Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T14:00:41.876Z Has data issue: false hasContentIssue false

6 - Neuroscientific and Psychological Approaches to Incentives

Commonality and Multifaceted Views

from Part II - Rewards, Incentives, and Choice

Published online by Cambridge University Press:  15 February 2019

K. Ann Renninger
Affiliation:
Swarthmore College, Pennsylvania
Suzanne E. Hidi
Affiliation:
University of Toronto
Get access

Summary

While research on neuroscience posits that intrinsic and extrinsic incentives involve a single, common psychological process based on a reinforcement learning model (forming a “commonality view” on motivation), research in psychology has made a strong distinction between these two types of incentives (forming a “multifaceted view” on motivation), often even viewing them as competitive. Although they are not necessarily contradictory, I argue that these two meta-theoretical views have biased and prevented our comprehensive understanding of motivation and its relation to learning. I suggest ways that these different perspectives can inform each other, contributing to our broader understanding of human motivation and learning. These examples include the effects of reward on learning, the way people can transform one type of motivation to another, and a rewarding view for effort, challenge, and negative feedback. The arguments presented in this chapter underscore the vital importance of cross-disciplinary work on motivation and learning in future studies.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., & Gabrieli, J. D. E. (2006). Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron, 50(3), 507–17. doi: 10.1016/j.neuron.2006.03.036.Google Scholar
Aharon, I., Etcoff, N., Ariely, D., Chabris, C. F., O'Connor, E., & Breiter, H. C. (2001). Beautiful faces have variable reward value: fMRI and behavioral evidence. Neuron, 32(3), 537–51. doi: 10.1016/s0896-6273(01)00491-3.Google Scholar
Ames, C. (1992). Achievement goals and the classroom motivational climate. In Schunk, D. H. & Meece, J. L. (Eds.), Student perceptions in the classroom (pp. 327–48). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Aoki, R., Matsumoto, M., Yomogida, Y., Izuma, K., Murayama, K., Sugiura, A., ... Adolphs, R. (2014). Social equality in the number of choice options is represented in the ventromedial prefrontal cortex. Journal of Neuroscience, 34, 6413–21.Google Scholar
Aronson, E. & Mills, J. (1959). The effect of severity of initiation on liking for a group. The Journal of Abnormal and Social Psychology, 59(2), 177–81. doi: 10.1037/h0047195.Google Scholar
Atkinson, J. W. (1957). Motivational determinants of risk-taking behavior. Psychological Review, 64, 359–72.Google Scholar
Balleine, B. W., Daw, N. D., & O'Doherty, J. P. (2008). Multiple forms of value learning and the function of dopamine. In Glimcher, P. W., Camerer, C. F., Poldrack, R. A., & Fehr, E. (Eds.), Neuroeconomics: Decision-making and the brain (pp. 367–88). New York, NY: Academic Press.Google Scholar
Bandura, A. (1997). Self-efficacy: The exercise of control. New York, NY: Freeman.Google Scholar
Baumeister, R. F. & Leary, M. R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117, 497529.Google Scholar
Berns, G. S., McClure, S. M., Pagnoni, G., & Montague, P. R. (2001). Predictability modulates human brain response to reward. Journal of Neuroscience, 21(8), 2793–8.Google Scholar
Berridge, K. C. (2001). Reward learning: Reinforcement, incentives, and expectations. The Psychology of Learning and Motivation: Advances in Research and Theory, 40, 223–78.Google Scholar
Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. Physiology & Behavior, 81, 179209.Google Scholar
Bhanji, J. P. & Delgado, M. R. (2014). Perceived control influences neural responses to setbacks and promotes persistence. Neuron, 83(6), 1369–75. doi: 10.1016/j.neuron.2014.08.012.Google Scholar
Bindra, D. (1974). A motivational view of learning, performance, and behavior modification. Psychological Review, 81(3), 199213. doi: 10.1037/h0036330.Google Scholar
Bolles, R. C. (1972). Reinforcement, expectancy, and learning. Psychological Review, 79, 394409.Google Scholar
Botvinick, M. M., Huffstetler, S., & McGuire, J. T. (2009). Effort discounting in human nucleus accumbens. Cognitive, Affective & Behavioral Neuroscience, 9(1), 1627. doi: 10.3758/CABN.9.1.16.Google Scholar
Braver, T. S., Krug, M. K., Chiew, K. S., Kool, W., Westbrook, J. A., Clement, N. J., ... Somerville, L. H. (2014). Mechanisms of motivation-cognition interaction: Challenges and opportunities. Cognitive Affective & Behavioral Neuroscience, 14(2), 443–72.Google Scholar
Burton, K. D., Lydon, J. E., D'Alessandro, D. U., & Koestner, R. (2006). The differential effects of intrinsic and identified motivation on well-being and performance: Prospective, experimental, and implicit approaches to self-determination theory. Journal of Personality and Social Psychology, 91(4), 750–62. doi: 10.1037/0022-3514.91.4.750.Google Scholar
Camerer, C. F. & Hogarth, R. M. (1999). The effects of financial incentives in experiments: A review and capital-labor-production framework. Journal of Risk and Uncertainty, 19, 742.Google Scholar
Campbell-Meiklejohn, D. K., Bach, D. R., Roepstorff, A., Dolan, R. J., Frith, C. D. (2010). How the opinion of others affects our valuation of objects. Current Biology, 20(13), 1165–70. doi: 10.1016/j.cub.2010.04.055.Google Scholar
Cerasoli, C. P., Nicklin, J. M., & Ford, M. T. (2014). Intrinsic motivation and extrinsic incentives jointly predict performance: A 40-year meta-analysis. Psychological Bulletin, 140(4), 9801008. doi: 10.1037/a0035661.Google Scholar
Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York, NY: Harper and Row.Google Scholar
Daniel, R. & Pollmann, S. (2010). Comparing the neural basis of monetary reward and cognitive feedback during information-integration category learning. Journal of Neuroscience, 30(1), 4755. doi: 10.1523/jneurosci.2205-09.2010.CrossRefGoogle ScholarPubMed
Daniel, R. & Pollmann, S. (2012). Striatal activations signal prediction errors on confidence in the absence of external feedback. Neuroimage, 59(4), 3457–67. doi: 10.1016/j.neuroimage.2011.11.058.Google Scholar
Davey, C. G., Allen, N. B., Harrison, B. J., Dwyer, D. B., & Yucel, M. (2010). Being liked activates primary reward and midline self-related brain regions. Human Brain Mapping, 31(4), 660–8. doi: 10.1002/hbm.20895.Google Scholar
Daw, N. D. & Doya, K. (2006). The computational neurobiology of learning and reward. Current Opinion in Neurobiology, 16, 199204.CrossRefGoogle ScholarPubMed
Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8(12), 1704–11. www.nature.com/neuro/journal/v8/n12/suppinfo/nn1560_S1.html.CrossRefGoogle ScholarPubMed
Dayan, P. & Niv, Y. (2008). Reinforcement learning and the brain: The good, the bad, and the ugly. Current Opinion in Neurobiology, 18(2), 185–96.Google Scholar
Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18, 105–15.Google Scholar
Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125, 627–68.Google Scholar
Deci, E. L. & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York, NY: Plenum.CrossRefGoogle Scholar
Delgado, M. R., Miller, M. M., Inati, S., & Phelps, E. A. (2005). An fMRI study of reward-related probability learning. Neuroimage, 24(3), 862–73. doi: 10.1016/j.neuroimage.2004.10.002.Google Scholar
Dickinson, A. & Balleine, B. (2002). The role of learning in the operation of motivational systems. In Pashler, H. & Gallistel, R. (Eds.), Stevens’ handbook of experimental psychology: learning, motivation and emotion (Vol. 3, pp. 497534). New York, NY: John Wiley & Sons, Inc.Google Scholar
Dweck, C. S. (1999). Self-theories: Their role in motivation, personality, and development. New York, NY: Psychology Press.Google Scholar
Elliot, A. J. (2005). A conceptual history of the achievement goal construct. In Elliot, A. J. & Dweck, C. S. (Eds.), Handbook of competence and motivation (pp. 5272): New York, NY: Guilford Publications.Google Scholar
Elliot, A. J. (2008). Handbook of approach and avoidance motivation. New York, NY: Psychology Press.Google Scholar
Elliot, A. J. & Harackiewicz, J. M. (1996). Approach and avoidance achievement goals and intrinsic motivation: A mediational analysis. Journal of Personality and Social Psychology, 70, 461–75.Google Scholar
Fastrich, G. M., Kerr, T., Castel, A. D., & Murayama, K. (2018). The role of interest in memory for trivia questions: An investigation with a large-scale database. Motivation Science, 4(3), 227250. doi: http://dx.doi.org/10.1037/mot0000087.CrossRefGoogle Scholar
Flowerday, T. & Shell, D. F. (2015). Disentangling the effects of interest and choice on learning, engagement, and attitude. Learning and Individual Differences, 40, 134–40. doi: http://dx.doi.org/10.1016/j.lindif.2015.05.003.Google Scholar
Frey, B. S. & Jegen, R. (2001). Motivation crowding theory. Journal of Economic Surveys, 15, 589611.Google Scholar
Gruber, M. J., Gelman, B. D., & Ranganath, C. (2014). States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit. Neuron, 84(2), 486–96. doi: http://dx.doi.org/10.1016/j.neuron.2014.08.060.Google Scholar
Haber, S. N. & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 426. doi: 10.1038/npp.2009.129.Google Scholar
Han, S., Huettel, S. A., Raposo, A., Adcock, R. A., & Dobbins, I. G. (2010). Functional significance of striatal responses during episodic decisions: Recovery or goal attainment? Journal of Neuroscience, 30(13), 4767–75. doi: 10.1523/jneurosci.3077-09.2010.Google Scholar
Harackiewicz, J. M., Manderlink, G., & Sansone, C. (1984). Rewarding pinball wizardry: Effects of evaluation and cue value on intrinsic interest. Journal of Personality and Social Psychology, 47(2), 287300.Google Scholar
Hidi, S. (2016). Revisiting the role of rewards in motivation and learning: Implications of neuroscientific research. Educational Psychology Review, 28, 6193. doi: 10.1007/s10648-015-9307-5.Google Scholar
Hidi, S. & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–27. doi: http://dx.doi.org/10.1207/s15326985ep4102_4.Google Scholar
Hull, C. L. (1943). Principles of behavior: An introduction to behavior theory. Oxford: Appleton-Century.Google Scholar
Izuma, K. (2012). The social neuroscience of reputation. Neuroscience Research, 72(4), 283–8. doi: 10.1016/j.neures.2012.01.003.Google Scholar
Izuma, K., Saito, D. N., & Sadato, N. (2008). Processing of social and monetary rewards in the human striatum. Neuron, 58(2), 284–94. doi: 10.1016/j.neuron.2008.03.020.CrossRefGoogle ScholarPubMed
Jepma, M., Verdonschot, R. G., van Steenbergen, H., Rombouts, S., & Nieuwenhuis, S. (2012). Neural mechanisms underlying the induction and relief of perceptual curiosity. Frontiers in Behavioral Neuroscience, 6. doi: 10.3389/fnbeh.2012.00005.Google Scholar
Jones, R. M., Somerville, L. H., Li, J., Ruberry, E. J., Libby, V., Glover, G., ... Casey, B. J. (2011). Behavioral and neural properties of social reinforcement learning. The Journal of Neuroscience, 31(37), 13039–45. doi: 10.1523/jneurosci.2972-11.2011.Google Scholar
Kable, J. W. & Glimcher, P. W. (2009). The neurobiology of decision: Consensus and controversy. Neuron, 63(6), 733–45. doi: 10.1016/j.neuron.2009.09.003.CrossRefGoogle ScholarPubMed
Kakade, S. & Dayan, P. (2002). Dopamine: Generalization and bonuses. Neural Networks, 15(4–6), 549–59. doi: 10.1016/s0893-6080(02)00048-5.Google Scholar
Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., Wang, J. T-y., & Camerer, C. F. (2009). The wick in the candle of learning: Epistemic curiosity activates reward circuitry and enhances memory. Psychological Science, 20(8), 963–73. doi: 10.1111/j.1467-9280.2009.02402.x.Google Scholar
Klasen, M., Weber, R., Kircher, T. T. J., Mathiak, K. A., & Mathiak, K. (2012). Neural contributions to flow experience during video game playing. Social Cognitive and Affective Neuroscience, 7(4), 485–95. doi: 10.1093/scan/nsr021.Google Scholar
Klein, E. D., Bhatt, R. S., & Zentall, T. R. (2005). Contrast and the justification of effort. Psychonomic Bulletin & Review, 12(2), 335–9. doi: 10.3758/bf03196381.Google Scholar
Knutson, B. & Greer, S. M. (2008). Anticipatory affect: Neural correlates and consequences for choice. Philosophical Transactions of the Royal Society B-Biological Sciences, 363(1511), 3771–86. doi: 10.1098/rstb.2008.0155.Google Scholar
Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., ... Grasby, P. M. (1998). Evidence for striatal dopamine release during a video game. Nature, 393(6682), 266–8.Google Scholar
Kool, W., McGuire, J. T., Rosen, Z. B., & Botvinick, M. M. (2010). Decision-making and the avoidance of cognitive demand. Journal of Experimental Psychology: General, 139(4), 665–82. doi: 10.1037/a0020198.Google Scholar
Kringelbach, M. L. & Berridge, K. C. (2016). Neuroscience of reward, motivation, and drive. In Kim, S., Reeve, J., & Bong, M. (Eds.), Recent developments in neuroscience research on human motivation (Advances in Motivation and Achievement, Vol. 19), pp. 2335. Bingley, UK: Emerald Group Publishing Limited.CrossRefGoogle Scholar
Leotti, L. A. & Delgado, M. R. (2011). The inherent reward of choice. Psychological Science, 10, 1310–8. doi: 10.1177/0956797611417005.Google Scholar
Leotti, L. A., Iyengar, S. S., & Ochsner, K. N. (2010). Born to choose: The origins and value of the need for control. Trends in Cognitive Sciences, 14(10), 457–63. doi: 10.1016/j.tics.2010.08.001.Google Scholar
Lepper, M. R., Greene, D., & Nisbett, R. E. (1973). Undermining childrens’ intrinsic interest with extrinsic reward: Test of the “overjustification” hypothesis. Journal of Personality and Social Psychology, 28(1), 129–37.Google Scholar
Levy, D. J. & Glimcher, P. W. (2012). The root of all value: A neural common currency for choice. Current Opinion in Neurobiology, 22(6), 1027–38. doi: 10.1016/j.conb.2012.06.001.Google Scholar
Lin, A., Adolphs, R., & Rangel, A. (2011). Social and monetary reward learning engage overlapping neural substrates. Social Cognitive and Affective Neuroscience, 7(3), 274–81.Google Scholar
Lipstein, R. L. & Renninger, K. A. (2007). Interest for writing: How teachers can make a difference. The English Journal, 96, 7985.Google Scholar
Locke, E. A. & Latham, G. P. (1990). A theory of goal setting & task performance. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Loewenstein, G. (1999). Because it is there: The challenge of mountaineering … for utility theory. Kyklos, 52, 315–43. doi: 10.1111/j.1467-6435.1999.tb00221.x.Google Scholar
MacTurk, R. H. & Morgan, G. A. (Eds.) (1995). Mastery motivation: Origins, conceptualizations, and applications. Norwood, NJ: Ablex.Google Scholar
Marvin, C. B. & Shohamy, D. (2016). Curiosity and reward: Valence predicts choice and information prediction errors enhance learning. Journal of Experimental Psychology: General, 145(3), 266–72. doi: 10.1037/xge0000140.Google Scholar
Mather, M. & Schoeke, A. (2011). Positive outcomes enhance incidental learning for both younger and older adults. Frontiers in Neuroscience, 5. doi: 10.3389/fnins.2011.00129.Google Scholar
McCabe, C., Harwood, J., Brouwer, S., Harmer, C. J., & Cowen, P. J. (2013). Effects of pramipexole on the processing of rewarding and aversive taste stimuli. Psychopharmacology, 228(2), 283–90. doi: 10.1007/s00213-013-3033-9.Google Scholar
McClelland, D. C., Atkinson, J. W., Clark, R. A., & Lowell, E. L. (1976). The achievement motive: Oxford: Irvington.Google Scholar
McClelland, D. C., Koestner, R., & Weinberger, J. (1989). How do self-attributed and implicit motives differ? Psychological Review, 96, 690702.Google Scholar
McDannald, M. A., Takahashi, Y. K., Lopatina, N., Pietras, B. W., Jones, J. L. & Schoenbaum, G. (2012). Model-based learning and the contribution of the orbitofrontal cortex to the model-free world. European Journal of Neuroscience, 35(7), 991–6. doi: 10.1111/j.1460-9568.2011.07982.x.Google Scholar
McGillivray, S., Murayama, K., & Castel, A. D. (2015). Thirst for knowledge: The effects of curiosity and interest on memory in younger and older adults. Psychology and Aging, 30(4), 835–41.Google Scholar
Metcalfe, J. & Kornell, N. (2005). A region of proximal learning model of study time allocation. Journal of Memory and Language, 52(4), 463–77. doi: 10.1016/j.jml.2004.12.001.Google Scholar
Montague, P. R. & Berns, G. S. (2002). Neural economics and the biological substrates of valuation. Neuron, 36, 265–84.Google Scholar
Murayama, K. & Elliot, A. J. (2011). Achievement motivation and memory: Achievement goals differentially influence immediate and delayed remember–know recognition memory. Personality and Social Psychology Bulletin, 37(10), 1339–48. doi: 10.1177/0146167211410575.Google Scholar
Murayama, K., Elliot, A. J., & Friedman, R. (2012). Achievement goals and approach-avoidance motivation. In Ryan, R. M. (Ed.), Oxford handbook of motivation (pp. 191207). Oxford: Oxford University Press.Google Scholar
Murayama, K., FitzGibbon, L., & Sakaki, M. (2018). Process account of curiosity and interest: A reward learning model of knowledge acquisition. https://doi.org/10.31219/osf.io/hbcz5.Google Scholar
Murayama, K., Izuma, K., Aoki, R., & Matsumoto, K. (2016). “Your choice” motivates you in the brain: The emergence of autonomy neuroscience. In Kim, S., Reeve, J., & Bong, M. (Eds.), Recent developments in neuroscience research on human motivation (Advances in Motivation and Achievement, Vol. 19), pp. 95125. Bingley, UK: Emerald Publishing Group Limited.Google Scholar
Murayama, K. & Kitagami, S. (2014). Consolidation power of extrinsic rewards: Reward cues enhance long-term memory for irrelevant past events. Journal of Experimental Psychology: General, 143, 1520.Google Scholar
Murayama, K., Kitagami, S., Tanaka, A., & Raw, J. A. (2016). People's naiveté about how extrinsic rewards influence intrinsic motivation. Motivation Science, 2(3), 138–42. doi: https://doi.org/10.1037/mot0000040.Google Scholar
Murayama, K., Matsumoto, M., Izuma, K., & Matsumoto, K. (2010). Neural basis of the undermining effect of monetary reward on intrinsic motivation. PNAS Proceedings of the National Academy of Sciences of the United States of America, 107(49), 20911–16.Google Scholar
Murayama, K., Matsumoto, M., Izuma, K., Sugiura, A., Ryan, R. M., Deci, E. L., & Matsumoto, K. (2015). How self-determined choice facilitates performance: A key role of the ventromedial prefrontal cortex. Cerebral Cortex, 25(5), 1241–51. doi: 10.1093/cercor/bht317.Google Scholar
Murayama, K., Pekrun, R., Lichtenfeld, S., & vom Hofe, R. (2013). Predicting long-term growth in students' mathematics achievement: The unique contributions of motivation and cognitive strategies. Child Development, 84(4), 1475–90. doi: 10.1111/cdev.12036.Google Scholar
Murray, H. A. (1938). Explorations in personality. New York, NY: Oxford University Press.Google Scholar
Murty, V. P. & Adcock, R. A. (2014). Enriched encoding: Reward motivation organizes cortical networks for hippocampal detection of unexpected events. Cerebral Cortex, 24(8), 2160–8. doi: 10.1093/cercor/bht063.Google Scholar
Murty, V. P., DuBrow, S., & Davachi, L. (2015). The simple act of choosing influences declarative memory. The Journal of Neuroscience, 35(16), 6255–64.Google Scholar
Niv, Y., Joel, D., & Dayan, P. (2006). A normative perspective on motivation. Trends in Cognitive Sciences, 10, 375–81.Google Scholar
Niv, Y. & Schoenbaum, G. (2008). Dialogues on prediction errors. Trends in Cognitive Sciences, 12(7), 265–72. doi: 10.1016/j.tics.2008.03.006.Google Scholar
O'Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4, 95102.Google Scholar
O'Doherty, J. P. (2004). Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14, 769–76.Google Scholar
Oudeyer, P. Y., Gottlieb, J., & Lopes, M. (2016). Intrinsic motivation, curiosity, and learning: Theory and applications in educational technologies. In Bettina, S. & Stefan, K. (Eds.), Progress in brain research (Vol. 229, pp. 257–84). Amsterdam, Netherlands: Elsevier.Google Scholar
Oudeyer, P.-Y. & Kaplan, F. (2009). What is intrinsic motivation? A typology of computational approaches. Frontiers in Neurorobotics, 1. doi: 10.3389/neuro.12.006.2007.Google Scholar
Pearce, M. T., Zaidel, D. W., Vartanian, O., Skov, M., Leder, H., Chatterjee, A., & Nadal, M. (2016). Neuroaesthetics. Perspectives on Psychological Science, 11(2), 265–79. doi: 10.1177/1745691615621274.Google Scholar
Pintrich, P. R. & Schunk, D. H. (2002). Motivation in education: Theory, research, and applications (2nd ed.). Columbus, OH: Merrill-Prentice Hall.Google Scholar
Rangel, A. & Hare, T. (2010). Neural computations associated with goal-directed choice. Current Opinion in Neurobiology, 20(2), 262–70. doi: 10.1016/j.conb.2010.03.001.Google Scholar
Reeve, J. & Lee, W. (2012). Neuroscience and human motivation. In Ryan, R. M. (Ed.), The Oxford handbook of human motivation (pp. 365–80). Oxford: Oxford University Press.Google Scholar
Reeve, J., Nix, G., & Hamm, D. (2003). Testing models of the experience of selfdetermination in intrinsic motivation and the conundrum of choice. Journal of Educational Psychology, 95, 375–92.Google Scholar
Renninger, K. A. & Hidi, S. (2016). The power of interest for motivation and engagement. New York, NY: Routledge.Google Scholar
Rotter, J. B. (1966). Generalized expectancies for internal versus external control of reinforcement. Psychological Monographs: General & Applied, 80(1), 128.Google Scholar
Rushworth, M. F. S., Mars, R. B., & Summerfield, C. (2009). General mechanisms for making decisions? Current Opinion in Neurobiology, 19(1), 7583.Google Scholar
Ryan, R. M. & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25, 5467.Google Scholar
Ryan, R. M., Mims, V., & Koestner, R. (1983). Relation of reward contingency and interpersonal context to intrinsic motivation: A review and test using cognitive evaluation theory. Journal of Personality and Social Psychology, 45(4), 736–50. doi: 10.1037/0022-3514.45.4.736.Google Scholar
Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257355. doi: 10.1038/nn.2726.Google Scholar
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–9. doi: 10.1126/science.275.5306.1593.Google Scholar
Sedikides, C. & Strube, M. J. (1997). Self-evaluation: To thine own self be good, to thine own self be sure, to thine own self be better. Advances in Experimental Social Psychology, 29, 209–69.Google Scholar
Seymour, B. & McClure, S. M. (2008). Anchors, scales and the relative coding of value in the brain. Current Opinion in Neurobiology, 18(2), 173–8. doi: 10.1016/j.conb.2008.07.010.Google Scholar
Shohamy, D. (2011). Learning and motivation in the human striatum. Current Opinion in Neurobiology, 21(3), 408–14. doi: 10.1016/j.conb.2011.05.009.Google Scholar
Shohamy, D. & Adcock, R. A. (2010). Dopamine and adaptive memory. Trends in Cognitive Sciences, 14(10), 464–72. doi: 10.1016/j.tics.2010.08.002.Google Scholar
Skinner, E. A. (1996). A guide to constructs of control. Journal of Personality and Social Psychology, 71, 549–70.Google Scholar
Spaniol, J., Schain, C., & Bowen, H. J. (2014). Reward-enhanced memory in younger and older adults. Journals of Gerontology Series B-Psychological Sciences and Social Sciences, 69(5), 730–40. doi: 10.1093/geronb/gbt044.Google ScholarPubMed
Sutton, R. S. & Barto, A. G. (1998). Reinforcement learning. Cambridge, MA: MIT Press.Google Scholar
Tanaka, A. & Murayama, K. (2014). Within-person analyses of situational interest and boredom: Interactions between task-specific perceptions and achievement goals. Journal of Educational Psychology, 106, 1122–34.Google Scholar
Tang, S. H. & Hall, V. C. (1995). The overjustification effect – a metaanalysis. Applied Cognitive Psychology, 9(5), 365404. doi: 10.1002/acp.2350090502.Google Scholar
Tricomi, E., Delgado, M. R., McCandliss, B. D., McClelland, J. L., & Fiez, J. A. (2006). Performance feedback drives caudate activation in a phonological learning task. Journal of Cognitive Neuroscience, 18(6), 1029–43. doi: 10.1162/jocn.2006.18.6.1029.Google Scholar
Valentin, V. V. & O'Doherty, J. P. (2009). Overlapping prediction errors in dorsal striatum during instrumental learning with juice and money reward in the human brain. Journal of Neurophysiology, 102(6), 3384–91. doi: 10.1152/jn.91195.2008.Google Scholar
Vansteenkiste, M., Simons, J., Lens, W., Soenens, B., & Matos, L. (2005). Examining the motivational impact of intrinsic versus extrinsic goal framing and autonomy-supportive versus internally controlling communication style on early adolescents' academic achievement. Child Development, 76(2), 483501.Google Scholar
Westbrook, A., Kester, D., & Braver, T. S. (2013). What is the subjective cost of cognitive effort? Load, trait, and aging effects revealed by economic preference. PLoS One, 8(7), e68210. doi: 10.1371/journal.pone.0068210.Google Scholar
Wiersma, U. J. (1992). The effects of extrinsic rewards in intrinsic motivation – a metaanalysis. Journal of Occupational and Organizational Psychology, 65, 101–14.Google Scholar
Wittmann, B. C., Schott, B. H., Guderian, S., Frey, J. U., Heinze, H. J., & Duzel, E. (2005). Reward-related fMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron, 45(3), 459–67. doi: 10.1016/j.neuron.2005.01.010.Google Scholar
Woolley, K. & Fishbach, A. (2016). For the fun of it: Harnessing immediate rewards to increase persistence in long-term goals. Journal of Consumer Research, 42(6), 952–66. doi: 10.1093/jcr/ucv098.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×