Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T23:09:46.440Z Has data issue: false hasContentIssue false

3 - Imaging the Intelligence of Humans

from Part I - Fundamental Issues

Published online by Cambridge University Press:  11 June 2021

Aron K. Barbey
Affiliation:
University of Illinois, Urbana-Champaign
Sherif Karama
Affiliation:
McGill University, Montréal
Richard J. Haier
Affiliation:
University of California, Irvine
Get access

Summary

Most humans can perceive the world, store information in the short- and the long-term, recover the relevant information when required, comprehend and produce language, orient themselves in known and unknown environments, make calculations of high and low levels of sophistication, and so forth. These cognitive actions must be coordinated and integrated in some way and “intelligence” is the psychological factor that takes the lead when humans pursue this goal. The manifestation of widespread individual differences in this factor is well documented in everyday life settings and has been addressed by scientific research from at least three complementary models: psychometric models, cognitive/information-processing models, and biological models.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ad-Dab’bagh, Y., Lyttelton, O., Muehlboeck, J. S., Lepage, C., Einarson, D., Mok, K., … Evans, A. C. (2006). The CIVET image-processing environment: A fully automated comprehensive pipeline for anatomical neuroimaging research. Proceedings of the 12th annual meeting of the organization for human brain mapping (Vol. 2266). Florence, Italy.Google Scholar
Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry – The methods. Neuroimage, 11(6), 805821.CrossRefGoogle ScholarPubMed
Barbey, A. K. (2018). Network neuroscience theory of human intelligence. Trends in Cognitive Sciences, 22(1), 820.CrossRefGoogle ScholarPubMed
Basten, U., Hilger, K., & Fieback, C. (2015). Where smart brains are different: A quantitative meta-analysis of functional and structural brain imaging studies on intelligence. Intelligence, 51, 1027.CrossRefGoogle Scholar
Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, A., Huber, J., Johannesson, M., … Schonberg, T. (2020). Variability in the analysis of a single neuroimaging dataset by many teams. Nature, 582, 8488.CrossRefGoogle ScholarPubMed
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365376.Google Scholar
Caspi, A., & Moffitt, T. E. (2018). All for one and one for all: Mental disorders in one dimension. American Journal of Psychiatry, 175(9), 831844.CrossRefGoogle ScholarPubMed
Chekroud, A. M., Ward, E. J., Rosenberg, M. D., & Holmes, A. J. (2016). Patterns in the human brain mosaic discriminate males from females. Proceedings of the National Academy of Sciences, 113(14), E1968E1968.CrossRefGoogle ScholarPubMed
Chen, C. H., Fiecas, M., Gutierrez, E. D., Panizzon, M. S., Eyler, L. T., Vuoksimaa, E., … & Kremen, W. S. (2013). Genetic topography of brain morphology. Proceedings of the National Academy of Sciences, 110(42), 1708917094.CrossRefGoogle ScholarPubMed
Chuderski, A. (2019). Even a single trivial binding of information is critical for fluid intelligence. Intelligence, 77, 101396.CrossRefGoogle Scholar
Cole, M. W., Yarkoni, T., Repovš, G., Anticevic, A., & Braver, T. S. (2012). Global connectivity of prefrontal cortex predicts cognitive control and intelligence. Journal of Neuroscience, 32(26), 89888999.Google Scholar
Colom, R., Burgaleta, M., Román, F. J., Karama, S., Álvarez-Linera, J., Abad, F. J., … Haier, R. J. (2013). Neuroanatomic overlap between intelligence and cognitive factors: Morphometry methods provide support for the key role of the frontal lobes. Neuroimage, 72, 143152. doi: 10.1016/j.neuroimage.2013.01.032.CrossRefGoogle ScholarPubMed
Colom, R., Chuderski, A., & Santarnecchi, E. (2016). Bridge over troubled water: Commenting on Kovacs and Conway’s process overlap theory. Psychological Inquiry, 27(3), 181189.Google Scholar
Colom, R., Haier, R. J., Head, K., Álvarez-Linera, J., Quiroga, M. Á., Shih, P. C., & Jung, R. E. (2009). Gray matter correlates of fluid, crystallized, and spatial intelligence: Testing the P-FIT model. Intelligence, 37(2), 124135.Google Scholar
Colom, R., Jung, R. E., & Haier, R. J. (2006). Distributed brain sites for the g-factor of intelligence. NeuroImage, 31(3), 13591365.CrossRefGoogle ScholarPubMed
Colom, R., Jung, R. E., & Haier, R. J. (2007). General intelligence and memory span: Evidence for a common neuroanatomic framework. Cognitive Neuropsychology, 24(8), 867878.Google Scholar
Colom, R., Karama, S., Jung, R. E., & Haier, R. J. (2010). Human intelligence and brain networks. Dialogues in Clinical Neuroscience, 12(4), 489501.Google Scholar
Colom, R., & Román, F. (2018). Enhancing intelligence: From the group to the individual. Journal of Intelligence, 6(1), 11.CrossRefGoogle Scholar
Colom, R., & Thompson, P. M. (2011). Understanding human intelligence by imaging the brain. In Chamorro-Premuzic, T., von Stumm, S., & Furnham, A. (eds.), The Wiley-Blackwell handbook of individual differences (p. 330352). Hoboken, NJ: Wiley-Blackwell.Google Scholar
Daugherty, A. M., Sutton, B. P., Hillman, C., Kramer, A. F., Cohen, N. J., & Barbey, A. K. (2020). Individual differences in the neurobiology of fluid intelligence predict responsiveness to training: Evidence from a comprehensive cognitive, mindfulness meditation, and aerobic exercise intervention. Trends in Neuroscience and Education, 18, 100123.CrossRefGoogle ScholarPubMed
Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence differences. Nature Reviews Neuroscience, 11(3), 201211.CrossRefGoogle ScholarPubMed
Dubois, J., & Adolphs, R. (2016). Building a science of individual differences from fMRI. Trends in Cognitive Sciences, 20(6), 425443.CrossRefGoogle ScholarPubMed
Dubois, J., Galdi, P., Paul, L. K., & Adolphs, R. (2018). A distributed brain network predicts general intelligence from resting-state human neuroimaging data. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1756), 20170284.CrossRefGoogle ScholarPubMed
Estrada, E., Ferrer, E., Román, F. J., Karama, S., & Colom, R. (2019). Time-lagged associations between cognitive and cortical development from childhood to early adulthood. Developmental Psychology, 55(6), 13381352.Google Scholar
Euler, M. J. (2018). Intelligence and uncertainty: Implications of hierarchical predictive processing for the neuroscience of cognitive ability. Neuroscience & Biobehavioral Reviews, 94, 93112.Google Scholar
Evans, A. C., & Brain Development Cooperative Group (2006). The NIH MRI study of normal brain development. NeuroImage, 30(1), 184202.Google Scholar
Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., … Constable, R. T. (2015). Functional connectome fingerprint: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18(11), 16641671.Google Scholar
Fjell, A. M., Westlye, L. T., Amlien, I., Tamnes, C. K., Grydeland, H., Engvig, A., … Walhovd, K. B. (2015). High-expanding cortical regions in human development and evolution are related to higher intellectual abilities. Cerebral Cortex, 25(1), 2634.Google Scholar
Frost, M. A., & Goebel, R. (2012). Measuring structural–functional correspondence: Spatial variability of specialised brain regions after macro-anatomical alignment. Neuroimage, 59(2), 13691381.Google Scholar
Gignac, G. E., & Bates, T. C. (2017). Brain volume and intelligence: The moderating role of intelligence measurement quality. Intelligence, 64, 1829. doi: 10.1016/j.intell.2017.06.004.CrossRefGoogle Scholar
Gratton, C., Laumann, T. O., Nielsen, A. N., Greene, D. J., Gordon, E. M., Gilmore, A. W., … Petersen, S. E. (2018). Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron, 98(2), 439452.Google Scholar
Grotzinger, A. D., Cheung, A. K., Patterson, M. W., Harden, K. P., & Tucker-Drob, E. M. (2019). Genetic and environmental links between general factors of psychopathology and cognitive ability in early childhood. Clinical Psychological Science, 7(3), 430444.Google Scholar
Haier, R. J. (2017). The neuroscience of intelligence. Cambridge University Press.Google Scholar
Haier, R. J., Colom, R., Schroeder, D., Condon, C., Tang, C., Eaves, E., & Head, K. (2009). Gray matter and intelligence factors: Is there a neuro-g? Intelligence, 37(2), 136144.Google Scholar
Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2005). The neuroanatomy of general intelligence: Sex matters. NeuroImage, 25(1), 320327.Google Scholar
Hearne, L. J., Mattingley, J. B., & Cocchi, L. (2016). Functional brain networks related to individual differences in human intelligence at rest. Scientific Reports, 6, 32328. doi: 10.1038/srep32328.Google Scholar
Hill, W. D., Harris, S. E., & Deary, I. J. (2019). What genome-wide association studies reveal about the association between intelligence and mental health. Current Opinion in Psychology, 27, 2530. doi: 10.1016/j.copsyc.2018.07.007.Google Scholar
Horien, C., Shen, X., Scheinost, D., & Constable, R. T. (2019). The individual functional connectome is unique and stable over months to years. NeuroImage, 189, 676687. doi: 10.1016/j.neuroimage.2019.02.002.Google Scholar
Hunt, E. B. (2011). Human intelligence. Cambridge University Press.Google Scholar
Im, K., Lee, J. M., Lyttelton, O., Kim, S. H., Evans, A. C., & Kim, S. I. (2008). Brain size and cortical structure in the adult human brain. Cerebral Cortex, 18(9), 21812191.Google Scholar
Ingalhalikar, M., Smith, A., Parker, D., Satterthwaite, T. D., Elliott, M. A., Ruparel, K., … Verma, R. (2014). Sex differences in the structural connectome of the human brain. Proceedings of the National Academy of Sciences, 111(2), 823828.Google Scholar
Jensen, A. R. (1998). The g factor. The science of mental ability. Westport, CT: Praeger. doi: 10.1093/cercor/bhm244.Google Scholar
Johnson, W., & Bouchard, T. (2005). The structure of human intelligence: It is verbal, perceptual, and image rotation (VPR), not fluid and crystallized. Intelligence, 33, 393416.Google Scholar
Johnson, W., Bouchard, T. J. Jr, Krueger, R. F., McGue, M., & Gottesman, I. I. (2004). Just one g: Consistent results from three batteries. Intelligence, 32(1), 95107.Google Scholar
Johnson, W., te Nijenhuis, J., & Bouchard, T. (2008). Still just 1 g: Consistent results from five test batteries. Intelligence, 36(1), 8195.CrossRefGoogle Scholar
Jung, R. E., & Haier, R. J. (2007). The parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30(2), 135187.Google Scholar
Karama, S., Colom, R., Johnson, W., Deary, I. J., Haier, R., Waber, D. P., … Brain Development Cooperative Group (2011). Cortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6 to 18. NeuroImage, 55(4), 14431453.Google Scholar
Kim, J. S., Singh, V., Lee, J. K., Lerch, J., Ad-Dab’bagh, Y., MacDonald, D., … Evans, A. C. (2005). Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. NeuroImage, 27(1), 210221.Google Scholar
Kruschwitz, J. D., Waller, L., Daedelow, L. S., Walter, H., & Veer, I. M. (2018). General, crystallized and fluid intelligence are not associated with functional global network efficiency: A replication study with the human connectome project 1200 data set. NeuroImage, 171, 323331. doi: 10.1016/j.neuroimage.2018.01.018.Google Scholar
Langer, N., Pedroni, A., Gianotti, L. R., Hänggi, J., Knoch, D., & Jäncke, L. (2012). Functional brain network efficiency predicts intelligence. Human Brain Mapping, 33(6), 13931406.Google Scholar
MacDonald, D., Kabani, N., Avis, D., & Evans, A. C. (2000). Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. NeuroImage, 12(3), 340356.Google Scholar
Martínez, K., Madsen, S. K., Joshi, A. A., Joshi, S. H., Roman, F. J., Villalon‐Reina, J., … Colom, R. (2015). Reproducibility of brain–cognition relationships using three cortical surface-based protocols: An exhaustive analysis based on cortical thickness. Human Brain Mapping, 36(8), 32273245.Google Scholar
Mechelli, A., Price, C. J., Friston, K. J., & Ashburner, J. (2005). Voxel-based morphometry of the human brain: Methods and applications. Current Medical Imaging Reviews, 1(2), 105113.Google Scholar
Pakkenberg, B., & Gundersen, H. J. G. (1997). Neocortical neuron number in humans: Effect of sex and age. Journal of Comparative Neurology, 384(2), 312320.Google Scholar
Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Jernigan, T. L., Prom-Wormley, E., Neale, M., … Kremen, W. S. (2009). Distinct genetic influences on cortical surface area and cortical thickness. Cerebral Cortex, 19(11), 27282735.Google Scholar
Pietschnig, J., Penke, L., Wicherts, J. M., Zeiler, M., & Voracek, M. (2015). Meta-analysis of associations between human brain volume and intelligence differences: How strong are they and what do they mean? Neuroscience & Biobehavioral Reviews, 57, 411432.Google Scholar
Pineda-Pardo, J. A., Martínez, K., Román, F. J., & Colom, R. (2016). Structural efficiency within a parieto-frontal network and cognitive differences. Intelligence, 54, 105116. doi: 10.1016/j.intell.2015.12.002.Google Scholar
Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2016). Top 10 replicated findings from behavioral genetics. Perspectives on Psychological Science, 11(1), 323.Google Scholar
Ponsoda, V., Martínez, K., Pineda‐Pardo, J. A., Abad, F. J., Olea, J., Román, F. J., … Colom, R. (2017). Structural brain connectivity and cognitive ability differences: A multivariate distance matrix regression analysis. Human Brain Mapping, 38(2), 803816.CrossRefGoogle ScholarPubMed
Price, C. J. (2018). The evolution of cognitive models: From neuropsychology to neuroimaging and back. Cortex, 107, 3749.Google Scholar
Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241(4862), 170176.Google Scholar
Ritchie, S. J., Cox, S. R., Shen, X., Lombardo, M. V., Reus, L. M., Alloza, C., … Deary, I. J. (2018). Sex differences in the adult human brain: Evidence from 5216 UK Biobank participants. Cerebral Cortex, 28(8), 29592975.Google Scholar
Román, F. J., Abad, F. J., Escorial, S., Burgaleta, M., Martínez, K., Álvarez‐Linera, J., … Colom, R. (2014). Reversed hierarchy in the brain for general and specific cognitive abilities: A morphometric analysis. Human Brain Mapping, 35(8), 38053818.Google Scholar
Román, F. J., Morillo, D., Estrada, E., Escorial, S., Karama, S., & Colom, R. (2018). Brain–intelligence relationships across childhood and adolescence: A latent-variable approach. Intelligence, 68, 2129. doi: 10.1016/j.intell.2018.02.006.Google Scholar
Roth, G., & Dicke, U. (2005). Evolution of the brain and intelligence. Trends in Cognitive Sciences, 9(5), 250257.Google Scholar
Santarnecchi, E., Rossi, S., & Rossi, A. (2015). The smarter, the stronger: Intelligence level correlates with brain resilience to systematic insults. Cortex, 64, 293309. doi: 10.1016/j.cortex.2014.11.005.Google Scholar
Saxe, G. N., Calderone, D., & Morales, L. J. (2018). Brain entropy and human intelligence: A resting-state fMRI study. PloS One, 13(2), e0191582.CrossRefGoogle ScholarPubMed
Schneider, W. J., & McGrew, K. S. (2018). The Cattell–Horn–Carroll theory of cognitive abilities. In Flanagan, D. P., & McDonough, E. M. (eds.), Contemporary intellectual assessment: Theories, tests, and issues (pp. 73163). New York: The Guilford Press.Google Scholar
Sella, G., & Barton, N. H. (2019). Thinking about the evolution of complex traits in the era of genome-wide association studies. Annual Review of Genomics and Human Genetics, 20, 461493.Google Scholar
Thompson, P. M., Hayashi, K. M., Sowell, E. R., Gogtay, N., Giedd, J. N., Rapoport, J. L., … Toga, A. W. (2004). Mapping cortical change in Alzheimer’s disease, brain development, and schizophrenia. NeuroImage, 23, S2S18. doi: 10.1016/j.neuroimage.2004.07.071.Google Scholar
Thompson, P. M., Jahanshad, N., Ching, C. R., Salminen, L. E., Thomopoulos, S. I., Bright, J., … for the ENIGMA Consortium (2020). ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Translational Psychiatry, 10(1), 128.CrossRefGoogle ScholarPubMed
Valizadeh, S. A., Liem, F., Mérillat, S., Hänggi, J., & Jäncke, L. (2018). Identification of individual subjects on the basis of their brain anatomical features. Scientific Reports, 8(1), 19.Google Scholar
van den Heuvel, M.P., Stam, C.J., Kahn, R.S., Hulshoff Pol, H.E. (2009). Efficiency of functional brain networks and intellectual performance. Journal of Neuroscience, 29(23), 76197624.Google Scholar
Viviano, R. P., Raz, N., Yuan, P., & Damoiseaux, J. S. (2017). Associations between dynamic functional connectivity and age, metabolic risk, and cognitive performance. Neurobiology of Aging, 59, 135143. doi: 10.1016/j.neurobiolaging.2017.08.003.Google Scholar
Vuoksimaa, E., Panizzon, M. S., Chen, C. H., Fiecas, M., Eyler, L. T., Fennema-Notestine, C., … Kremen, W. S. (2015). The genetic association between neocortical volume and general cognitive ability is driven by global surface area rather than thickness. Cerebral Cortex, 25(8), 21272137.Google Scholar
Wendelken, C., Ferrer, E., Ghetti, S., Bailey, S. K., Cutting, L., & Bunge, S. A. (2017). Frontoparietal structural connectivity in childhood predicts development of functional connectivity and reasoning ability: A large-scale longitudinal investigation. Journal of Neuroscience, 37(35), 85498558.Google Scholar
Winkler, A. M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P. T., … Glahn, D. C. (2010). Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. NeuroImage, 53(3), 11351146.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×