions of Spanish–English bilingual children with cochlear implants. Journal of Speech, Language, and Hearing Research, 60(9), 2427–41.Google Scholar
Li, S. & Gu, W. (2015). Acoustic analysis of Mandarin affricates. In Sixteenth Annual Conference of the International Speech Communication Association, Dresden, Germany, pp. 15.Google Scholar
Lisker, L. (1986). ‘Voicing’ in English: A catalogue of acoustic features signaling /b/ versus /p/ in trochees. Language and Speech, 29(1), 311.Google Scholar
Lisker, L. & Abramson, A. S. (1964). A cross-language study of voicing in initial stops: Acoustical measurements. Word, 20(3), 384422.Google Scholar
Lisker, L. & Abramson, A. S. (1967). Some effects of context on voice onset time in English stops. Language and Speech, 10(1), 128.Google Scholar
Ma, J., Chen, X., Wu, Y. & Zhang, L. (2018). Effects of age and sex on voice onset time: Evidence from Mandarin voiceless stops. Logopedics Phoniatrics Vocology, 43(2), 5662.Google Scholar
Martin, S. E. (1951). Korean phonemics. Language, 27(4), 519–33.Google Scholar
Martínez-Celdrán, E. (2004). Problems in the classification of approximants. Journal of the International Phonetic Association, 34(2), 201–10.Google Scholar
Miller, A. & Shah, S. (2009). The acoustics of Mangetti Dune !Xung clicks. In Uther, M., Moore, R. & Cox, S., eds., Proceedings of the 10th Annual Conference of the International Speech Communication Association. Brighton, UK: Causal Productions, pp. 2283–6.Google Scholar
Miller-Ockhuizen, A. & Sands, B. E. (2000). Contrastive lateral clicks and variation in click types. In Proceedings of the Sixth International Conference on Spoken Language Processing ICSLP, Beijing, China, pp. 14.Google Scholar
Modell, J. D. & Rich, G. J. (1915). A preliminary study of vowel qualities. The American Journal of Psychology, 26(3), 453–6.Google Scholar
Munson, B. & Urberg Carlson, K. (2016). An exploration of methods for rating children’s productions of sibilant fricatives. Speech, Language and Hearing, 19(1), 3645.Google Scholar
Nissen, S. L. & Fox, R. A. (2005). Acoustic and spectral characteristics of young children’s fricative productions: A developmental perspective. Journal of the Acoustical Society of America, 118(4), 2570–8.Google Scholar
Nittrouer, S., Lowenstein, J. H. & Tarr, E. (2013). Amplitude rise time does not cue the /bɑ/–/wɑ/ contrast for adults or children. Journal of Speech, Language, and Hearing Research, 56(2), 427–40.Google Scholar
Paget, R. A. (1924). The nature and artificial production of consonant sounds. Proceedings of the Royal Society of London, 106(736), 150–74.Google Scholar
Parmenter, C. E. & Carman, J. N. (1932). Some remarks on Italian quantity. Italica, 9(4), 103–8.Google Scholar
Patil, V. & Rao, P. (2008). Acoustic cues to manner of articulation of obstruents in Marathi. In Proceedings of Frontiers of Research on Speech and Music FRSM, Kolkata, India, pp. 15.Google Scholar
Penney, J., Cox, F., Miles, K. & Palethorpe, S. (2018). Glottalisation as a cue to coda consonant voicing in Australian English. Journal of Phonetics, 66, 161–84.Google Scholar
Piccinini, P. & Arvaniti, A. (2015). Voice onset time in Spanish–English spontaneous code-switching. Journal of Phonetics, 52, 121–37.Google Scholar
Piñeros, C. E. (2002). Markedness and laziness in Spanish obstruents. Lingua, 112(5), 379413.Google Scholar
Qi, Y. & Fox, R. A. (1992). Analysis of nasal consonants using perceptual linear prediction. Journal of the Acoustical Society of America, 91(3), 1718–26.Google Scholar
Raymond, M. & Parker, S. (2005). Initial and medial geminate trills in Arop-Lokep. Journal of the International Phonetic Association, 35(1), 99111.Google Scholar
Recasens, D. & Espinosa, A. (2007). An electropalatographic and acoustic study of affricates and fricatives in two Catalan dialects. Journal of the International Phonetic Association, 37(2), 143–72.Google Scholar
Reetz, H. & Jongman, A. (2009). Phonetics: Transcription, Production, Acoustics, and Perception. Cambridge, MA: Wiley-Blackwell.Google Scholar
Reidy, P. F., Kristensen, K., Winn, M. B., Litovsky, R. Y. & Edwards, J. R. (2017). The acoustics of word-initial fricatives and their effect on word-level intelligibility in children with bilateral cochlear implants. Ear and Hearing, 38(1), 42.Google Scholar
Saz, O., Deena, S., Doulaty, M., Hasan, M., Khaliq, B., Milner, R. et al. (2018). Lightly supervised alignment of subtitles on multi-genre broadcasts. Multimedia Tools and Applications, 77(23), 30533–50.Google Scholar
Shin, J. (2019). Vowels and Consonants. In Brown, L. and Yeon, J., eds., The Handbook of Korean Linguistics. Chichester, UK: Wiley-Blackwell, pp. 121.Google Scholar
Spajić, S., Ladefoged, P. & Bhaskararao, P. (1996). The trills of Toda. Journal of the International Phonetic Association, 26(1), 121.Google Scholar
Spinu, L. & Lilley, J. (2016). A comparison of cepstral coefficients and spectral moments in the classification of Romanian fricatives. Journal of Phonetics, 57, 4058.Google Scholar
Stevens, K. N. (2000). Acoustic Phonetics. Cambridge, MA: MIT Press.Google Scholar
Strevens, P. (1960). Spectra of fricative noise in human speech. Language and Speech, 3(1), 3249.Google Scholar
Sussman, H. M., McCaffrey, H. A. & Matthews, S. A. (1991). An investigation of locus equations as a source of relational invariance for stop place categorization. Journal of the Acoustical Society of America, 90(3), 1309–25.Google Scholar
Tabain, M. (1998). Non-sibilant fricatives in English: Spectral information above 10 kHz. Phonetica, 55, 107–30.Google Scholar
Thirumuru, R. & Vuppala, A. K. (2018). Automatic detection of retroflex approximants in a continuous Tamil speech. Circuits, Systems and Signal Processing, 37(7), 2837–51.Google Scholar
Turk, A., Nakai, S. & Sugahara, M. (2006). Acoustic segment durations in prosodic research: A practical guide. Methods in Empirical Prosody Research, 3, 128.Google Scholar
Umeda, H. (1957). The phonemic system of Modern Korean. Journal of the Linguistic Society of Japan, 32, 6082.Google Scholar
Upadhyay, N. & Rosales, H. G. (2018). Robust recognition of English speech in noisy environments using frequency warped signal processing. National Academy Science Letters, 41(1), 1522.Google Scholar
Warner, N. & Tucker, B. V. (2017). An effect of flaps on the fourth formant in English. Journal of the International Phonetic Association, 47(1), 115.Google Scholar
Yang, B. (1993). A voice onset time comparison of English and Korean stop consonants. Research Journal of Dongeui University, 20, 4159.Google Scholar
Yoo, K. (2015). Domain-initial denasalisation in Busan Korean: A cross-generational case study. In Proceedings of the 18th International Congress of Phonetic Sciences ICPhS, Glasgow, pp. 15.Google Scholar
Yoshida, K. (2008). Phonetic implementation of Korean ‘denasalization’ and its variation related to prosody. IULC Working Papers Online, 8(1), 123.Google Scholar
Zhu, J. & Chen, Y. (2016). Effect of several acoustic cues on perceiving Mandarin retroflex affricates and fricatives in continuous speech. Journal of the Acoustical Society of America, 140(1), 461–70.Google Scholar
Zsiga, E. C. (2013). The Sounds of Language: An Introduction to Phonetics and Phonology. New York: Wiley-Blackwell.Google Scholar

12.7 References

Abercrombie, D. (1967). Elements of General Phonetics. Edinburgh: Edinburgh University Press.Google Scholar
Arvaniti, A. (2009). Rhythm, timing and the timing of rhythm. Phonetica, 66, 4663.Google Scholar
Arvaniti, A. (2012a). The usefulness of metrics in the quantification of speech rhythm. Journal of Phonetics, 40(3), 351–73.Google Scholar
Arvaniti, A. (2012b). Rhythm classes and speech perception. In Niebuhr, O. & Pfitzinger, H., eds., Prosodies: Context, Function, and Communication. Berlin: Walter de Gruyter, pp. 7592.Google Scholar
Arvaniti, A. & Rathcke, T. (2015). The role of stress in syllable monitoring. Proceedings of the 18th International Congress of Phonetic Sciences. Glasgow, UK: The University of Glasgow. www.icphs2015.info/pdfs/Papers/ICPHS0212.pdf.Google Scholar
Arvaniti, A. & Rodriquez, T. (2013). The role of rhythm class, speaking rate, and f0 in language discrimination. Laboratory Phonology, 4(1), 738.Google Scholar
Auer, P., Couper-Kuhlen, E. & Müller, F. (1999). Language in Time: The Rhythm and Tempo of Spoken Interaction. New York: Oxford University Press.Google Scholar
Balasubramanian, T. (1980). Timing in Tamil. Journal of Phonetics, 8, 449–67.Google Scholar
Baltazani, M. (2007). Prosodic rhythm and the status of vowel reduction in Greek. In Selected Papers on Theoretical and Applied Linguistics from the 17th International Symposium on Theoretical and Applied Linguistics, vol. 1. Thessaloniki: Department of Theoretical and Applied Linguistics, pp. 3143.Google Scholar
Barry, W. & Andreeva, Β. (2001). Cross-language similarities and differences in spontaneous speech patterns. Journal of the International Phonetic Association, 31, 5166.Google Scholar
Barry, W. J., Andreeva, B., Russo, M., Dimitrova, S. & Kostadinova, T. (2003). Do rhythm measures tell us anything about language type? In Proceedings of 15th International Congress of Phonetic Sciences, Barcelona, pp. 2693–6.Google Scholar
Beckman, M. E. (1986). Stress and Non-Stress Accent. Dordrecht: Foris.Google Scholar
Bertinetto, P. M. (1989). Reflections on the dichotomy ‘stress’ vs. ‘syllable-timing’. Revue de Phonétique Appliquée, 91-92-93, 99130.Google Scholar
Bertrán, A. P. (1999). Prosodic typology: On the dichotomy between stress-timed and syllable-timed languages. Language Design, 2, 103–30.Google Scholar
Bohannon, J., Koch, D., Homm, P. & Driehaus, A. (2015). Chocolate with high cocoa content as a weight-loss accelerator. International Archives of Medicine, Section: Endocrinology 8(55). https://doi.org/10.3823/1654.Google Scholar
Bolton, T. L. (1894). Rhythm. The American Journal of Psychology, 6(2), 145238.Google Scholar
Borzone de Manrique, A. M. & Signorini, A. (1983). Segmental duration and rhythm in Spanish. Journal of Phonetics, 11, 117–28.Google Scholar
Chung, Y. & Arvaniti, A. (2013). Speech rhythm in Korean: Experiments in speech cycling. Proceedings of Meetings on Acoustics (POMA): Proceedings of 21st International Congress of Acoustics, Montréal, 2–7 June 2013. http://scitation.aip.org/content/asa/journal/poma.Google Scholar
Clarke, E. F. (1999). Rhythm and timing in music. In Deutsch, D., ed., The Psychology of Music. New York: Academic Press, pp. 473500.Google Scholar
Classe, A. (1939). The Rhythm of English Prose. Oxford: Basil Blackwell.Google Scholar
Cummins, F. & Port, R. F. (1998). Rhythmic constraints on stress-timing in English. Journal of Phonetics, 31, 139–48.Google Scholar
Cummins, F. (2009). Rhythm as an affordance for the entrainment of movement. Phonetica, 66(1–2), 1528.Google Scholar
Cutler, A. & Otake, T. (1994). Mora or phoneme? Further evidence for language-specific listening. Journal of Memory and Language, 33, 824–44.Google Scholar
Cutler, A., Mehler, J., Norris, D. & Seguí, J. (1986). The syllable’s differing role in the segmentation of French and English. Journal of Memory and Language, 25, 385400.Google Scholar
Dankovicová, J. & Dellwo, V. (2007). Czech speech rhythm and the rhythm class hypothesis. In Proceedings of 16th International Congress of Phonetic Sciences, Saarbrücken, Germany, pp. 1241–4.Google Scholar
Dauer, R. M. (1983). Stress-timing and syllable-timing reanalyzed. Journal of Phonetics, 11, 5162.Google Scholar
Dauer, R. M. (1987). Phonetic and phonological components of language rhythm. In Proceedings of 11th International Congress of Phonetic Sciences, Tallinn, pp. 447–9.Google Scholar
Dellwo, V. (2006). Rhythm and speech rate: A variation coefficient for deltaC. In Karnowski, P. & Szigeti, I., eds., Language and Language-Processing: Proceedings of the 38th Linguistic Colloquium. Frankfurt: Peter Lang, pp. 231–41.Google Scholar
Dellwo, V., Aschenberner, B., Dancovicová, J. & Wagner, P. (2004). The BonnTempo Corpus and Tools: A database for the combined study of speech rhythm and rate. In Proceedings of the 8th International Conference on Spoken Language Processing, Jeju Island, Korea, pp. 777–80.Google Scholar
Dilley, L. C. & McAuley, J. D. (2008). Distal prosodic context affects word segmentation and lexical processing. Journal of Memory and Language, 59, 294311.Google Scholar
Dowling, W. J. & Harwood, D. L. (1986). Music Cognition. Orlando, FL: Academic Press.Google Scholar
Farnetani, E. & Kori, S. (1990). Rhythmic structure in Italian noun phrases: A study of vowel durations. Phonetica, 47, 5065.Google Scholar
Fletcher, J. (1991). Rhythm and final lengthening in French. Journal of Phonetics, 19(2), 193212.Google Scholar
Fraisse, P. (1963). The Psychology of Time, New York: Harper & Row.Google Scholar
Fraisse, P. (1982). Rhythm and tempo. In Deutsch, D., ed., The Psychology of Music. New York: Academic Press, pp. 149–80.Google Scholar
Friberg, A. & Sundberg, J. (1995). Time discrimination in a monotonic, isochronous sequence. Journal of the Acoustical Society of America, 98(5), 2524–31.Google Scholar
Frota, S. & Vigário, M. (2001). On the correlates of rhythmic distinctions: The European/Brazilian Portuguese case. Probus, 13, 247–75.Google Scholar
Goswami, U. (2011). A temporal sampling framework for developmental dyslexia. Trends in Cognitive Sciences, 15, 310.Google Scholar
Goswami, U. & Leong, V. (2013). Speech rhythm and temporal structure: Converging perspectives? Laboratory Phonology, 4(1), 6792.Google Scholar
Grabe, E. & Low, E. L. (2002). Acoustic correlates of rhythm class. In Gussenhoven, C. & Warner, N., eds., Laboratory Phonology 7. Berlin: Mouton de Gruyter, pp. 515–46.Google Scholar
Hannon, E. E., Lévêque, Y., Nave, K. M. & Trehub, S. E. (2016). Exaggeration of language-specific rhythms in English and French children’s songs. Frontiers of Psychology 2016, 7, 939. https://doi.org/10.3389/fpsyg.2016.00939.Google Scholar
Harris, M. J. & Gries, S. T. (2011). Measures of speech rhythm and the role of corpus-based word frequency: A multifactorial comparison of Spanish(-English) speakers. International Journal of English Studies, 11(2), 122.Google Scholar
Harris, M. J., Gries, S. T. & Miglio, V. G. (2014). Prosody and its applications to forensic linguistics. Linguistic Evidence in Security, Law and Intelligence, 2(2). https://doi.org/10.5195/lesli.2014.12.Google Scholar
Hawkins, S. (2003). Roles and representations of systematic fine phonetic detail in speech understanding. Journal of Phonetics, 31, 373405.Google Scholar
Hawkins, S. (2014). Situational influences on rhythmicity in speech, music, and their interaction. Philosophical Transactions of the Royal Society of London B. 369, 20130398. https://dx.doi.org/10.1098/rstb.2013.0398.Google Scholar
Hayes, B. (1995). Metrical Stress Theory: Principles and Case Studies. Chicago, IL: University of Chicago Press.Google Scholar
Horton, R. & Arvaniti, A. (2013). Cluster and classes in the rhythm metrics. San Diego Linguistic Papers, 4, 2852. http://escholarship.org/uc/item/0tt1j553.Google Scholar
James, W. (1890/1950). The Principles of Psychology. New York: Dover Reprint. (Originally published 1890.)Google Scholar
Jeon, H. & Arvaniti, A. (2017). The effects of prosodic context on word segmentation: Rhythmic irregularity and localised lengthening in Korean. Journal of the Acoustical Society of America, 141, 4251–63.Google Scholar
Jinbo, K. (1927/1980). Kokugo no onseijou no tokushitsu [The top phonetic characteristics of Japanese]. In Shibata, T., Kitamura, H. & Kindaichi, H., eds., Nihon no gengogaku [Linguistics of Japan]. Tokyo:Taishukan, pp. 515. (Originally published 1927.)Google Scholar
Jones, D. (1972). An Outline of English Phonetics, 9th ed. Cambridge: Cambridge University Press. (Originally published 1918.)Google Scholar
Jones, M. R. (1981). Only time can tell: On the topology of mental space and time. Critical Inquiry, 7, 557–76.Google Scholar
Jun, S. (2005). Korean intonational phonology and prosodic transcription. In Jun, S., ed., Prosodic Typology: The Phonology of Intonation and Phrasing. Oxford: Oxford University Press, pp. 201–29.Google Scholar
Kaminskaïa, S., Tennant, J. & Russell, A. (2016). Prosodic rhythm in Ontario French. Journal of French Language Studies, 26(2), 183208.Google Scholar
Keane, E. (2006). Rhythmic characteristics of colloquial and formal Tamil. Language and Speech, 49, 299332.Google Scholar
Klatt, D. H. (1976). Linguistic uses of segmental duration in English: Acoustic and perceptual evidence. Journal of the Acoustical Society of America, 59, 1208–21.Google Scholar
Knight, R. (2011). Assessing the temporal reliability of rhythm metrics. Journal of the International Phonetic Association, 41(3), 271–81.Google Scholar
Kohler, K. (2009). Rhythm in speech and language: A new research paradigm. Phonetica, 66, 2945.Google Scholar
Lee, C. S. & Todd, N. P. M. A. (2004). Towards an auditory account of speech rhythm: Application of a model of the auditory ‘primal-sketch’ to two multi-language corpora. Cognition, 9, 225–54.Google Scholar
Lehiste, I. (1977). Isochrony reconsidered. Journal of Phonetics, 5, 253–63.Google Scholar
Lerdahl, F. & Jackendoff, R. (1981). A Generative Theory of Tonal Music. Cambridge, MA: MIT Press.Google Scholar
Li, A. & Post, B. (2014). L2 acquisition of prosodic properties of speech rhythm. Studies in Second Language Acquisition, 36(2), 223–55.Google Scholar
Lin, H. & Wang, Q. (2007). Mandarin rhythm: An acoustic study. Journal of Chinese Language and Computing, 17(3), 127–40.Google Scholar
Lloyd James, A. (1940). Speech Signals in Telephony. London: Pitman & Sons.Google Scholar
Loehr, D. (2007). Aspects of rhythm in gesture and speech. Gesture, 72, 179214.Google Scholar
London, J. (2012). Hearing in Time: Psychological Aspects of Musical Meter. Oxford: Oxford University Press.Google Scholar
Loukina, A., Kochanski, G., Rosner, B., Keane, E. & Shih, C. (2011). Rhythm measures and dimensions of durational variation in speech. Journal of the Acoustical Society of America, 129(5), 3258–70.Google Scholar
Low, E. L., Grabe, E. & Nolan, F. (2000). Quantitative characterisations of speech rhythm: ‘Syllable-timing’ in Singapore English. Language and Speech, 43, 377401.Google Scholar
Lowit, A. (2014). Quantification of rhythm problems in disordered speech: A re-evaluation. Philosophical Transactions of the Royal Society B, 369 (1658). https://doi.org/10.1098/rstb.2013.0404.Google Scholar
Luo, H. & Poeppel, D. (2007). Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron, 54, 1001–10.Google Scholar
Mattys, S. L. & Melhorn, J. F. (2005). How do syllables contribute to the perception of spoken English? Insight from the migration paradigm. Language and Speech, 48(2), 223–53.Google Scholar
Miller, M. (1984). On the perception of rhythm. Journal of Phonetics, 12, 7583.Google Scholar
Mok, P. (2009). On the syllable-timing of Cantonese and Beijing Mandarin. Chinese Journal of Phonetics, 2, 148–54.Google Scholar
Molnar, M., Gervain, J. & Carreiras, M. (2014). Within-rhythm class native language discrimination abilities of Basque-Spanish monolingual and bilingual infants at 3.5 months of age. Infancy, 19(3), 326–37.Google Scholar
Moon-Hwan, C. (2004). Rhythm typology of Korean speech. Cognitive Processing, 5, 249–53.Google Scholar
Murty, L., Otake, T. & Cutler, A. (2007). Perceptual tests of rhythmic similarity: I. Mora rhythm. Language and Speech, 50, 7799.Google Scholar
Nakatani, L. H., O’Connor, K. D. & Aston, C. H. (1981). Prosodic aspects of American English speech rhythm. Phonetica, 38, 84106.Google Scholar
Nazzi, T. & Ramus, F. (2003). Perception and acquisition of linguistic rhythm by infants. Speech Communication, 41, 233–43.Google Scholar
Nazzi, T., Jusczyk, P. W. & Johnson, E. K. (2000). Language discrimination by English-learning 5-month-olds: Effects of rhythm and familiarity. Journal of Memory and Language, 43, 119.Google Scholar
Nespor, M. & Vogel, I. (1989). On clashes and lapses. Phonology, 6, 69116.CrossRefGoogle Scholar
Nolan, F. & Asu, E. L. (2009). The Pairwise Variability Index and coexisting rhythms in language. Phonetica, 66, 6477.Google Scholar
Nolan, F. & Jeon, H. (2014). Speech rhythm: A metaphor? Philosophical Transactions of the Royal Society B, p. 369. https://doi.org/10.1098/rstb.2013.0396.Google Scholar
Parker Jones, O. (2006). Durational variability and stress-timing in Hawaiian. In P. Warren and C. I. Watson, eds., Proceedings of the 11th Australian International Conference on Speech & Science Technology, pp. 417–20.Google Scholar
Pellegrino, F., Coupé, C. & Marsico, E. (2011). A cross-language perspective on speech information rate. Language, 87, 539–58.Google Scholar
Pike, K. (1945). The Intonation of American English. Ann Arbor, MI: University of Michigan Press.Google Scholar
Pointon, G. E. (1980). Is Spanish really syllable-timed? Journal of Phonetics, 8, 293304.Google Scholar
Pointon, G. E. (1995). Rhythm and duration in Spanish. In Lewis, J. W., ed., Studies in General and English Phonetics: Essays in Honour of Professor J. D. O’Connor. New York: Routledge, pp. 266–9.Google Scholar
Post, B. & Payne, E. (2018). Speech rhythm in development: What is the child acquiring? In Prieto, P. & Esteve-Gibert, N., eds., The Development of Prosody in First Language Acquisition. Amsterdam: John Benjamins, pp. 125–44.Google Scholar
Prieto, P., Vanrell, M., Astruc, L., Payne, E. & Post, B. (2012). Phonotactic and phrasal properties of speech rhythm: Evidence from Catalan, English, and Spanish. Speech Communication, 54(6), 681702.Google Scholar
Ramus, F., Nespor, M. & Mehler, J. (1999). Correlates of linguistic rhythm in the speech signal. Cognition, 73, 265–92.Google Scholar
Ramus, F., Dupoux, E. & Mehler, J. (2003). The psychological reality of rhythm class: Perceptual studies. In Proceedings of the 15th International Congress of Phonetic Sciences, Barcelona, pp. 337–40.Google Scholar
Renwick, M. E. L. (2013). Quantifying rhythm: Interspeaker variation in %V. Proceedings of Meetings on Acoustics (POMA), 14, 060011. http://dx.doi.org/10.1121/1.4854657.Google Scholar
Roach, P. (1982). On the distinction between ‘stress-timed’ and ‘syllable-timed’ languages. In Crystal, D., ed., Linguistic Controversies: Essays in Linguistic Theory and Practice in Honour of F. R. Palmer. London: Edward Arnold, pp. 73–9.Google Scholar
Rouas, J., Farinas, J., Pellegrino, F. & André-Obrecht, R. (2005). Rhythmic unit extraction and modelling for automatic language identification. Speech Communication, 47, 436–56.Google Scholar
Scott, D., Isard, S. D. & de Boysson-Bardies, B. (1985). Perceptual isochrony in English and French. Journal of Phonetics, 13, 155–62.Google Scholar
Sebastian, N. & Costa, A. (1997). Metrical information in speech segmentation in Spanish. Language and Cognitive Processes, 12 (5–6), 883–7.Google Scholar
Skoruppa, K., Pons, F., Christophe, A., Bosch, L., Dupoux, E., Sebastián-Gallés, et al. (2009). Language-specific stress perception by nine-month-old French and Spanish infants. Developmental Science, 12(6), 914–19.Google Scholar
Stockmal, V., Markus, D. & Bond, D. (2005). Measures of native and non-native rhythm in a quantity language. Language and Speech, 48, 5563.Google Scholar
Tajima, K. & Port, R. F. (2003). Speech rhythm in English and Japanese. In Local, J., Ogden, R. & Temple, R., eds., Phonetic Interpretation: Papers in Laboratory Phonology VI. Cambridge: Cambridge University Press, pp. 322–39.Google Scholar
Tan, R. S. K. & Low, E. L. (2014). Rhythmic patterning in Malaysian and Singapore English. Language and Speech, 57(2), 196214.Google Scholar
Tilsen, S. (2016). Selection and coordination: The articulatory basis for the emergence of phonological structure. Journal of Phonetics, 55, 5377.Google Scholar
Tilsen, S. & Arvaniti, A. (2013). Speech rhythm analysis with decomposition of the amplitude envelope: Characterizing rhythmic patterns within and across languages. Journal of the Acoustical Society of America, 134(1), 628–39.Google Scholar
Tsiartsioni, E. (2003). The Acquisition of Features of Rhythm and Stop Voicing in Greek and English L2. Unpublished M.Phil. Dissertation, Trinity College Dublin.Google Scholar
Turk, A. E. & Shattuck-Hufnagel, S. (2000). Word-boundary-related duration patterns in English. Journal of Phonetics, 28, 397440.Google Scholar
Tzakosta, M. (2004). Acquiring variable stress in Greek: An Optimality-Theoretic approach. Journal of Greek Linguistics, 5, 97125.Google Scholar
Vaissière, J. (1991). Rhythm, accentuation and final lengthening in French. In Sundberg, J., Nord, L. & Carlson, R., eds., Music, Language, Speech and Brain. London: Palgrave, pp. 108–20.Google Scholar
Wagner, P. S. & Dellwo, V. (2004). Introducing YARD (Yet Another Rhythm Determination) and re-introducing isochrony to rhythm research. Proceedings of Speech Prosody, Nara, Japan, 2004. www.isca-speech.org/iscaweb/index.php/archive/online-archive.Google Scholar
Warner, N. & Arai, T. (2001). Japanese mora-timing: A review. Phonetica, 58, 125.Google Scholar
White, L. & Mattys, S. L. (2007). Calibrating rhythm: First language and second language studies. Journal of Phonetics, 35, 501–22.Google Scholar
White, L., Mattys, S. L. & Wiget, L. (2012). Language categorization by adults is based on sensitivity to durational cues, not rhythm class. Journal of Memory and Language, 66, 665–79.Google Scholar
Wiget, L., White, L., Schuppler, B., Grenon, I., Rauch, O. & Mattys, S. L. (2010). How stable are acoustic metrics of contrastive speech rhythm? Journal of the Acoustical Society of America, 127, 1559–69.Google Scholar
Woodrow, H. (1951). Time perception. In Stevens, S. S., ed., Handbook of Experimental Psychology. New York: Wiley, pp. 1224–36.Google Scholar
Zawaydeh, B. A., Tajima, K. & Kitahara, M. (2002). Discovering Arabic rhythm through a speech cycling task. In Parkinson, D. B. & Benmamoun, E., eds., Perspectives on Arabic Linguistics XIII-XIV. Amsterdam: John Benjamins, pp. 3958.Google Scholar

13.7 References

Beranek, L. L. (1949). Acoustical Measurements. Melville, NY: Acoustical Society of America [revised edition 1988].Google Scholar
Bigi, B. (2015). SPPAS – Multi-lingual approaches to the automatic annotation of speech. The Phonetician (International Society of Phonetic Sciences), 111–112(I–II), 5469.Google Scholar
Boersma, P & Weenink, D. (2019). Praat: Doing Phonetics by Computer [computer program]. Version 6.0.56, June 2019, www.praat.org.Google Scholar
Braun, M. (2001). Speech mirrors norm-tones: Absolute pitch as a normal but precognitive trait. Acoustics Research Letters Online, 2(3), 8590.Google Scholar
Braun, M. (2006). A retrospective study of the spectral probability of spontaneous otoacoustic emissions: Rise of octave shifted second mode after infancy. Hearing Research, 215, 3946.Google Scholar
Braun, M. & Chaloupka, V. (2005). Carbamazepine induced pitch shift and octave space representation. Hearing Research, 210, 8592.Google Scholar
Brøndsted, T. (1997). Intonation contours distorted by tone patterns of stress groups and word accent. In Botinis, A., ed., Intonation: Theory, Models and Applications (Proceedings of an ISCA workshop). Athens: Athanasopoulos, pp. 55–8.Google Scholar
Chentir, A., Guerti, M. & Hirst, D. J. (2009). Extraction of standard Arabic micromelody. Journal of Computer Science, 5(2), 86–9.Google Scholar
Cho, H. & Rauzy, S. (2008). Phonetic pitch movements of accentual phrases in Korean read speech. In Proceedings of the 4th International Conference on Speech Prosody, Campinas, Brazil.Google Scholar
De Looze, C. (2010). Analyse et interprétation de l’empan temporel des variations prosodiques en français et en anglais. PhD thesis, Université de Provence, Aix-en-Provence, France.Google Scholar
De Looze, C. & Hirst, D. J. (2008). Detecting changes in key and range for the automatic modelling and coding of intonation. In Proceedings of 4th International Conference on Speech Prosody. Campinas, Brazil, pp. 135–8.Google Scholar
De Looze, C. & Hirst, D. J. (2014). The OMe (Octave-Median) scale: A natural scale for speech melody. Proceedings of the 7th International Conference on Speech Prosody, Dublin, pp. 910–13.Google Scholar
Di Cristo, A. & Hirst, D. J. (1986). Modelling French micromelody: Analysis and synthesis. Phonetica, 43 (1–3), 1130.Google Scholar
Fant, G. (1968). Analysis and synthesis of speech processes. In Malmberg, B., ed., Manual of Phonetics. Amsterdam: North Holland, pp. 173–7.Google Scholar
Fant, G. (2004). Speech Acoustics and Phonetics. Dordrecht: Kluwer.Google Scholar
Fourcin, A. J. & Abberton, E. (1971). First applications of a new laryngograph. Medical and Biological Illustration, 21, 172–82.Google Scholar
Fujisaki, H. (2004). Information, prosody, and modeling – with emphasis on tonal features of speech. In Proceedings of the Second International Conference on Speech Prosody, Nara, Japan, pp. 110.Google Scholar
Fujisaki, H. & Nagashima, S. (1969). A model for the synthesis of pitch contours of connected speech. Annual Report of the Engineering Research Institute, 28, 5360.Google Scholar
Gårding, E. (1998). Intonation in Swedish. In Hirst, D. J. and Di Cristo, A., eds., Intonation Systems: A Survey of Twenty Languages. Cambridge: Cambridge University Press, pp. 117–36.Google Scholar
Goldsmith, J. A. (1990). Autosegmental and Metrical Phonology. Cambridge, MA: Blackwell.Google Scholar
Graddol, D. (1986). Discourse specific pitch behaviour. In Johns Lewis, C., ed., Intonation in Discourse. Edinburgh: Croom Helm, pp. 221–38.Google Scholar
Halle, M. & Vergnaud, J.-R. (1987). An Essay on Stress. Cambridge, MA: MIT Press.Google Scholar
Hanson, H. (2009). Effects of obstruent consonants on fundamental frequency at vowel onset in English. Journal of the Acoustical Society of America, 125, 425–41.Google Scholar
’t Hart, J., Collier, R. & Cohen, A. (1990). A Perceptual Study of Intonation: An Experimental-Phonetic Approach to Speech Melody. Cambridge: Cambridge University Press.Google Scholar
Hermes, D. I. & van Gestel, I. E. (1991). The frequency scale of speech intonation. Journal of the Acoustical Society of America, 90, 97102.Google Scholar
Hess, W. (1983). Pitch Determination of Speech Signals: Algorithms and Devices. Belin: Springer-Verlag.Google Scholar
Hirst, D. J. (1981). Phonological implications of a production model of English intonation. Phonologica, 1980, 195201.Google Scholar
Hirst, D. J. (1983). Structures and categories in prosodic representations. In Cutler, A. & Ladd, D. R., eds., Prosody: Models & Measurements. Berlin: Springer, pp. 93109.Google Scholar
Hirst, D. J. (2007). A Praat plugin for Momel and INTSINT with improved algorithms for modelling and coding intonation. In Proceedings of the XVIth International Conference of Phonetic Sciences (paper 1443), Saarbrücken, pp. 1233–6.Google Scholar
Hirst, D. J. (2012). Diapason.praat. Praat script. www.researchgate.net/publication/327764721_diapason.Google Scholar
Hirst, D. J. (2015). ProZed: A speech prosody editor for linguists, using analysis-by-synthesis. In Hirose, K. & Tao, J., eds., Speech Prosody in Speech Synthesis. Modeling and Generation of Prosody for High Quality and Flexible Speech Synthesis. Berlin: Springer-Verlag, pp. 317.Google Scholar
Hirst, D. J. & Espesser, R. (1993). Automatic modelling of fundamental frequency using a quadratic spline function. Travaux de l’Institut de Phonétique d’Aix, 15, 7585.Google Scholar
Hirst, D. J., Di Cristo, A. & Espesser, R. (2000). Levels of representation and levels of analysis for intonation. In Horne, M., ed., Prosody: Theory and Experiment. Dordrecht: Kluwer Academic Publishers, pp. 5187.Google Scholar
Hirst, D. J., Cho, H., Kim, S. & Yu, H. (2007). Evaluating two versions of the Momel pitch modeling algorithm on a corpus of read speech in Korean. In Proceedings of INTERSPEECH, VIII. Antwerp, Belgium, pp. 1649–52.Google Scholar
House, A. & Fairbanks, G. (1953). The influence of consonant environment upon the secondary acoustical characteristics of vowels. Journal of the Acoustical Society of America, 25, 105–13.Google Scholar
House, D. (1990). Tonal Perception in Speech. Lund: Lund University Press.Google Scholar
Iivonen, A. (1998). Intonation in Finnish. In Hirst, D. J. and Di Cristo, A., eds., Intonation Systems: A Survey of Twenty Languages. Cambridge: Cambridge University Press, pp. 331–47.Google Scholar
Imig, T. J. & Morel, A. (1985). Tonotopic organization in ventral nucleus of medial geniculate body in the cat. Journal of Neurophysiology, 53, 309–40.Google Scholar
Jassem, W. (1952). Intonation of Conversational English (educated Southern British). Wrocław: Wrocławskie Towarzystwo Naukowe [PDF available from the Speech and Language Data Repository, http://sldr.org/sldr000777/en].Google Scholar
Jones, D. (1909). Intonation Curves. Leipzig: Teubner.Google Scholar
Kiessling, A., Kompe, R., Niemann, H., Nöth, E. & Batliner, A. (1995). Voice source state as a source of information in speech recognition: Detection of laryngealizations. Natoasi Series of Computer and Systems Sciences, 147, 329–32.Google Scholar
Kuttner, F. A. (1975). Prince Chu Tsai-Yu’s life and work: A re-evaluation of his contribution to equal temperament theory. Ethnomusicology, 19(2), 163206.Google Scholar
Liberman, M. (2017). Pitch contour perception. http://languagelog.ldc.upenn.edu/nll/?p=34251.Google Scholar
Lindley, Mark. (2001). Well-tempered clavier. In Sadie, S. & Tyrrell, J., eds., The New Grove Dictionary of Music and Musicians, 2nd ed. London: Macmillan.Google Scholar
Liu, J., Wang, N., Li, J., Shi, B. & Wang, H. (2009). Frequency distribution of synchronized spontaneous otoacoustic emissions showing sex-dependent differences and asymmetry between ears in 2- to 4- day-old neonates. International Journal of Pediatric Otorhinolaryngology, 73(5), 731–6.Google Scholar
Maghbouleh, A. (1998). Tobi accent type recognition. In Proceedings of the Sixth International Conference on Spoken Language Processing, Paper 0632.Google Scholar
Martin, P. (1981). Extraction de la fréquence fondamentale par intercorrélation avec une fonction peigne. 12e Journées d’Etude sur la Parole, SFA, Montréal.Google Scholar
Mertens, P. (2004). The Prosogram: Semi-automatic transcription of prosody based on a tonal perception model. In Proceedings of the 2nd International Conference on Speech Prosody, Nara, Japan, pp. 549–52.Google Scholar
Mertens, P. (2018). Prosogram, v 2.15. Pitch contour stylization based on a tonal perception model. https://sites.google.com/site/prosogram/home.Google Scholar
Mertens, P. & d’Alessandro, C. (1995). Pitch contour stylization using a tonal perception model. In Proceedings of the 13th International Congress of Phonetic Sciences vol. 4, pp. 228–31.Google Scholar
Mixdorff, H. -J. (1999). A novel approach to the fully automated extraction of Fujisaki model parameters. In Proceedings of ICASSP 1999, pp. 1281–4.Google Scholar
Moore, B. C. J. & Glasberg, B. R. (1983). Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. Journal of the Acoustical Society of America, 74, 750–3.Google Scholar
Moore, B. C. J. & Glasberg, B. R. (1996). A revision of Zwicker’s loudness model. Acta Acustica, 82, 335–45.Google Scholar
Morel, A. (1980). Codage des sons dans le corps genouille médian du chat: évaluation de l’organisation tonotopique de ses différents noyaux, PhD dissertation, Université de Lausanne, Juris, Zurich.Google Scholar
Morest, D. K. (1965). The laminar structure of the medial geniculate body of the cat. Journal of Anatomy 99, 143–60.Google Scholar
Nolan, F. (2003). Intonational equivalence: an experimental evaluation of pitch scales. In Proceedings of the 15th International Congress of Phonetic Sciences, Barcelona, pp. 771–4.Google Scholar
Nooteboom, S. (1999). The prosody of speech melody and rhythm. In Hardcastle, W. J. & Laver, J., eds., The Handbook of Phonetic Sciences. London: Blackwell, pp. 640–73.Google Scholar
O’Shaughnessy, D. (1987). Speech Communication: Human and Machine. Reading, MA: Addison-Wesley, p. 150.Google Scholar
Paeschke, A. & Sendlmeier, W. F. (2000). Prosodic characteristics of emotional speech: Measurements of fundamental frequency movements. In Proceedings of the ISCA Workshop on Speech and Emotion, Belfast, Ireland, pp. 7580.Google Scholar
Rossi, M. (1971). Le seuil de glissando ou seuil de perception des variations tonales pour les sons de la parole. Phonetica, 23, 133.Google Scholar
Silverman, K. (1986). f0 segmental cues depend on intonation: The case of the rise after voiced stops. Phonetica, 43(1–3), 7691.Google Scholar
Steele, J. (1779). Prosodia Rationalis: or, an Essay towards Establishing the Melody and Measure of Speech, to be Expressed and Perpetuated by Peculiar Symbols, 2nd ed. London: J. Nichols.Google Scholar
Stevens, S., Volkman, J. & Newman, E. (1937). A scale for the measurement of the psychological magnitude of pitch. Journal of the Acoustical Society of America, 8, 185–90.Google Scholar
Taylor, P. (1995). The rise/fall/connection model of intonation. Speech Communication, 15(1–2), 169–86.Google Scholar
Traunmüller, H. (1990). Analytical expressions for the tonotopic sensory scale. Journal of the Acoustical Society of America, 88, 97100.Google Scholar
Traunmüller, H. (1997). Auditory scales of frequency representation. www2.ling.su.se/staff/hartmut/bark.htm.Google Scholar
Umesh, S., Cohen, L. & Nelson, D. (1999). Fitting the Mel-scale. In Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing, 1, Phoenix, Arizona, USA, March 1999, pp. 217–20.Google Scholar
Véronis, J., Hirst, D. J. & Ide, N. (1994). NL and speech in the Multext project. In Proceedings of AAAI Workshop on Integration of Natural Language and Speech, Seattle, USA, pp. 72–8.Google Scholar
Wightman, C. & Campbell, N. (1995). Improved labeling of prosodic structure. In IEEE Transactions on Speech and Audio Processing.Google Scholar
Wikipedia. (2018). Pitch detection algorithm. https://en.wikipedia.org/wiki/Pitch_detection_algorithm.Google Scholar
Wright, A. A., Rivera, J. J., Hulse, S. H., Shyan, M. & Neiworth, J. J. (2000). Music perception and octave generalization in rhesus monkeys. Journal of Experimental Psychology Gen 129 (3), 291307.Google Scholar
Zwicker, E. (1961). Subdivision of the audible frequency range into critical bands (Frequenz-gruppen). Journal of the Acoustical Society of America, 33, 248.Google Scholar
Zwirner, E. & Zwirner, Z. K. (1937). Über das Hören und Messen des Sprachmelodie, Achiv für vergleichende Phonetik 1, pp. 3547.Google Scholar

14.7 References

Anderson, V. B. (2000). Giving Weight to Phonetic Principles: The Case of Place of Articulation in Western Arrernte. PhD Thesis, UCLA.Google Scholar
Articulate Instruments Ltd. (2010). Articulate Assistant User Guide: Version 1.18, Edinburgh, UK: Articulate Instruments Ltd.Google Scholar
Bell-Berti, F. & Krakow, R. A. (1991). Anticipatory velar lowering: A coproduction account. Journal of the Acoustical Society of America, 90(1), 112–23.Google Scholar
Bernhardt, B., Gick, B., Bacsfalvi, P. & Adler-Bock, M. (2005). Ultrasound in speech therapy with adolescents and adults. Clinical Linguistics and Phonetics, 19(6–7), 605–17.Google Scholar
Bouhuys, A., Proctor, D. F. & Mead, J. (1966). Kinetic aspects of singing. Journal of Applied Physiology, 21(2), 483–96.Google Scholar
Browman, C. & Goldstein, L. (1992). Articulatory Phonology: An overview. Phonetica, 49(3–4), 155–80.Google Scholar
Brunner, J., Fuchs, S. & Perrier, P. (2009). On the relationship between palate shape and articulatory behavior. Journal of the Acoustical Society of America, 125(6), 3936–49.Google Scholar
Byrd, D. & Saltzman, E. (1998). Intragestural dynamics of multiple prosodic boundaries. Journal of Phonetics, 26(2), 173–99.Google Scholar
Byrd, D., Tobin, S., Bresch, E. & Narayanan, S. (2009). Timing effects of syllable structure and stress on nasals: A real-time MRI examination. Journal of Phonetics, 37(1), 97110.Google Scholar
Chen, E. (2017, August 20). Guess the Word. Retrieved 26 September 2018, from https://ericlgame.itch.io/guess-the-word.Google Scholar
Cheng, H. Y., Murdoch, B. E., Goozée, J. V. & Scott, D. (2007). Electropalatographic assessment of tongue-to-palate contact patterns and variability in children, adolescents, and adults. Journal of Speech, Language, and Hearing Research, 50(2), 375–92.Google Scholar
Chiba, T. & Kajiyama, M. (1941). The Vowel: Its Nature and Structure. Tokyo: Tokyo-Kaiseikan.Google Scholar
Childers, D. G. & Krishnamurthy, A. K. (1985). A critical review of electroglottography. Critical Reviews in Biomedical Engineering, 12(2), 131–61.Google Scholar
Cusack, R., Cumming, N., Bor, D., Norris, D. & Lyzenga, J. (2005). Automated post-hoc noise cancellation tool for audio recordings acquired in an MRI scanner. Human Brain Mapping, 24(4), 299304.Google Scholar
Dart, S. N. (1991). Articulatory and acoustic properties of apical and laminal articulations. In UCLA Working Papers in Phonetics, 79, 1155.Google Scholar
Davidson, L. (2006). Comparing tongue shapes from ultrasound imaging using smoothing spline analysis of variance. Journal of the Acoustical Society of America, 120, 407–15.Google Scholar
Delvaux, V., Demolin, D., Harmegnies, B. & Soquet, A. (2008). The aerodynamics of nasalization in French. Journal of Phonetics, 36(4), 578606.Google Scholar
Demolin, D. (2011). Aerodynamic techniques for phonetic fieldwork. In Proceedings of the 17th International Congress of Phonetic Sciences. City University of Hong Kong: Hong Kong, 84–7.Google Scholar
Ellis, L. & Hardcastle, W. (2002). Categorical and gradient properties of assimilation in alveolar to velar sequences: Evidence from EPG and EMA data. Journal of Phonetics, 30(3), 373–96.Google Scholar
Esling, J. H. (1996). Pharyngeal consonants and the aryepiglottic sphincter. Journal of the International Phonetic Association, 26(2), 6588.Google Scholar
Esling, J. H., Fraser, K. E. & Harris, J. G. (2005). Glottal stop, glottalized resonants, and pharyngeals: A reinterpretation with evidence from a laryngoscopic study of Nuuchahnulth (Nootka). Journal of Phonetics, 33(4), 383410.Google Scholar
Esposito, C. M. (2012). An acoustic and electroglottographic study of White Hmong tone and phonation. Journal of Phonetics, 40(3), 466–76.Google Scholar
Fant, G. (1970). Acoustic Theory of Speech Production: with Calculations Based on X-Ray Studies of Russian Articulations, vol. 2. Berlin: Walter de Gruyter.Google Scholar
Firth, J. (1948). Word-palatograms and articulation. Bulletin of the School of Oriental and African Studies, 12(3–4), 857–64.Google Scholar
Fowler, C. A. & Saltzman, E. (1993). Coordination and coarticulation in speech production. Language and Speech, 36(2–3), 171–95.Google Scholar
Frisch, S. A. & Wodzinski, S. M. (2016). Velar–vowel coarticulation in a virtual target model of stop production. Journal of Phonetics, 56, 5265.Google Scholar
Fuchs, S. & Koenig, L. L. (2009). Simultaneous measures of electropalatography and intraoral pressure in selected voiceless lingual consonants and consonant sequences of German. Journal of the Acoustical Society of America, 126(4), 1988.Google Scholar
Fujimura, O., Kiritani, S. & Ishida, H. (1973). Computer controlled radiography for observation of movements of articulatory and other human organs. Computers in Biology and Medicine, 3(4), 371–84.Google Scholar
Gafos, A. I., Charlow, S., Shaw, J. A. & Hoole, P. (2014). Stochastic time analysis of syllable-referential intervals and simplex onsets. Journal of Phonetics, 44, 152–66.Google Scholar
Gibbon, F. E. (1990). Lingual activity in two speech-disordered children’s attempts to produce velar and alveolar stop consonants: Evidence from electropalatographic (EPG) data. International Journal of Language & Communication Disorders, 25(3), 329–40.Google Scholar
Giles, S. B. & Moll, K. L. (1975). Cinefluorographic study of selected allophones of English /l/. Phonetica, 31(3–4), 206–27.Google Scholar
Hardcastle, W. J. (1972). The use of electropalatography in phonetic research. Phonetica, 25(4), 197215.Google Scholar
Herbst, C. T., Fitch, W. T. & Švec, J. G. (2010). Electroglottographic wavegrams: A technique for visualizing vocal fold dynamics noninvasively. Journal of the Acoustical Society of America, 128(5), 3070–8.Google Scholar
Horiguchi, S. & Bell-Berti, F. (1987). The Velotrace: A device for monitoring velar position. The Cleft Palate Journal, 24(2), 104–11.Google Scholar
Isshiki, N. (1964). Regulatory mechanism of voice intensity variation. Journal of Speech, Language, and Hearing Research, 7(1), 1729.Google Scholar
Johnson, K. (2003). Acoustic and Auditory Phonetics, 2nd ed. Oxford: Blackwell.Google Scholar
Keating, P. A. (1990). The window model of coarticulation: articulatory evidence. In Kingston, J. & Beckman, M., eds., Papers in Laboratory Phonology I. Cambridge: Cambridge University Press, pp. 451470.Google Scholar
Keating, P. A. (1991). Coronal places of articulation. In Paradis, C. & Prunet, J., eds., Phonetics and Phonology, Volume 2: The Special Status of Coronals. Cambridge, MA: Academic Press, pp. 2948.Google Scholar
Kelsey, C. A., Minifie, F. D. & Hixon, T. (1969). Applications of ultrasound in speech research. Journal of Speech, Language, and Hearing Research, 12(3), 564.Google Scholar
Kemp, J. A. (1995). Phonetics: Precursors to modern approaches. In E. F. K. Koerner & R. E. Asher, eds., Concise History of the Language Sciences. Amsterdam: Elsevier, pp. 371–88.Google Scholar
Khatiwada, R. (2007). Nepalese retroflex stops: a static palatography study of inter-and intra-speaker variability. In Proceedings of the 8th INTERSPEECH, pp. 1422–5.Google Scholar
Krakow, R. A. (1999). Physiological organization of syllables: A review. Journal of Phonetics, 27(1), 2354.Google Scholar
Krausert, C. R., Olszewski, A. E., Taylor, L. N., McMurray, J. S., Dailey, S. H. & Jiang, J. J. (2011). Mucosal wave measurement and visualization techniques. Journal of Voice, 25(4), 395405.Google Scholar
Ladefoged, P. (1968). A Phonetic Study of West African Languages: An Auditory-Instrumental Survey. Cambridge: Cambridge University Press.Google Scholar
Li, M., Akgul, Y. & Kambhamettu, C. (2005). EdgeTrak [Computer Program]. Version 1.0.0.4.Google Scholar
Lieberman, P. (1968). Direct comparison of subglottal and esophageal pressure during speech. Journal of the Acoustical Society of America, 43(5), 1157–64.Google Scholar
Lin, S., Beddor, P. S. & Coetzee, A. W. (2014). Gestural reduction, lexical frequency, and sound change: A study of post-vocalic /l/. Laboratory Phonology, 5(1), 936.Google Scholar
Lin, S. & Demuth, K. (2015). Children’s acquisition of English onset and coda /l/: Articulatory evidence. Journal of Speech, Language, and Hearing Research, 58(1), 1327.Google Scholar
Lingala, S. G., Sutton, B. P., Miquel, M. E. & Nayak, K. S. (2016). Recommendations for real-time speech MRI: Real-Time Speech MRI. Journal of Magnetic Resonance Imaging, 43(1), 2844.Google Scholar
Lohscheller, J., Eysholdt, U., Toy, H. & Dollinger, M. (2008). Phonovibrography: Mapping high-speed movies of vocal fold vibrations into 2-D diagrams for visualizing and analyzing the underlying laryngeal dynamics. IEEE Transactions on Medical Imaging, 27(3), 300–9.Google Scholar
McAllister Byun, T. & Hitchcock, E. R. (2012). Investigating the use of traditional and spectral biofeedback approaches to intervention for /r/ misarticulation. American Journal of Speech-Language Pathology, 21(3), 207–21.Google Scholar
McAllister Byun, T., Buchwald, A. & Mizoguchi, A. (2016). Covert contrast in velar fronting: An acoustic and ultrasound study. Clinical Linguistics & Phonetics, 30(3–5), 249–76.Google Scholar
Ménard, L., Toupin, C., Baum, S. R., Drouin, S., Aubin, J. & Tiede, M. (2013). Acoustic and articulatory analysis of French vowels produced by congenitally blind adults and sighted adults. Journal of the Acoustical Society of America, 134(4), 2975–87.Google Scholar
Mielke, J., Baker, A. & Archangeli, D. (2010). Variability and homogeneity in American English /r/ allophony and /s/ retraction. In Fougeron, C., Kuehnert, B., Imperio, M. & Vallee, N., eds., Papers in Laboratory Phonology X. Berlin: Mouton De Gruyter, pp. 699730.Google Scholar
Mielke, J., Olson, K. S., Baker, A. & Archangeli, D. (2011). Articulation of the Kagayanen interdental approximant: An ultrasound study. Journal of Phonetics, 39(3), 403–12.Google Scholar
Mielke, J., Carignan, C. & Thomas, E. R. (2017). The articulatory dynamics of pre-velar and pre-nasal /æ/-raising in English: An ultrasound study. Journal of the Acoustical Society of America, 142(1), 332–49.Google Scholar
Miller, A. & Finch, K. (2011). Corrected high-frame rate anchored ultrasound with software alignment. Journal of Speech, Language, and Hearing Research, 54(2), 471–86.Google Scholar
Moisik, S. R., Lin, H. & Esling, J. H. (2014). A study of laryngeal gestures in Mandarin citation tones using simultaneous laryngoscopy and laryngeal ultrasound (SLLUS). Journal of the International Phonetic Association, 44(01), 2158.Google Scholar
Narayanan, S., Nayak, K., Lee, S., Sethy, A. & Byrd, D. (2004). An approach to real-time magnetic resonance imaging for speech production. Journal of the Acoustical Society of America, 115(4), 1771–6.Google Scholar
Narayanan, S., Toutios, A., Ramanarayanan, V., Lammert, A., Kim, J., Lee, S. et al. (2014). Real-time magnetic resonance imaging and electromagnetic articulography database for speech production research (TC). Journal of the Acoustical Society of America, 136(3), 1307–11.Google Scholar
Öhman, S. & Stevens, K. (1963). Cineradiographic studies of speech: Procedures and objectives. Journal of the Acoustical Society of America, 35(11), 1889.Google Scholar
Ramanarayana, V., Tilsen, S., Proctor, M., Töger, J., Goldstein, L., Nayak, K. S. et al. (2018). Analysis of speech production real-time MRI. Computer Speech & Language, 52, 122.Google Scholar
Rothenberg, M. (1992). A multichannel electroglottograph. Journal of Voice, 6(1), 3643.Google Scholar
Russell, G. O. (1929). The mechanism of speech. Journal of the Acoustical Society of America, 1(1), 83109.Google Scholar
Schönle, P. W., Gräbe, K., Wenig, P., Höhne, J., Schrader, J. & Conrad, B. (1987). Electromagnetic articulography: Use of alternating magnetic fields for tracking movements of multiple points inside and outside the vocal tract. Brain and Language, 31(1), 2635.Google Scholar
Scobbie, J. M., Gibbon, F., Hardcastle, W. J. & Fletcher, P. (2000). Covert contrast as a stage in the acquisition of phonetics and phonology. In Broe, M. & Pierrehumbert, J., eds., Papers in Laboratory Phonology V. Cambridge: Cambridge University Press, pp. 194207.Google Scholar
Scobbie, J. M., Wrench, A. & van der Linden, M. (2008). Head-probe stabilisation in ultrasound tongue imaging using a headset to permit natural head movement. In Proceedings of the Eighth International Seminar on Speech Production, Strasbourg, pp. 373–6.Google Scholar
Scobbie, J. M., Turk, A., Geng, C., King, S., Lickley, R. & Richmond, K. (2013). The Edinburgh Speech Production Facility DoubleTalk Corpus. In Proceedings of the 14th INTERSPEECH, pp. 764–6.Google Scholar
Stevens, K. N. (1989). On the quantal nature of speech. Journal of Phonetics, 17, 346.Google Scholar
Stevens, K. N. & House, A. S. (1955). Development of a quantitative description of vowel articulation. Journal of the Acoustical Society of America, 27(3), 484–93.Google Scholar
Stone, M. (2005). A guide to analysing tongue motion from ultrasound images. Clinical Linguistics and Phonetics, 19(6–7), 455502.Google Scholar
Stone, M., Davis, E. P., Douglas, A. S., Aiver, M. N., Gullapalli, R., Levine, W. S. et al. (2001). Modeling tongue surface contours from cine-MRI images. Journal of Speech, Language, and Hearing Research, 44(5), 1026–40.Google Scholar
Strenger, F. (1959). Methods for direct and indirect measurement of the sub-glottal air-pressure in phonation. Studia Linguistica, 13(1–2), 98112.Google Scholar
Styler, W., Krivokapic, J., Parrell, B. & Kim, J. (2017). Using machine learning to identify articulatory gestures in time course data. Journal of the Acoustical Society of America, 142(4), 2579.Google Scholar
Švec, J. G. & Schutte, H. K. (1996). Videokymography: High-speed line scanning of vocal fold vibration. Journal of Voice, 10(2), 201–5.Google Scholar
Tabain, M., Fletcher, J. & Butcher, A. (2011). An EPG study of palatal consonants in two Australian languages. Language and Speech, 54(2), 265–82.Google Scholar
Titze, I. R. (1990). Interpretation of the electroglottographic signal. Journal of Voice, 4(1), 19.Google Scholar
Westbury, J., Milenkovic, P., Weismer, G. & Kent, R. (1990). X-ray microbeam speech production database. Journal of the Acoustical Society of America, 88(S1), S56–S56.Google Scholar
Wrench, A. (1999). MOCHA-TIMIT, speech database. Department of Speech and Language Sciences, Queen Margaret University College, Edinburgh.Google Scholar
Yehia, H., Rubin, P. & Vatikiotis-Bateson, E. (1998). Quantitative association of vocal-tract and facial behavior. Speech Communication, 26(1–2), 2343.Google Scholar
Yuan, J. & Liberman, M. (2008). Speaker identification on the SCOTUS corpus. Journal of the Acoustical Society of America, 123(5), 5687–890.Google Scholar
Zharkova, N., Gibbon, F. E. & Lee, A. (2017). Using ultrasound tongue imaging to identify covert contrasts in children’s speech. Clinical Linguistics & Phonetics, 31(1), 2134.Google Scholar
Zhou, X., Espy-Wilson, C., Boyce, S., Tiede, M., Holland, C. & Choe, A. (2008). A magnetic resonance imaging-based articulatory and acoustic study of ‘retroflex’ and ‘bunched’ American English /r/. Journal of the Acoustical Society of America, 103(6), 4466–81.Google Scholar
Zue, V., Seneff, S. & Glass, J. (1990). Speech database development at MIT: TIMIT and beyond. Speech Communication, 9(4), 351–6.Google Scholar

15.7 References

Adank, P., Stewart, A. J., Connell, I. & Wood, J. (2013). Accent imitation positively affects language attitudes. Frontiers of Psychology, 4, 280.Google Scholar
Bachorowski, J. A. & Owren, M. J. (1999). Acoustic correlates of talker sex and individual talker identity are present in a short vowel segment produced in running speech. Journal of the Acoustical Society of America, 106(2), 1054–63.Google Scholar
Black, A. W., Zen, H. & Tokuda, K. (2007). Statistical parametric speech synthesis. Proceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 4, pp. IV-1229–32.Google Scholar
Cohen, M. H., Giangola, J. P. & Balogh, J. (2004). Voice User Interface Design. Redwood City, CA: Addison-Wesley Longman.Google Scholar
Collins, S. A. (2000). Male voices and women’s choices. Animal Behavior, 60(6), 773–80.Google Scholar
Feinberg, D. R., Jones, B. C., Little, A. C. & Perrett, D. I. (2005). Manipulations of fundamental and formant frequencies influence the attractiveness of human male voices. Animal Behavior, 69(3), 561–8.Google Scholar
Flanagan, J. L. (1965). Speech Analysis, Synthesis and Perception. Berlin: Springer-Verlag.Google Scholar
Flanagan, J. L. (1972). Voices of men and machines. Journal of the Acoustical Society of America, 51, 1375–87.Google Scholar
Fitch, W. T. & Giedd, J. (1999). Morphology and development of the human vocal tract: A study using magnetic resonance imaging. Journal of the Acoustical Society of America, 106(3), 1511–22.Google Scholar
Hartman, D. E. & Danhauer, J. L. (1976). Perceptual features of speech for males in four perceived age decades. Journal of the Acoustical Society of America, 59(3), 713–15.Google Scholar
Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–80.Google Scholar
Kalchbrenner, N., Elsen, E., Simonyan, K., Noury, S., Casagrande, N., Lockhart, E. et al. (2018). Efficient neural audio synthesis, arXiv, 1802.08435.Google Scholar
Jia, Y., Zhang, Y., Weiss, R. Wang, Q., Shen, J., Ren, F. et al. (2019). Transfer learning from speaker verification to multispeaker text-to-speech synthesis. arXiv, 1806.04558.Google Scholar
Kinsella, B. (2019). Why tech giants are so desperate to provide your voice assistant. Harvard Business Review, https://hbr.org/2019/05/why-tech-giants-are-so-desperate-to-provide-your-voice-assistant.Google Scholar
Knudson, J. (2019). Digital publishers prepare for the voice revolution. Econtent Magazine, www.econtentmag.com/Articles/Editorial/Feature/Digital-Publishers-Prepare-for-the-Voice-Revolution-130768.htm.Google Scholar
Light, J. C. & McNaughton, D. (2014). Communicative competence for individuals who require augmentative and alternative communication: A new definition for a new era of communication? Augmentative and Alternative Communication, 30(1), 118.Google Scholar
Linville, S. (1998). Acoustic correlates of perceived versus actual sexual orientation in men’s speech. Pholia Phoniatrica et Logopaedica, 50(1), 3548.Google Scholar
Munson, B., McDonald, E., DeBoe, N. & White, A. (2006). The acoustic and perceptual bases of judgments of women and men’s sexual orientation from read speech. Journal of Phonetics, 34(2), 202–40.Google Scholar
Peschke, C., Ziegler, W., Eisenberger, J. & Baumbaertner, A. (2012). Phonological manipulation between speech perception and production activated a parieto-frontal circuit. NeuroImage, 59, 788–99.Google Scholar
Pierrehumbert, J., Bent, T., Munson, B., Bradlow, A. R. & Bailey, J. M. (2004). The influence of sexual orientation on vowel production. Journal of the Acoustic Society of America, 116, 1905–8.Google Scholar
Rabiner, L. & Juang, B. J. (1993). Fundamentals of Speech Recognition. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Ridley, L. [Lost Voice Guy]. (2012).Voice by Choice. Comedy sketch by Lee Ridley, Lost VoiceGuy[Video File]. Retrieved from www.youtube.com/watch?v=CMm_XL3Ipbo.Google Scholar
Schabus, D. (2009). Interpolation of Austrian German and Viennese Dialect/Sociolect in HMM-based Speech Synthesis. Thesis, Vienna University of Technology.Google Scholar
Smyth, R., Jacobs, G. & Rogers, H. (2003). Male voices and perceived sexual orientation: An experiment and theoretical approach. Language and Society, 32(2), 329–50.Google Scholar
Stevens, K. (1998). Acoustic Phonetics. Cambridge, MA: MIT Press.Google Scholar
Taylor, P. (2009). Text-to-Speech Synthesis. Cambridge: Cambridge University Press.Google Scholar
Tokuda, K., Nankaku, Y., Toda, T., Zen, H., Yamagishi, J. & Oura, K. (2013). Speech synthesis based on Hidden Markov Models. Proceedings of the IEEE, 101(5), 1234–52.Google Scholar
Toman, M. (2016). Transformation and Interpolation of Language Varieties for Speech Synthesis. Thesis, Vienna University of Technology.Google Scholar
Toman, M., Pucher, M. & Moosmüller, S. (2015). Unsupervised and phonologically controlled interpolation of Austrian German language varieties for speech synthesis. Speech Communication, 72, 176–93.Google Scholar
Toman, M, Meltzner, G. S. & Patel, R. (2018). Data requirements and augmentation for DNN-based speech synthesis from crowdsourced data. In Proceedings of INTERSPEECH 2018, Hyderabad, pp. 2878–82.Google Scholar
van den Oord, A, Dieleman, S., Zen, H., Simonya, K, Vinyals, O., Graves, A. et al. (2016). WaveNet: A Generative Model for Raw Audio. arXiv: 1609.03499.Google Scholar
Walton, J. & Orlikoff, R. (1994). Speaker race identification from acoustic cues in the vocal signal. Journal of Speech, Language, and Hearing Research, 37(4), 738–45.Google Scholar
Wang, Y., Skerry-Ryan, R. J., Stanton, D., Wu, Y., Weiss, R. J., Jaitly, N. et al. (2017). Tacotron: Towards end-to-end speech synthesis. Proceedings of INTERSPEECH 2017, Stockholm, pp. 4006–10.Google Scholar
Young, S. (2010). Cognitive user interfaces. IEEE Signal Processing Magazine, 27(3), 128–40.Google Scholar
Zen, H., Senior, A. and Schuster, M. (2013). Statistical parametric speech synthesis using deep neural networks. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 7962–6.Google Scholar
Zen, H., Agiomyrgiannakis, Y., Egberts, N., Henderson, F. & Szczepaniak, P. (2016). Fast, compact, and high quality LSTM-RNN-based statistical parametric speech synthesizers for mobile devices. In Proceedings of INTERSPEECH 2016, San Francisco, pp. 2273–7.Google Scholar
Zuckerman, M. & Miyake, K. (1993). The attractive voice: What makes it so? Journal of Nonverbal Behavior, 17(2), 119–35.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×