Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T16:03:36.197Z Has data issue: false hasContentIssue false

4 - Research Consortia and Large-Scale Data Repositories for Studying Intelligence

from Part I - Fundamental Issues

Published online by Cambridge University Press:  11 June 2021

Aron K. Barbey
Affiliation:
University of Illinois, Urbana-Champaign
Sherif Karama
Affiliation:
McGill University, Montréal
Richard J. Haier
Affiliation:
University of California, Irvine
Get access

Summary

The first neuroimaging studies of intelligence were done with positron emission tomography (PET) (Haier et al., 1988). PET was expensive and invasive but more researchers had access to neuroimaging when Magnetic Resonance Imaging (MRI) became widely available around the year 2000. The advent of advanced MRI methods enabled researchers to investigate localized (region-level) associations of brain measures and measures of intelligence in healthy individuals (Gray & Thompson, 2004; Luders, Narr, Thompson, & Toga, 2009). At the whole-brain level, MRI-based studies have reported a positive association (r = .40 to .51) between some measures of intelligence and brain size (Andreasen et al., 1993; McDaniel, 2005). Several studies at the voxel and regional levels have also demonstrated a positive correlation of morphometry with intelligence in brain regions that are especially relevant to higher cognitive functions including frontal, temporal, parietal, hippocampus, and cerebellum (Andreasen et al., 1993; Burgaleta, Johnson, Waber, Colom, & Karama, 2014; Colom et al., 2009; Karama et al., 2011; Narr et al., 2007; Shaw et al., 2006). More recently, neuroimaging studies have revealed large-scale structural and functional brain networks as potential neural substrates of intelligence (see review by Jung & Haier, 2007 and Barbey et al., 2012; Barbey, Colom, Paul, & Grafman, 2014; Colom, Karama, Jung, & Haier, 2010; Khundrakpam et al., 2017; Li et al., 2009; Sripada, Angstadt, Rutherford, & Taxali, 2019).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, L. M., Escalera, J., Ai, L., Andreotti, C., Febre, K., Mangone, A., … Milham, M. P. (2017). Data descriptor: An open resource for transdiagnostic research in pediatric mental health and learning disorders. Scientific Data, 4, 126.Google Scholar
Andreasen, N. C., Flaum, M., Swayze, V., O’Leary, D. S., Alliger, R., Cohen, G., …, Yuh, W. T. (1993). Intelligence and brain structure in normal individuals. American Journal of Psychiatry, 150(1), 130134.Google Scholar
Barbey, A. K., Colom, R., Paul, E. J., & Grafman, J. (2014). Architecture of fluid intelligence and working memory revealed by lesion mapping. Brain Structure and Function, 219(2), 485494. doi: 10.1007/s00429-013-0512-z.Google Scholar
Barbey, A. K., Colom, R., Solomon, J., Krueger, F., Forbes, C., & Grafman, J. (2012). An integrative architecture for general intelligence and executive function revealed by lesion mapping. Brain, 135(Pt 4), 11541164. doi: 10.1093/brain/aws021.Google Scholar
Basten, U., Hilger, K., & Fiebach, C. J. (2015). Where smart brains are different: A quantitative meta-analysis of functional and structural brain imaging studies on intelligence. Intelligence, 51, 1027.Google Scholar
Bedford, S. A., Park, M. T. M., Devenyi, G. A., Tullo, S., Germann, J., Patel, R., … Chakravarty, M. M. (2020). Large-scale analyses of the relationship between sex, age and intelligence quotient heterogeneity and cortical morphometry in autism spectrum disorder. Molecular Psychiatry, 25(3), 614628.CrossRefGoogle ScholarPubMed
Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., … Milham, M. P. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences USA, 107(10), 47344739.CrossRefGoogle ScholarPubMed
Book, G. A., Stevens, M. C., Assaf, M., Glahn, D. C., & Pearlson, G. D. (2016). Neuroimaging data sharing on the neuroinformatics database platform. Neuroimage, 124(Pt. B), 10891092.Google Scholar
Brown, M. R. G. G., Sidhu, G. S., Greiner, R., Asgarian, N., Bastani, M., Silverstone, P. H., … Dursun, S. M. (2012). ADHD-200 global competition: Diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements. Frontiers in Systems Neuroscience, 6, 122.Google Scholar
Burgaleta, M., Johnson, W., Waber, D. P., Colom, R., & Karama, S. 2014. Cognitive ability changes and dynamics of cortical thickness development in healthy children and adolescents. Neuroimage, 84, 810819.Google Scholar
Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., … Dale, A. M. (2018). The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 32, 4354.Google Scholar
Colom, R., Haier, R. J., Head, K., Álvarez-Linera, J., Quiroga, M. Á., Shih, P. C., & Jung, R. E. (2009). Gray matter correlates of fluid, crystallized, and spatial intelligence: Testing the P-FIT model. Intelligence, 37(2), 124135.Google Scholar
Colom, R., Karama, S., Jung, R. E., & Haier, R. J. 2010. Human intelligence and brain networks. Dialogues in Clinical Neuroscience, 12(4), 489501.Google Scholar
Cox, S. R., Ritchie, S. J., Fawns-Ritchie, C., Tucker-Drob, E. M., & Deary, I. J. (2019). Structural brain imaging correlates of general intelligence in UK Biobank. Intelligence, 76, 101376.Google Scholar
Craddock, C., Benhajali, Y., Chu, C., Chouinard, F., Evans, A., Jakab, A., … Bellec, P. (2013). The Neuro Bureau Preprocessing Initiative: Open sharing of preprocessed neuroimaging data and derivatives. Frontiers in Neuroinformatics, 7. doi: 10.3389/conf.fninf.2013.09.00041.Google Scholar
Daugherty, A., Sutton, B., Hillman, C. H., Kramer, A., Cohen, N., & Barbey, A. K. (2020). Individual differences in the neurobiology of fluid intelligence predict responsiveness to training: Evidence from a comprehensive cognitive, mindfulness meditation, and aerobic exercise intervention. Trends in Neuroscience and Education, 18, 100123.Google Scholar
Deary, I. J., Gow, A. J., Taylor, M. D., Corley, J., Brett, C., Wilson, V., … Starr, J. M. (2007). The Lothian Birth Cohort 1936: A study to examine influences on cognitive ageing from age 11 to age 70 and beyond. BMC Geriatrics, 7, 28.Google Scholar
Di Martino, A., O’Connor, D., Chen, B., Alaerts, K., Anderson, J. S., Assaf, M., … Milham, M. P. (2017). Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Scientific Data, 4, 170010.Google Scholar
Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., … Milham, M. P. (2014). The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659667.Google Scholar
Dubois, J., Galdi, P., Paul, L. K., & Adolphs, R. (2018). A distributed brain network predicts general intelligence from resting-state human neuroimaging data. Philosophical Transactions of the Royal Society B Biological Science, 373(1756), 20170284.Google Scholar
Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 29072926.Google Scholar
Evans, A. C., & Brain Development Cooperative Group. (2006). The NIH MRI study of normal brain development. Neuroimage, 30(1), 184202.Google Scholar
Fortin, J.-P., Cullen, N., Sheline, Y. I., Taylor, W. D., Aselcioglu, I., Cook, P. A., … Shinohara, R. T. (2018). Harmonization of cortical thickness measurements across scanners and sites. Neuroimage, 167, 104120.Google Scholar
Ghiassian, S., Greiner, R., Jin, P., & Brown, M. R. G. 2016. Using functional or structural magnetic resonance images and personal characteristic data to identify ADHD and autism. PLoS One, 11(12), e0166934.CrossRefGoogle ScholarPubMed
Gray, J. R., & Thompson, P. M. (2004). Neurobiology of intelligence: Science and ethics. Nature Reviews Neuroscience, 5(6), 471482.Google Scholar
Haier, R. J. (2017). The neuroscience of intelligence. Cambridge University Press.Google Scholar
Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., … Buchsbaum, M. S. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12(2), 199217.Google Scholar
HD-200 Consortium TA-200, Milham, P. M., Damien, F., Maarten, M., & Stewart, H. M. (2012). The ADHD-200 Consortium: A model to advance the translational potential of neuroimaging in clinical neuroscience. Frontiers in Systems Neuroscience, 6, 15.Google Scholar
Hammer, R., Paul, E. J., Hillman, C. H., Kramer, A. F., Cohen, N. J., & Barbey, A. K. (2019). Individual differences in analogical reasoning revealed by multivariate task-based functional brain imaging. Neuroimage, 184, 9931004. doi: 10.1016/j.neuroimage.2018.09.011.CrossRefGoogle ScholarPubMed
Huguet, G., Schramm, C., Douard, E., Jiang, L., Labbe, A., Tihy, F., … Jacquemont, S. (2018). Measuring and estimating the effect sizes of copy number variants on general intelligence in community-based samples. JAMA Psychiatry, 75(5), 447457.Google Scholar
Jernigan, T. L., Brown, T. T., Hagler, D. J., Akshoomoff, N., Bartsch, H., Newman, E., … Pediatric Imaging, Neurocognition and Genetics Study. (2016). The Pediatric Imaging, Neurocognition, and Genetics (PING) data repository. Neuroimage. 124(Pt. B), 11491154.CrossRefGoogle ScholarPubMed
Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8(1), 118127.Google Scholar
Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30(2), 135154.CrossRefGoogle ScholarPubMed
Karama, S., Ad-Dab’bagh, Y., Haier, R. J., Deary, I. J., Lyttelton, O. C., Lepage, C., & Evans, A. C. (2009). Positive association between cognitive ability and cortical thickness in a representative US sample of healthy 6 to 18 year-olds. Intelligence. 37(2), 145155.Google Scholar
Karama, S., Bastin, M. E., Murray, C., Royle, N. A., Penke, L., Muñoz Maniega, S., … Deary, I. J. (2014). Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age. Molecular Psychiatry, 19(3), 555559.Google Scholar
Karama, S., Colom, R., Johnson, W., Deary, I. J., Haier, R., Waber, D. P., … Evans, A. C. (2011). Cortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6 to 18. Neuroimage, 55(4), 14431453.Google Scholar
Khundrakpam, B. S., Lewis, J. D., Reid, A., Karama, S., Zhao, L., Chouinard-Decorte, F., … Brain Development Cooperative Group. (2017). Imaging structural covariance in the development of intelligence. Neuroimage, 144(Pt. A), 227240.Google Scholar
Kievit, R. A., Fuhrmann, D., Borgeest, G. S., Simpson-Kent, I. L., & Henson, R. N. A. (2018). The neural determinants of age-related changes in fluid intelligence: A pre-registered, longitudinal analysis in UK Biobank. Wellcome Open Research, 3, 38.Google Scholar
King, J. B., Prigge, M. B. D., King, C. K., Morgan, J., Weathersby, F., Fox, J. C., … Anderson, J. S. (2019). Generalizability and reproducibility of functional connectivity in autism. Molecular Autism, 10, 27.Google Scholar
Li, Y., Liu, Y., Li, J., Qin, W., Li, K., Yu, C., & Jiang, T. (2009). Brain anatomical network and intelligence. PLoS Computational Biology, 5(5), e1000395.Google Scholar
Loughnan, R. J., Palmer, C. E., Thompson, W. K., Dale, A. M., Jernigan, T. L., & Fan, C. C. (2019). Polygenic score of intelligence is more predictive of crystallized than fluid performance among children. bioRxiv. 637512. doi: 10.1101/637512.CrossRefGoogle Scholar
Luders, E., Narr, K. L., Thompson, P. M., & Toga, A. W. (2009). Neuroanatomical correlates of intelligence. Intelligence, 37(2), 156163.Google Scholar
McDaniel, M. A. (2005). Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence, 33(4), 337346.CrossRefGoogle Scholar
Mennes, M., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2013). Making data sharing work: The FCP/INDI experience. Neuroimage, 82, 683691.Google Scholar
Mihalik, A., Brudfors, M., Robu, M., Ferreira, F. S., Lin, H., Rau, A., … Oxtoby, N. P. (2019). ABCD Neurocognitive Prediction Challenge 2019: Predicting individual fluid intelligence scores from structural MRI using probabilistic segmentation and kernel ridge regression. In Pohl, K., Thompson, W., Adeli, E., & Linguraru, M. (eds.), Adolescent brain cognitive development neurocognitive prediction. ABCD-NP 2019. Lecture Notes in Computer Science, vol. 11791. Cham: Springer. doi: 10.1007/978-3-030-31901-4_16.Google Scholar
Narr, K. L., Woods, R. P., Thompson, P. M., Szeszko, P., Robinson, D., Dimtcheva, T., … Bilder, R. M. (2007). Relationships between IQ and regional cortical gray matter thickness in healthy adults. Cerebral Cortex, 17(9), 21632171.Google Scholar
Nielson, D. M., Pereira, F., Zheng, C. Y., Migineishvili, N., Lee, J. A., Thomas, A. G., & Bandettini, P. A. (2018). Detecting and harmonizing scanner differences in the ABCD study – Annual release 1.0. bioRxiv. 309260. doi: 10.1101/309260.Google Scholar
Nielsen, J. A., Zielinski, B. A., Fletcher, P. T., Alexander, A. L., Lange, N., Bigler, E. D., … Anderson, J. S. (2013). Multisite functional connectivity MRI classification of autism: ABIDE results. Frontiers in Human Neuroscience, 7, 599.Google Scholar
Parikh, M. N., Li, H., & He, L. (2019). Enhancing diagnosis of autism with optimized machine learning models and personal characteristic data. Frontiers in Computational Neuroscience, 13, 15.Google Scholar
Plomin, R., & Von Stumm, S. (2018). The new genetics of intelligence. Nature Reviews Genetics, 19(3), 148159.Google Scholar
Poldrack, R. A., & Gorgolewski, K. J. (2014). Making big data open: Data sharing in neuroimaging. Nature Neuroscience, 17(11), 15101517.Google Scholar
Santarnecchi, E., Emmendorfer, A., & Pascual-Leone, A. (2017). Dissecting the parieto-frontal correlates of fluid intelligence: A comprehensive ALE meta-analysis study. Intelligence, 63, 928.Google Scholar
Satterthwaite, T. D., Connolly, J. J., Ruparel, K., Calkins, M. E., Jackson, C., Elliott, M. A., … Gur, R. E. (2016). The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth. Neuroimage, 124(Pt. B), 11151119.Google Scholar
Savage, J. E., Jansen, P. R., Stringer, S., Watanabe, K., Bryois, J., de Leeuw, C. A., … Posthuma, D. (2018). Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nature Genetics, 50(7), 912919.Google Scholar
Schumann, G., Loth, E., Banaschewski, T., Barbot, A., Barker, G., Büchel, C., … Struve, M. (2010). The IMAGEN study: Reinforcement-related behaviour in normal brain function and psychopathology. Molecular Psychiatry, 15(12), 11281139.Google Scholar
Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., … Giedd, J. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440(7084), 676679.Google Scholar
Sniekers, S., Stringer, S., Watanabe, K., Jansen, P. R., Coleman, J. R. I., Krapohl, E., … Posthuma, D. (2017). Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nature Genetics, 49(7), 11071112.Google Scholar
Sripada, C., Angstadt, M., Rutherford, S., & Taxali, A. (2019). Brain network mechanisms of general intelligence. bioRxiv. 657205. doi: 10.1101/657205.CrossRefGoogle Scholar
Stein, J. L., Medland, S. E., Vasquez, A. A., Hibar, D. P., Senstad, R. E., Winkler, A. M., … Thompson, P. M. (2012). Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genetics, 44(5), 552561.Google Scholar
Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., … Collins, R. (2015). UK Biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Medicine, 12(3), e1001779.Google Scholar
Talukdar, T., Roman, F. J., Operskalski, J. T., Zwilling, C. E., & Barbey, A. K. (2018). Individual differences in decision making competence revealed by multivariate fMRI. Human Brain Mapping, 39(6), 26642672. doi: 10.1002/hbm.24032.Google Scholar
Thompson, P. M., Dennis, E. L., Gutman, B. A., Hibar, D. P., Jahanshad, N., Kelly, S., … Ye, J. (2017). ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide. Neuroimage, 145(Pt. B), 389408.CrossRefGoogle ScholarPubMed
Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. A., Renteria, M. E., … Drevets, W. (2014). The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behavior, 8(2), 153182.Google Scholar
Turner, B. O., Paul, E. J., Miller, M. B., & Barbey, A. K. (2018). Small sample sizes reduce the replicability of task-based fMRI studies. Communications Biology, 1, 62. doi: 10.1038/s42003-018-0073-z.Google Scholar
Turner, J. A. (2014). The rise of large-scale imaging studies in psychiatry. Gigascience, 3, 18.Google Scholar
Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E., Ugurbil, K., & WU-Minn HCP Consortium. (2013). The WU-Minn human connectome project: An overview. Neuroimage, 80, 6279.Google Scholar
Wachinger, C., Becker, B. G., & Rieckmann, A. (2018). Detect, quantify, and incorporate dataset bias: A neuroimaging analysis on 12,207 individuals. arXiv:1804.10764.Google Scholar
Xiao, L., Stephen, J. M., Wilson, T. W., Calhoun, V. D., & Wang, Y.-P. (2019). A manifold regularized multi-task learning model for IQ prediction from two fMRI paradigms. IEEE Transaactions in Biomedical Engineering, 67(3), 796806.Google Scholar
Zhao, Y., Klein, A., Castellanos, F. X., & Milham, M. P. (2019). Brain age prediction: Cortical and subcortical shape covariation in the developing human brain. Neuroimage, 202, 116149.Google Scholar
Zwilling, C. E., Daugherty, A. M., Hillman, C. H., Kramer, A. F., Cohen, N. J., & Barbey, A. K. (2019). Enhanced decision-making through multimodal training. NPJ Science of Learning, 4, 11. doi: 10.1038/s41539-019-0049-x.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×