Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T05:11:09.245Z Has data issue: false hasContentIssue false

6 - Human Intelligence and Network Neuroscience

from Part II - Theories, Models, and Hypotheses

Published online by Cambridge University Press:  11 June 2021

Aron K. Barbey
Affiliation:
University of Illinois, Urbana-Champaign
Sherif Karama
Affiliation:
McGill University, Montréal
Richard J. Haier
Affiliation:
University of California, Irvine
Get access

Summary

Flexibility is central to human intelligence and is made possible by the brain’s remarkable capacity to reconfigure itself – to continually update prior knowledge on the basis of new information and to actively generate internal predictions that guide adaptive behavior and decision making. Rather than lying dormant until stimulated, contemporary research conceives of the brain as a dynamic and active inference generator that anticipates incoming sensory inputs, forming hypotheses about that world that can be tested against sensory signals that arrive in the brain (Clark, 2013; Friston, 2010). Plasticity is therefore critical for the emergence of human intelligence, providing a powerful mechanism for updating prior beliefs, generating dynamic predictions about the world, and adapting in response to ongoing changes in the environment (Barbey, 2018). This perspective provides a catalyst for contemporary research on human intelligence, breaking away from the classic view that general intelligence (g) originates from individual differences in a fixed set of cortical regions or a singular brain network (for reviews, see Haier, 2017; Posner & Barbey, 2020).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3, e17.Google Scholar
Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26(1), 6372.Google Scholar
Avena-Koenigsberger, A., Yan, X., Kolchinsky, A., van den Heuvel, M. P., Hagmann, P., & Sporns, O. (2019). A spectrum of routing strategies for brain networks. PLoS Computational Biology, 15, e1006833.Google Scholar
Barbey, A. K. (2018). Network neuroscience theory of human intelligence. Trends in Cognitive Sciences, 22(1), 8-20.CrossRefGoogle ScholarPubMed
Barbey, A. K., Belli, T., Logan, A., Rubin, R., Zamroziewicz, M., & Operskalski, T. (2015). Network topology and dynamics in traumatic brain injury Current Opinion in Behavioral Sciences, 4, 92102.Google Scholar
Barbey, A. K., Colom, R., & Grafman, J. (2013a). Architecture of cognitive flexibility revealed by lesion mapping. Neuroimage, 82, 547554.Google Scholar
Barbey, A. K., Colom, R., & Grafman, J. (2013b). Dorsolateral prefrontal contributions to human intelligence. Neuropsychologia, 51(7), 13611369.CrossRefGoogle ScholarPubMed
Barbey, A. K., Colom, R., Paul, E. J., & Grafman, J. (2014). Architecture of fluid intelligence and working memory revealed by lesion mapping. Brain Structure and Function, 219(2), 485494.Google Scholar
Barbey, A. K., Colom, R., Solomon, J., Krueger, F., Forbes, C., & Grafman, J. (2012). An integrative architecture for general intelligence and executive function revealed by lesion mapping. Brain, 135(4), 11541164.Google Scholar
Barbey, A. K., Koenigs, M., & Grafman, J. (2013c). Dorsolateral prefrontal contributions to human working memory. Cortex, 49(5), 11951205.CrossRefGoogle ScholarPubMed
Bassett, D. S., & Bullmore, E. (2006). Small-world brain networks. Neuroscientist, 12(6), 512523.Google Scholar
Bassett, D. S., & Bullmore, E. T. (2009). Human brain networks in health and disease. Current Opinion in Neurology, 22(4), 340347.Google Scholar
Bassett, D. S., & Bullmore, E. T. (2017). Small-world brain networks revisited. Neuroscientist, 23(5), 499516.Google Scholar
Bassett, D. S., & Gazzaniga, M. S. (2011). Understanding complexity in the human brain. Trends in Cognitive Sciences, 15(5), 200209.Google Scholar
Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Sciences USA, 108(18), 76417646.Google Scholar
Beggs, J. M. (2008). The criticality hypothesis: How local cortical networks might optimize information processing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Science, 366(1864), 329343.Google Scholar
Bertolero, M. A., Yeo, B. T., & D’Esposito, M. (2015). The modular and integrative functional architecture of the human brain. Proceedings of the National Academy of Sciences USA, 112(49), E6798–6807.CrossRefGoogle ScholarPubMed
Betzel, R. F., & Bassett, D. S. (2017). Multi-scale brain networks. Neuroimage, 160, 7383.CrossRefGoogle ScholarPubMed
Betzel, R. F., Gu, S., Medaglia, J. D., Pasqualetti, F., & Bassett, D. S. (2016). Optimally controlling the human connectome: the role of network topology. Science Reports, 6, 30770.Google Scholar
Betzel, R. F., Satterthwaite, T. D., Gold, J. I., & Bassett, D. S. (2016). A positive mood, a flexible brain. arXiv preprint.Google Scholar
Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance Medicine, 34(4), 537541.CrossRefGoogle ScholarPubMed
Braun, U., Schäfer, A., Walter, H., Erk, S., Romanczuk-Seiferth, N., Haddad, L., … Bassett, D. S. (2015). Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proceedings of the National Academy of Sciences USA, 112(37), 1167811683.CrossRefGoogle ScholarPubMed
Breakspear, M. (2017). Dynamic models of large-scale brain activity. Nature Neuroscience, 20, 340352.Google Scholar
Buchel, C., Coull, J. T., & Friston, K. J. (1999). The predictive value of changes in effective connectivity for human learning. Science, 283(5407), 15381541.CrossRefGoogle ScholarPubMed
Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., … Johnson, K. A. (2009). Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease. Journal of Neuroscience, 29(6), 18601873.Google Scholar
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186198.CrossRefGoogle ScholarPubMed
Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature Reviews Neuroscience, 13, 336349.Google Scholar
Byrge, L., Sporns, O., & Smith, L. B. (2014). Developmental process emerges from extended brain-body-behavior networks. Trends in Cognitive Sciences, 18(8), 395403.Google Scholar
Cabral, J., Kringelbach, M. L., & Deco, G. (2017). Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms. Neuroimage, 160, 8496.Google Scholar
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge University Press.Google Scholar
Cattell, R. B. (1971). Abilities: Their structure, growth, and action. Boston: Houghton Mifflin.Google Scholar
Chai, L. R., Khambhati, A. N., Ciric, R., Moore, T. M., Gur, R. C., Gur, R. E., … Bassett, D. S. (2017). Evolution of brain network dynamics in neurodevelopment. Network Neuroscience, 1(1), 1430.Google Scholar
Christoff, K., Irving, Z. C., Fox, K. C., Spreng, R. N., & Andrews-Hanna, J. R. (2016). Mind-wandering as spontaneous thought: A dynamic framework. Nature Reviews Neuroscience, 17, 718731.Google Scholar
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181204.Google Scholar
Cohen, J. R., & D’Esposito, M. (2016). The segregation and integration of distinct brain networks and their relationship to cognition. Journal of Neuroscience, 36, 1208312094.CrossRefGoogle ScholarPubMed
Cohen, J. R., Gallen, C. L., Jacobs, E. G., Lee, T. G., & D’Esposito, M. (2014). Quantifying the reconfiguration of intrinsic networks during working memory. PLoS One, 9, e106636.CrossRefGoogle ScholarPubMed
Cole, M. W., Ito, T., & Braver, T. S. (2015). Lateral prefrontal cortex contributes to fluid intelligence through multinetwork connectivity. Brain Connectivity, 5(8), 497504.Google Scholar
Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16(9), 13481355.Google Scholar
Cole, M. W., Yarkoni, T., Repovs, G., Anticevic, A., & Braver, T. S. (2012). Global connectivity of prefrontal cortex predicts cognitive control and intelligence. Journal of Neuroscience, 32(26), 89888999.Google Scholar
Deco, G., & Corbetta, M. (2011). The dynamical balance of the brain at rest. Neuroscientist, 17(1), 107123.Google Scholar
Deco, G., Jirsa, V. K., & McIntosh, A. R. (2013). Resting brains never rest: Computational insights into potential cognitive architectures. Trends in Neurosciences, 36(5), 268274.Google Scholar
Deco, G., Tononi, G., Boly, M., & Kringelbach, M. L. (2015). Rethinking segregation and integration: Contributions of whole-brain modelling. Nature Reviews Neuroscience, 16, 430439.CrossRefGoogle ScholarPubMed
Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12(3), 99105.Google Scholar
Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172179.Google Scholar
Duncan, J., Chylinski, D., Mitchell, D. J., & Bhandari, A. (2017). Complexity and compositionality in fluid intelligence. Proceedings of the National Academy of Sciences USA, 114(20), 52955299.Google Scholar
Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23(10), 475483.Google Scholar
Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., … Emslie, H. (2000). A neural basis for general intelligence. Science, 289(5478), 457460.Google Scholar
Eguiluz, V. M., Chialvo, D. R., Cecchi, G. A., Baliki, M., & Apkarian, A. V. (2005). Scale-free brain functional networks. Physical Review Letters, 94, 018102.Google Scholar
Finc, K., Bonna, K., He, X., Lydon-Staley, D. M., Kuhn, S., Duch, W., & Bassett, D. S. (2020). Dynamic reconfiguration of functional brain networks during working memory training. Nature Communications, 11, 2435.CrossRefGoogle ScholarPubMed
Friedman, N. P., & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186204.CrossRefGoogle ScholarPubMed
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11, 127138.Google Scholar
Gallos, L. K., Makse, H. A., & Sigman, M. (2012). A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks. Proceedings of the National Academy of Sciences USA, 109(8), 28252830.Google Scholar
Girn, M., Mills, C., & Christoff, K. (2019). Linking brain network reconfiguration and intelligence: Are we there yet? Trends in Neuroscience and Education, 15, 6270.Google Scholar
Glascher, J., Rudrauf, D., Colom, R., Paul, L. K., Tranel, D., Damasio, H., & Adolphs, R. (2010). Distributed neural system for general intelligence revealed by lesion mapping. Proceedings of the National Academy of Sciences USA, 107(10), 47054709.Google Scholar
Gordon, E. M., Stollstorff, M., & Vaidya, C. J. (2012). Using spatial multiple regression to identify intrinsic connectivity networks involved in working memory performance. Human Brain Mapping, 33(7), 15361552.Google Scholar
Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 13601380.Google Scholar
Greene, A. S., Gao, S., Scheinost, D., & Constable, R. T. (2018). Task-induced brain state manipulation improves prediction of individual traits. Nature Communications, 9, 2807.Google Scholar
Gu, S., Pasqualetti, F., Cieslak, M., Telesford, Q. K., Yu, A. B., Kahn, A. E., … Bassett, D. S. (2015). Controllability of structural brain networks. Nature Communications, 6, 8414.CrossRefGoogle ScholarPubMed
Guimera, R., & Nunes Amaral, L. A. (2005). Functional cartography of complex metabolic networks. Nature, 433, 895900.Google Scholar
Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V. J., Meuli, R., & Thiran, J. P. (2007). Mapping human whole-brain structural networks with diffusion MRI. PLoS One, 2, e597.Google Scholar
Haier, R. J., 2017. The neuroscience of intelligence. Cambridge University Press.Google Scholar
Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., … Buchsbaum, M. S. (1988). Cortical glucose metabolic-rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12(2), 199217.Google Scholar
Hampshire, A., Highfield, R. R., Parkin, B. L., & Owen, A. M. (2012). Fractionating human intelligence. Neuron, 76(6), 12251237.Google Scholar
He, Y., Chen, Z. J., & Evans, A. C. (2007). Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral Cortex, 17(10), 24072419.Google Scholar
Hilger, K., Ekman, M., Fiebach, C. J., & Basten, U. (2017a). Efficient hubs in the intelligent brain: Nodal efficiency of hub regions in the salience network is associated with general intelligence. Intelligence, 60, 1025.Google Scholar
Hilger, K., Ekman, M., Fiebach, C. J., & Basten, U. (2017b). Intelligence is associated with the modular structure of intrinsic brain networks. Science Reports, 7(1), 16088.Google Scholar
Hilger, K., Fukushima, M., Sporns, O., & Fiebach, C. J. (2020). Temporal stability of functional brain modules associated with human intelligence. Human Brain Mapping, 41(2), 362372.Google Scholar
Jia, H., Hu, X., & Deshpande, G. (2014). Behavioral relevance of the dynamics of the functional brain connectome. Brain Connectivity, 4(9), 741759.Google Scholar
Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30(2), 135154; discussion 154–187.Google Scholar
Kovacs, K., & Conway, A. R. A. (2016). Process overlap theory: A unified account of the general factor of intelligence. Psychological Inquiry, 27(3), 151177.Google Scholar
Kruschwitz, J., Waller, L., Daedelow, L., Walter, H., & Veer, I. (2018). General, crystallized and fluid intelligence are not associated with functional global network efficiency: A replication study with the human connectome project 1200 data set. Neuroimage, 171, 323331.Google Scholar
Kucyi, A. (2018). Just a thought: How mind-wandering is represented in dynamic brain connectivity. Neuroimage, 180(Pt B), 505514.Google Scholar
Langer, N., Pedroni, A., Gianotti, L. R., Hänggi, J., Knoch, D., & Jäncke, L. (2012). Functional brain network efficiency predicts intelligence. Human Brain Mapping, 33(6), 13931406.Google Scholar
Langer, N., Pedroni, A., & Jancke, L. (2013). The problem of thresholding in small-world network analysis. PLoS One, 8, e53199.Google Scholar
Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87(19), 198701.CrossRefGoogle ScholarPubMed
Liang, X., Zou, Q., He, Y., & Yang, Y. (2016). Topologically reorganized connectivity architecture of default-mode, executive-control, and salience networks across working memory task loads. Cerebral Cortex, 26(4), 15011511.Google Scholar
Mattar, M. G., Betzel, R. F., & Bassett, D. S. (2016). The flexible brain. Brain, 139(8), 21102112.Google Scholar
McGrew, K. S., & Wendling, B. J. (2010). Cattell-Horn-Carroll cognitive-achievement relations: What we have learned from the past 20 years of research. Psychology in the Schools, 47(7), 651675.CrossRefGoogle Scholar
Meunier, D., Lambiotte, R., & Bullmore, E. T. (2010). Modular and hierarchically modular organization of brain networks. Frontiers in Neuroscience, 4, 200.Google Scholar
Mill, R. D., Ito, T., & Cole, M. W. (2017). From connectome to cognition: The search for mechanism in human functional brain networks. Neuroimage, 160, 124139.Google Scholar
Park, H. J., & Friston, K. (2013). Structural and functional brain networks: From connections to cognition. Science, 342(6158), 1238411.Google Scholar
Pascual-Leone, A., Amedi, A., Fregni, F., & Merabet, L. B. (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28, 377401.Google Scholar
Petermann, T., Thiagarajan, T. C., Lebedev, M. A., Nicolelis, M. A., Chialvo, D. R., & Plenz, D. (2009). Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proceedings of the National Academy of Sciences USA, 106(37), 1592115926.Google Scholar
Posner, M. I., & Barbey, A. K. (2020). General intelligence in the age of neuroimaging. Trends in Neuroscience and Education, 18, 100126.Google Scholar
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., … Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72(4), 665678.Google Scholar
Power, J. D., & Petersen, S. E. (2013). Control-related systems in the human brain. Current Opinion in Neurobiology, 23(2), 223228.Google Scholar
Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N., & Petersen, S. E. (2013). Evidence for hubs in human functional brain networks. Neuron, 79(4), 798813.Google Scholar
Ramón y Cajal, S., Pasik, P., & Pasik, T. (1999). Texture of the nervous system of man and the vertebrates. Wien: Springer.Google Scholar
Robinson, P. A., Henderson, J. A., Matar, E., Riley, P., & Gray, R. T. (2009). Dynamical reconnection and stability constraints on cortical network architecture. Physical Review Letters, 103, 108104.Google Scholar
Santarnecchi, E., Galli, G., Polizzotto, N. R., Rossi, A., & Rossi, S. (2014). Efficiency of weak brain connections support general cognitive functioning. Human Brain Mapping, 35(9), 45664582.Google Scholar
Schneidman, E., Berry, M. J., 2nd, Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440, 10071012.Google Scholar
Schultz, D. H., & Cole, M. W. (2016). Higher intelligence is associated with less task-related brain network reconfiguration. Journal of Neuroscience, 36(33), 85518561.Google Scholar
Shine, J. M., Bissett, P. G., Bell, P. T., Koyejo, O., Balsters, J. H., Gorgolewski, K. J., … Poldrack, R. A. (2016). The dynamics of functional brain networks: Integrated network states during cognitive task performance. Neuron, 92(2), 544554.Google Scholar
Simon, H. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106(6), 467482.Google Scholar
Smith, S. M., Beckmann, C. F., Andersson, J., Auerbach, E. J., Bijsterbosch, J., Douaud, G., … WU-Minn HCP Consortium, (2013). Resting-state fMRI in the Human Connectome Project. Neuroimage, 80, 144168.Google Scholar
Song, M., Zhou, Y., Li, J., Liu, Y., Tian, L., Yu, C., & Jiang, T. (2008). Brain spontaneous functional connectivity and intelligence. Neuroimage, 41(3), 11681176.Google Scholar
Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8(9), 418425.Google Scholar
Sporns, O., Tononi, G., & Edelman, G. M. (2000a). Connectivity and complexity: The relationship between neuroanatomy and brain dynamics. Neural Networks, 13(8–9), 909922.Google Scholar
Sporns, O., Tononi, G., & Edelman, G. M. (2000b). Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cerebral Cortex, 10(2), 127141.Google Scholar
St Jacques, P. L., Kragel, P. A., & Rubin, D. C. (2011). Dynamic neural networks supporting memory retrieval. Neuroimage, 57(2), 608616.Google Scholar
Stam, C. J. (2014). Modern network science of neurological disorders. Nature Reviews Neuroscience, 15, 683695.Google Scholar
Stam, C. J., Jones, B. F., Nolte, G., Breakspear, M., & Scheltens, P. (2007). Small-world networks and functional connectivity in Alzheimer’s disease. Cerebral Cortex, 17(1), 9299.Google Scholar
van den Heuvel, M. P., Mandl, R. C., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Human Brain Mapping, 30(10), 31273141.Google Scholar
van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. Journal of Neuroscience, 31(44), 1577515786.Google Scholar
van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends in Cognitive Sciences, 17(12), 683696.Google Scholar
van den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Efficiency of functional brain networks and intellectual performance. Journal of Neuroscience, 29(23), 76197624.Google Scholar
van der Maas, H. L., Dolan, C. V., Grasman, R. P., Wicherts, J. M., Huizenga, H. M., & Raijmakers, M. E. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review, 113(4), 842861.Google Scholar
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393, 440442.Google Scholar
Wirth, M., Jann, K., Dierks, T., Federspiel, A., Wiest, R., & Horn, H. (2011). Semantic memory involvement in the default mode network: A functional neuroimaging study using independent component analysis. Neuroimage, 54(4), 30573066.Google Scholar
Xiao, L., Stephen, J. M., Wilson, T. W., Calhoun, V. D., & Wang, Y. P. (2019). Alternating diffusion map based fusion of multimodal brain connectivity networks for IQ prediction. IEEE Transactions of Biomedical Engineering, 66(8), 21402151.Google Scholar
Zalesky, A., Fornito, A., Cocchi, L., Gollo, L. L., & Breakspear, M. (2014). Time-resolved resting-state brain networks. Proceedings of the National Academy of Sciences USA, 111(28), 1034110346.Google Scholar
Zhang, J., Cheng, W., Liu, Z., Zhang, K., Lei, X., Yao, Y., … Feng, J. (2016). Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders. Brain, 139(8), 23072321.CrossRefGoogle ScholarPubMed
Zuo, X. N., He, Y., Betzel, R. F., Colcombe, S., Sporns, O., & Milham, M. P. (2017). Human connectomics across the life span. Trends in Cognitive Sciences, 21(1), 3245.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×