Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T12:05:53.468Z Has data issue: false hasContentIssue false

15 - Good Sense and Good Chemistry

Neurochemical Correlates of Cognitive Performance Assessed In Vivo through Magnetic Resonance Spectroscopy

from Part III - Neuroimaging Methods and Findings

Published online by Cambridge University Press:  11 June 2021

Aron K. Barbey
Affiliation:
University of Illinois, Urbana-Champaign
Sherif Karama
Affiliation:
McGill University, Montréal
Richard J. Haier
Affiliation:
University of California, Irvine
Get access

Summary

Intelligence is an extensively researched and psychometrically robust construct, whose biological validity remains insufficiently elucidated. The extant theorizing about neural mechanisms of intelligence links better reasoning abilities to the efficiency of information processing by the brain as a system (Neubauer & Fink, 2009), to the structural and functional integrity of the network connecting critically important brain hubs (a parietal-frontal integration or P-FIT theory, Jung & Haier, 2007), and to properties of specific brain regions, such as the prefrontal cortices (Duncan, Emslie, Williams, Johnson, & Freer, 1996). Gathering data for testing these theories is a complicated enterprise that involves interrogating the brain from multiple perspectives. Despite recent promising work on multimodal imaging (Sui, Huster, Yu, Segall, & Calhoun, 2014), it is still unrealistic to assess all relevant aspects of the brain at once. Thus, the investigators are compelled to evaluate specific salient features of the brain’s structure and function.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, L., Araneta, M. F., Johnson, C., & Shen, J. (2018). Simultaneous measurement of glutamate, glutamine, GABA, and glutathione by spectral editing without subtraction. Magnetic Resonance in Medicine, 80(5), 17761717. doi: 10.1002/mrm.27172.Google Scholar
Andres, R. H., Ducray, A. D., Schlattner, U., Wallimann, T., & Widmer, H. R. (2008). Functions and effects of creatine in the central nervous system. Brain Research Bulletin, 76(4), 329343. doi: 10.1016/j.brainresbull.2008.02.035CrossRefGoogle ScholarPubMed
Apsvalka, D., Gadie, A., Clemence, M., & Mullins, P. G. (2015). Event-related dynamics of glutamate and BOLD effects measured using functional magnetic resonance spectroscopy (fMRS) at 3T in a repetition suppression paradigm. Neuroimage, 118, 292300.CrossRefGoogle Scholar
Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 21(10), 11331145. doi: 10.1097/00004647-200110000-00001.CrossRefGoogle ScholarPubMed
Bäckman, L., Lindenberger, U., Li, S. C., & Nyberg, L. (2010). Linking cognitive aging to alterations in dopamine neurotransmitter functioning: Recent data and future avenues. Neuroscience and Biobehavioral Reviews, 34(5), 670677. doi: 10.1016/j.neubiorev.2009.12.008Google Scholar
Barreto, F. R., Costa, T. B., Landim, R. C., Castellano, G., & Salmon, C. E. (2014). (31)P-MRS using visual stimulation protocols with different durations in healthy young adult subjects. Neurochemical Research, 39(12), 23432350. doi: 10.1007/s11064-014-1433-9.CrossRefGoogle ScholarPubMed
Bartha, R., Drost, D. J., Menon, R. S., & Williamson, P. C. (2000). Comparison of the quantification precision of human short echo time (1)H spectroscopy at 1.5 and 4.0 Tesla. Magnetic Resonance in Medicine, 44(2), 185192.Google Scholar
Baslow, M. H. (2000). Functions of N-acetyl-L-aspartate and N-acetyl-L-aspartylglutamate in the vertebrate brain: Role in glial cell-specific signaling. Journal of Neurochemistry, 75(2), 453459.Google Scholar
Baslow, M. H. (2003). Brain N-acetylaspartate as a molecular water pump and its role in the etiology of Canavan disease: A mechanistic explanation. Journal of Molecular Neuroscience, 21(3), 185190.Google Scholar
Bednarik, P., Tkac, I., Giove, F., DiNuzzo, M., Deelchand, D. K., Emir, U. E., … Mangia, S. (2015). Neurochemical and BOLD responses during neuronal activation measured in the human visual cortex at 7 T. Journal of Cerebral. Blood Flow and Metabolism, 35(4), 601610.Google Scholar
Bhakoo, K., & Pearce, D. (2000). In vitro expression of N-acetyl aspartate by oligodendrocytes: Implications for proton magnetic resonance spectroscopy signal in vivo. Journal of Neurochemistry, 74(1), 254262.Google Scholar
Chakraborty, G., Mekala, P., Yahya, D., Wu, G., & Ledeen, R. W. (2001). Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: Evidence for myelin-associated aspartoacylase. Journal of Neurochemistry, 78(4), 736745.Google Scholar
Chalavi, S., Pauwels, L., Heise, K.-F., Zivari Adab, H., Maes, C., Puts, N. A. J., … Swinnen, S. P. (2018). The neurochemical basis of the contextual interference effect. Neurobiology of Aging, 66, 8596. doi: 10.1016/j.neurobiolaging.2018.02.014.CrossRefGoogle ScholarPubMed
Chen, W., Zhu, X. H., Adriany, G., & Uğurbil, K. (1997). Increase of creatine kinase activity in the visual cortex of human brain during visual stimulation: A 31P magnetization transfer study. Magnetic Resonance in Medicine, 38(4), 551557.CrossRefGoogle ScholarPubMed
Coupland, N. J., Ogilvie, C. J., Hegadoren, K. M., Seres, P., Hanstock, C. C., & Allen, P. S. (2005). Decreased prefrontal myo-inositol in major depressive disorder. Biological Psychiatry, 57(12), 15261534.CrossRefGoogle ScholarPubMed
Da Silva, T., Hafizi, S., Rusjan, P. M., Houle, S., Wilson, A. A., Price, I., … Mizrahi, R. (2019). GABA levels and TSPO expression in people at clinical high risk for psychosis and healthy volunteers: A PET-MRS study. Journal of Psychiatry and Neuroscience, 44(2), 111119. doi: 10.1503/jpn.170201.CrossRefGoogle ScholarPubMed
Damoiseaux, J. S., Viviano, R. P., Yuan, P., & Raz, N. (2016). Differential effect of age on posterior and anterior hippocampal functional connectivity. NeuroImage, 133, 468476. doi: 10.1016/j.neuroimage.2016.03.047.Google Scholar
de Graaf, A. A., & Bovee, W. M. (1990). Improved quantification of in vivo 1H NMR spectra by optimization of signal acquisition and processing and by incorporation of prior knowledge into the spectral fitting. Magnetic Resonance in Medicine, 15(2), 305319.Google Scholar
De Stefano, N., Matthews, P. M., Fu, L., Narayanan, S., Stanley, J., Francis, G. S., … Arnold, D. L. (1998). Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain, 121(Pt 8), 14691477.Google Scholar
Del Tufo, S. N., Frost, S. J., Hoeft, F., Cutting, L. E., Molfese, P. J., Mason, G. F., … Pugh, K. R. (2018). Neurochemistry predicts convergence of written and spoken language: A proton magnetic resonance spectroscopy study of cross-modal language integration. Frontiers in Psychology, 9, 1507. doi: 10.3389/fpsyg.2018.01507.eCollection2018.Google Scholar
Dienel, G. A. (2012). Fueling and imaging brain activation. ASN Neuro, 4(5), 267321. doi: 10.1042/AN20120021.Google Scholar
Du, F., Cooper, A., Lukas, S. E., Cohen, B. M., & Ongur, D. (2013). Creatine kinase and ATP synthase reaction rates in human frontal lobe measured by (31)P magnetization transfer spectroscopy at 4T. Magnetic Resonance Imaging, 31(1), 102108. doi: 10.1016/j.mri.2012.06.018Google Scholar
Duncan, J., Emslie, H., Williams, P., Johnson, R., & Freer, C. (1996). Intelligence and the frontal lobe: The organization of goal-directed behavior. Cognitive Psychology, 30(3), 257303.Google Scholar
Duncan, N. W., Wiebking, C., & Northoff, G. (2014). Associations of regional GABA and glutamate with intrinsic and extrinsic neural activity in humans – A review of multimodal imaging studies. Neuroscience and Biobehavioral Reviews, 47, 3652. doi: 10.1016/j.neubiorev.2014.07.016.Google Scholar
Fukushima, E., & Roeder, S. B. W. (1981). Experimental pulse NMR: A nuts and bolts approach. Reading, MA: Addison-Wesley.Google Scholar
Galton, F. (1883). Inquiries into human faculty. London: Macmillan.Google Scholar
Garwood, M., & DelaBarre, L. (2001). The return of the frequency sweep: Designing adiabatic pulses for contemporary NMR. Journal of Magnetic Resonance, 153(2), 155177. doi: 10.1006/jmre.2001.2340.CrossRefGoogle ScholarPubMed
Geddes, J. W., Panchalingam, K., Keller, J. N., & Pettegrew, J. W. (1997). Elevated phosphocholine and phosphatidylcholine following rat entorhinal cortex lesions. Neurobiology of Aging, 18(3), 305308.Google Scholar
Goldstein, G., Panchalingam, K., McClure, R. J., Stanley, J. A.., Calhoun, V. D., Pearlson, G. D., & Pettegrew, J. W. (2009). Molecular neurodevelopment: An in vivo 31 P- 1 H MRSI study. Journal of the International Neuropsychological Society, 15(5), 671683.Google Scholar
Govindaraju, V., Young, K., & Maudsley, A. A. (2000). Proton NMR chemical shifts and coupling constants for brain metabolites. NMR in Biomedicine, 13(3), 129153.Google Scholar
Harper, D. G., Joe, E. B., Jensen, J. E., Ravichandran, C., & Forester, B. P. (2016). Brain levels of high-energy phosphate metabolites and executive function in geriatric depression. International Journal of Geriatric Psychiatry, 31(11), 12411249. doi: 10.1002/gps.4439.Google Scholar
Harris, A. D., Saleh, M. G., & Edden, R. A. E. (2017). Edited 1H magnetic resonance spectroscopy in vivo: Methods and metabolites. Magnetic Resonance in Medicine, 77(4), 13771389. doi: 10.1002/mrm.26619.Google Scholar
Howarth, C., Gleeson, P., & Attwell, D. (2012). Updated energy budgets for neural computation in the neocortex and cerebellum. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 32(7), 12221232. doi: 10.1038/jcbfm.2012.35.Google Scholar
Huang, Z., Davis, H. H., Yue, Q., Wiebking, C., Duncan, N. W., Zhang, J., … Northoff, G. (2015). Increase in glutamate/glutamine concentration in the medial prefrontal cortex during mental imagery: A combined functional MRS and fMRI study. Human Brain Mapping, 36(8), 32043212. doi: 10.1002/hbm.22841Google Scholar
Hunt, E. (1980). Intelligence as an information-processing concept. British Journal of Psychology, 71(4), 449474.Google Scholar
Ip, B., Berrington, A., Hess, A. T., Parker, A. J., Emir, U. E., & Bridge, H. (2017). Combined fMRI-MRS acquires simultaneous glutamate and BOLD-fMRI signals in the human brain. NeuroImage, 155, 113119.Google Scholar
Isaacson, J. S., & Scanziani, M. (2011). How inhibition shapes cortical activity. Neuron, 72(2), 231243. doi: 10.1016/j.neuron.2011.09.027.Google Scholar
Jahng, G. H., Oh, J., Lee, D. W., Kim, H. G., Rhee, H. Y., Shin, W., … Ryu, C. W. (2016). Glutamine and glutamate complex, as measured by functional magnetic resonance spectroscopy, alters during face-name association task in patients with mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimers Disease, 53(2), 745. doi: 10.3233/JAD-169004.Google Scholar
Jung, R. E., Gasparovic, C., Chavez, R. S., Caprihan, A., Barrow, R., & Yeo, R. A. (2009). Imaging intelligence with proton magnetic resonance spectroscopy. Intelligence, 37(2), 192198. doi: 10.1016/j.intell.2008.10.009.Google Scholar
Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Science, 30(2), 135154; discussion 154–187.Google Scholar
Kapogiannis, D., Reiter, D. A., Willette, A. A., & Mattson, M. P. (2013). Posteromedial cortex glutamate and GABA predict intrinsic functional connectivity of the default mode network. Neuroimage, 64, 112119. doi: 10.1016/j.neuroimage.2012.09.029.CrossRefGoogle ScholarPubMed
Kato, T., Murashita, J., Shioiri, T., Hamakawa, H., & Inubushi, T. (1996) Effect of photic stimulation on energy metabolism in the human brain measured by 31P-MR spectroscopy. Journal of Neuropsychiatry and Clinical Neuroscience, 8(4), 417422.Google Scholar
Keltner, J. R., Wald, L. L., Frederick, B. D., & Renshaw, P. F. (1997): In vivo detection of GABA in human brain using a localized double-quantum filter technique. Magnetic Resonance in Medicine, 37(3), 366371.Google Scholar
Kemp, G. J. (2000). Non-invasive methods for studying brain energy metabolism: What they show and what it means. Developmental Neuroscience, 22(56), 418428. doi: 10.1159/000017471.Google Scholar
Kim, H., McGrath, B. M., & Silverstone, P. H. (2005). A review of the possible relevance of inositol and the phosphatidylinositol second messenger system (PI-cycle) to psychiatric disorders – Focus on magnetic resonance spectroscopy (MRS) studies. Human Psychopharmacology, 20(5), 309326.Google Scholar
Kroll, J. L., Steele, A. M., Pinkham, A. E., Choi, C., Khan, D. A., Patel, S. V., … Ritz, T. (2018). Hippocampal metabolites in asthma and their implications for cognitive function. Neuroimage Clinical, 19, 213221. doi: 10.1016/j.nicl.2018.04.012.eCollection2018.Google Scholar
Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity?! Intelligence, 14(4), 389433.CrossRefGoogle Scholar
Lacreuse, A., Moore, C. M., LaClair, M., Payne, L., & King, J. A. (2018). Glutamine/glutamate (Glx) concentration in prefrontal cortex predicts reversal learning performance in the marmoset. Behavioral Brain Research, 346, 1115. doi: 10.1016/j.bbr.2018.01.025.Google Scholar
Lauritzen, M., Mathiesen, C., Schaefer, K., & Thomsen, K. J. (2012). Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses. NeuroImage, 62(2), 10401050. doi: 10.1016/j.neuroimage.2012.01.040Google Scholar
Lin, Y., Stephenson, M. C., Xin, L., Napolitano, A., & Morris, P. G. (2012). Investigating the metabolic changes due to visual stimulation using functional proton magnetic resonance spectroscopy at 7 T. Journal of Cerebral Blood Flow and Metabolism, 32(8), 14841495. doi: 10.1038/jcbfm.2012.33.CrossRefGoogle Scholar
Lindner, M., Bell, T., Iqbal, S., Mullins, P. G., & Christakou, A. (2017). In vivo functional neurochemistry of human cortical cholinergic function during visuospatial attention. PLoS One, 12(2), e0171338. doi: 10.1371/journal.pone.0171338.Google Scholar
Maffei, A. (2017). Fifty shades of inhibition. Current Opinion in Neurobiology, 43, 4347. doi: 10.1016/j.conb.2016.12.003Google Scholar
Mangia, S., Tkac, I., Gruetter, R., Van de Moortele, P. F., Maraviglia, B., & Uğurbil, K. (2007) Sustained neuronal activation raises oxidative metabolism to a new steady-state level: Evidence from 1H NMR spectroscopy in the human visual cortex. Journal of Cerebral Blood Flow and Metabolism, 27(5), 10551063. doi: 10.1038/sj.jcbfm.96004-01.Google Scholar
Mazoyer, B., Zago, L., Mellet, E., Bricogne, S., Etard, O., Houdé, O., … Tzourio-Mazoyer, N. (2001). Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Research Bulletin, 54(3), 287298.Google Scholar
McEwen, B. S., & Morrison, J. H. (2013). The brain on stress: Vulnerability and plasticity of the prefrontal cortex over the life course. Neuron, 79(1), 1629. doi: 10.1016/j.neuron.2013.06.028.Google Scholar
McIlwain, H., & Bachelard, H. S. (1985). Biochemistry and the central nervous system, vol. 5. Edinburgh: Churchill Livingstone.Google Scholar
McRobbie, D., Moore, E., Graves, M., & Prince, M. (2006). MRI from picture to proton. Cambridge University Press. doi: 10.1017/CBO9780511545405.Google Scholar
Mergenthaler, P., Lindauer, U., Dienel, G. A., & Meisel, A. (2013). Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends in Neurosciences, 36(10), 587597. doi: 10.1016/j.tins.2013.07.001.Google Scholar
Miller, B. L. (1991). A review of chemical issues in 1H NMR spectroscopy: N-Acetyl-L-aspartate, creatine and choline. NMR in Biomedicine, 4(2), 4752.Google Scholar
Mlynárik, V., Gambarota, G., Frenkel, H., & Gruetter, R. (2006). Localized short-echo-time proton MR spectroscopy with full signal-intensity acquisition. Magnetic Resonance in Medicine, 56(5), 965970. doi: 10.1002/mrm.21043.Google Scholar
Mochel, F., N’Guyen, T. M., Deelchand, D., Rinaldi, D., Valabregue, R., Wary, C., … Henry, P. G. (2012) Abnormal response to cortical activation in early stages of Huntington disease. Movement Disorders, 27(7), 907910. doi: 10.1002/mds.25009.Google Scholar
Murashita, J., Kato, T., Shioiri, T., Inubushi, T., & Kato, N. (1999). Age dependent alteration of metabolic response to photic stimulation in the human brain measured by 31P MR-spectroscopy. Brain Research, 818(1), 7276.Google Scholar
Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience and Biobehavioral Reviews, 33(7), 10041023. doi: 10.1016/j.neubiorev.2009.04.001.CrossRefGoogle ScholarPubMed
Patel, T., Blyth, J. C., Griffiths, G., Kelly, D., & Talcott, J. B. (2014). Moderate relationships between NAA and cognitive ability in healthy adults: Implications for cognitive spectroscopy. Frontiers in Human Neuroscience, 14(8), 39. doi: 10.3389/fnhum.2014.00039.eCollection2014.Google Scholar
Pettegrew, J. W., Klunk, W. E., Panchalingam, K., McClure, R. J., & Stanley, J. A. (2000). Molecular insights into neurodevelopmental and neurodegenerative diseases. Brain Research Bulletin, 53(4), 455469. doi: S0361-9230(00)00376-2[pii].Google Scholar
Pettegrew, J. W., Panchalingam, K., Withers, G., McKeag, D., & Strychor, S. (1990). Changes in brain energy and phospholipid metabolism during development and aging in the Fischer 344 rat. Journal of Neuropathology and Experimental Neurology, 49(3), 237249.CrossRefGoogle ScholarPubMed
Pouwels, P. J., Brockmann, K., Kruse, B., Wilken, B., Wick, M., Hanefeld, F., & Frahm, J. (1999). Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatric Research, 46(4), 474485.Google Scholar
Pradhan, S., Bonekamp, S., Gillen, J. S., Rowland, L. M., Wijtenburg, S. A., Edden, R. A. E., & Barker, P. B. (2015). Comparison of single voxel brain MRS AT 3T and 7T using 32-channel head coils. Magnetic Resonance Imaging, 33(8), 10131018. doi: 10.1016/j.mri.2015.06.003.Google Scholar
Provencher, S. W. (1993). Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magnetic Resonance in Medicine, 30(6), 672679.Google Scholar
Rango, M., Bonifati, C., & Bresolin, N. (2006). Parkinson’s disease and brain mitochondrial dysfunction: A functional phosphorus magnetic resonance spectroscopy study. Journal of Cerebral Blood Flow and Metabolism, 26(2), 283290. doi: 10.1038/sj.jcbfm.96001.-92.Google Scholar
Rango, M., Castelli, A., & Scarlato, G. (1997). Energetics of 3.5 s neural activation in humans: A 31P MR spectroscopy study. Magnetic Resonance in Medicine, 38(6), 878883.Google Scholar
Rijpma, A., van der Graaf, M., Meulenbroek, O., Olde Rikkert, M. G. M., & Heerschap, A. (2018). Altered brain high-energy phosphate metabolism in mild Alzheimer’s disease: A 3-dimensional ³¹P MR spectroscopic imaging study. Neuroimage: Clinical, 18, 254261. doi: 10.1016/j.nicl.2018.01.031.eCollection2018.Google Scholar
Ross, B., & Bluml, S. (2001). Magnetic resonance spectroscopy of the human brain. The Anatomical Record, 265(2), 5484.Google Scholar
Rothman, D. L., Petroff, O. A., Behar, K. L., & Mattson, R. H. (1993). Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo. Proceedings of the National Academy of Sciences USA, 90(12), 56625666.Google Scholar
Sappey-Marinier, D., Calabrese, G., Fein, G., Hugg, J. W., Biggins, C., & Weiner, M. W. (1992). Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. Journal of Cerebral Blood Flow and Metabolism, 12(4), 584592. doi: 10.1038/jcbfm.1992.82.Google Scholar
Schaller, B., Mekle, R., Xin, L., Kunz, N., & Gruetter, R. (2013). Net increase of lactate and glutamate concentration in activated human visual cortex detected with magnetic resonance spectroscopy at 7 tesla. Journal of Neuroscience Research, 91(8), 10761083. doi: 10.1002/jnr.23194.Google Scholar
Schaller, B., Xin, L., O’Brien, K., Magill, A. W., & Gruetter, R. (2014). Are glutamate and lactate increases ubiquitous to physiological activation? A (1)H functional MR spectroscopy study during motor activation in human brain at 7Tesla. NeuroImage, 93(Pt 1), 138145. doi: 10.1016/j.neuroimage.2014.02.016.CrossRefGoogle Scholar
Scheenen, T. W. J., Klomp, D. W. J., Wijnen, J. P., & Heerschap, A. (2008). Short echo time 1H-MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses. Magnetic Resonance in Medicine, 59(1), 16. doi: 10.1002/mrm.21302.Google Scholar
Schlattner, U., Tokarska-Schlattner, M., & Wallimann, T. (2006). Mitochondrial creatine kinase in human health and disease. Biophysica Biochimica Acta - Molecular Basis of Disease, 1 762(2), 164180. doi: 10.1016/j.bbadis.2005.09.004.Google Scholar
Shoubridge, E. A., Briggs, R. W., & Radda, G. K. (1982). 31p NMR saturation transfer measurements of the steady state rates of creatine kinase and ATP synthetase in the rat brain. FEBS Letters, 140(2), 289292. doi: 10.1016/0014-5793(82)80916-2.Google Scholar
Simmons, M. L., Frondoza, C. G., & Coyle, J. T. (1991). Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience, 45(1), 3745. doi: 10.1016/0306-4522(91)90101-s.Google Scholar
Sokoloff, L. (1991). Measurement of local cerebral glucose utilization and its relation to local functional activity in the brain. Advances in Experimental Medicine and Biology, 291, 2142. doi: 10.1007/978-1-4684-5931-5994.Google Scholar
Sokoloff, L. (1993). Function-related changes in energy metabolism in the nervous system: Localization and mechanisms. Keio Journal of Medicine, 42(3), 95-103.Google Scholar
Somogyi, P., Tamás, G., Lujan, R., & Buhl, E. H. (1998). Salient features of synaptic organisation in the cerebral cortex. Brain Research Brain Research Reviews, 26(2–3), 113135.Google Scholar
Stagg, C. J. (2014). Magnetic resonance spectroscopy as a tool to study the role of GABA in motor-cortical plasticity. Neuroimage, 86, 1927.Google Scholar
Stanley, J. A. (2002). In vivo magnetic resonance spectroscopy and its application to neuropsychiatric disorders. Canadian Journal of Psychiatry, 47(4), 315326.Google Scholar
Stanley, J., Burgess, A., Khatib, D., Ramaseshan, K., Arshad, M., Wu, H., & Diwadkar, V. (2017). Functional dynamics of hippocampal glutamate during associative learning assessed with in vivo 1H functional magnetic resonance spectroscopy. NeuroImage, 153, 189197. doi: 10.1016/j.neuroimage.2017.03.051.Google Scholar
Stanley, J. A., Kipp, H., Greisenegger, E., MacMaster, F. P., Panchalingam, K., Keshavan, M. S., … Pettegrew, J. W. (2008). Evidence of developmental alterations in cortical and subcortical regions of children with attention-deficit/hyperactivity disorder: A multivoxel in vivo phosphorus 31 spectroscopy study. Archives of General Psychiatry, 65(12), 14191428. doi: 65/12/1419[pii]10.1001/archgenpsychiatry.2008.503.Google Scholar
Stanley, J. A., & Pettegrew, J. W. (2001). A post-processing method to segregate and quantify the broad components underlying the phosphodiester spectral region of in vivo 31P brain spectra. Magnetic Resonance in Medicine, 45(3), 390396.Google Scholar
Stanley, J. A., Pettegrew, J. W., & Keshavan, M. S. (2000). Magnetic resonance spectroscopy in schizophrenia: Methodological issues and findings – Part I. Biological Psychiatry, 48(5), 357368. doi: S0006-3223(00)00949-5[pii].Google Scholar
Stanley, J. A., & Raz, N. (2018). Functional magnetic resonance spectroscopy: The “new” MRS for cognitive neuroscience and psychiatry research. Frontiers in Psychiatry – Neuroimaging and Stimulation, 9, 76. doi: 10.3389/fpsyt.2018.00076.Google Scholar
Sui, J., Huster, R., Yu, Q., Segall, J. M., & Calhoun, V. D. (2014). Function-structure associations of the brain: Evidence from multimodal connectivity and covariance studies. Neuroimage, 102(Pt 1), 1123. doi: 10.1016/j.neuroimage.2013.09.044.Google Scholar
Tallan, H. (1957). Studies on the distribution of N-acetyl-L-aspartic acid in brain. Journal of Biological Chemistry, 224(1), 4145.Google Scholar
Tatti, R., Haley, M. S., Swanson, O. K., Tselha, T., & Maffei, A. (2017). Neurophysiology and regulation of the balance between excitation and inhibition in neocortical circuits. Biological Psychiatry, 81(10), 821831. doi:10.1016/j.biopsych.2016.09.017.Google Scholar
Taylor, R., Schaefer, B., Densmore, M., Neufeld, R. W. J., Rajakumar, N., Williamson, P. C., & Théberge, J. (2015). Increased glutamate levels observed upon functional activation in the anterior cingulate cortex using the Stroop Task and functional spectroscopy. Neuroreport, 26(3), 107112. doi: 10.1097/WNR.0000000000000309.Google Scholar
Thielen, J. W., Hong, D., Rohani Rankouhi, S., Wiltfang, J., Fernández, G., Norris, D. G., & Tendolkar, I. (2018). The increase in medial prefrontal glutamate/glutamine concentration during memory encoding is associated with better memory performance and stronger functional connectivity in the human medial prefrontal-thalamus-hippocampus network. Human Brain Mapping, 39(6), 23812390. doi: 10.1002/hbm.24008.Google Scholar
Tkac, I., Andersen, P., Adriany, G., Merkle, H., Ugurbil, K., & Gruetter, R. (2001). In vivo 1H NMR spectroscopy of the human brain at 7 T. Magnetic Resonance in Medicine, 46(3), 451456.Google Scholar
Tkác, I., Starcuk, Z., Choi, I. Y., & Gruetter, R. (1999). In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magnetic Resonance in Medicine, 41(4), 649656.Google Scholar
Uğurbil, K., Adriany, G., Andersen, P., Chen, W., Garwood, M., Gruetter, R., … Zhu, X. H. (2003). Ultrahigh field magnetic resonance imaging and spectroscopy. Magnetic Resonance Imaging, 21(10), 12631281.Google Scholar
Urenjak, J., Williams, S. R., Gadian, D. G., & Noble, M. (1993). Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. Journal of Neuroscience, 13(3), 981989.Google Scholar
van de Bank, B. L., Maas, M. C., Bains, L. J., Heerschap, A., & Scheenen, T. W. J. (2018). Is visual activation associated with changes in cerebral high-energy phosphate levels? Brain Structure and Function, 223, 27212731.Google Scholar
van den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Efficiency of functional brain networks and intellectual performance. Journal of Neuroscience, 29(23), 76197624. doi: 10.1523/JNEUROSCI.1443-09.2009.Google Scholar
van der Knaap, M. S., van der Grond, J., Luyten, P. R., den Hollander, J. A., Nauta, J. J., & Valk, J. (1992). 1H and 31P magnetic resonance spectroscopy of the brain in degenerative cerebral disorders. Annals of Neurology, 31(2), 202211.Google Scholar
Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., & Eppenberger, H. M. (1992). Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The “phosphocreatine circuit” for cellular energy homeostasis. Biochemical Journal, 281(Pt 1), 2140. doi: 10.1042/bj2810021.Google Scholar
Wijtenburg, S. A., McGuire, S. A., Rowland, L. M., Sherman, P. M., Lancaster, J. L., Tate, D. F., … Kochunov, P. (2013). Relationship between fractional anisotropy of cerebral white matter and metabolite concentrations measured using (1)H magnetic resonance spectroscopy in healthy adults. Neuroimage, 66, 161168. doi: 10.1016/j.neuroimage.2012.10.014.CrossRefGoogle ScholarPubMed
Wilman, A. H., & Allen, P. S. (1995). Yield enhancement of a double-quantum filter sequence designed for the edited detection of GABA. Journal of Magnetic Resonance B, 109(2), 169174.Google Scholar
Woodcock, E. A., Anand, C., Khatib, D., Diwadkar, V. A., & Stanley, J. A. (2018). Working memory modulates glutamate levels in the dorsolateral prefrontal cortex during (1)H fMRS. Frontiers in Psychiatry, 9, 66. Epub 2018/03/22. doi: 10.3389/fpsyt.2018.00066.Google Scholar
Yang, S., Hu, J., Kou, Z., & Yang, Y. (2008). Spectral simplification for resolved glutamate and glutamine measurement using a standard STEAM sequence with optimized timing parameters at 3, 4, 4.7, 7, and 9.4T. Magnetic Resonance in Medicine, 59(2), 236244. doi: 10.1002/mrm.21463.Google Scholar
Yeo, R. A., Hill, D., Campbell, R., Vigil, J., & Brooks, W. M. (2000). Developmental instability and working memory ability in children: A magnetic resonance spectroscopy investigation. Developmental Neuropsychology, 17(2), 143159.Google Scholar
Yuksel, C., Du, F., Ravichandran, C., Goldbach, J. R., Thida, T., Lin, P., … Cohen, B. M. (2015). Abnormal high-energy phosphate molecule metabolism during regional brain activation in patients with bipolar disorder. Molecular Psychiatry, 20(9), 10791084. doi: 10.1038/mp.2015.13.Google Scholar
Zhu, X.-H., Qiao, H., Du, F., Xiong, Q., Liu, X., Zhang, X., … Chen, W. (2012). Quantitative imaging of energy expenditure in human brain. NeuroImage, 60(4), 21072117. doi: 10.1016/j.neuroimage.2012.02.013.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×