Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T12:36:29.232Z Has data issue: false hasContentIssue false

14 - Biochemical Correlates of Intelligence

from Part III - Neuroimaging Methods and Findings

Published online by Cambridge University Press:  11 June 2021

Aron K. Barbey
Affiliation:
University of Illinois, Urbana-Champaign
Sherif Karama
Affiliation:
McGill University, Montréal
Richard J. Haier
Affiliation:
University of California, Irvine
Get access

Summary

The search for physiological correlates of intelligence, prior to the 1990s, largely revolved around well-established correlates found across species, particularly nerve conduction velocity and overall brain size. Human studies arose naturally from the psychometric literature noting that individuals with higher IQ had both faster reaction times and less variability in their responses (Jensen, 1982). These reaction time studies implied that there was something about intelligence beyond acquisition of knowledge, learning, and skill development, which: (1) could be measured with a high degree of accuracy, (2) could be obtained with minimal bias, (3) had a developmental trajectory from childhood through the teen years, and (4) (presumably) had something to do with neuronal structure and/or functional capacity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aboitiz, F., Scheibel, A. B., Fisher, R. S., & Zaidel, E. (1992). Fiber composition of the human corpus callosum. Brain Research, 598(1–2), 143153.Google Scholar
Andreasen, N. C., Flaum, M., Swayze, V. D., O’Leary, D. S., Alliger, R., Cohen, G., … Yuh, W. T. (1993). Intelligence and brain structure in normal individuals. American Journal of Psychiatry, 150(1), 130134.Google Scholar
Anon., (2002). WAIS-III WMS-III technical manual. New York: The Psychological Corporation.Google Scholar
Aydin, K., Uysal, S., Yakut, A., Emiroglu, B., & Yilmaz, F. (2012). N-Acetylaspartate concentration in corpus callosum is positively correlated with intelligence in adolescents. NeuroImage, 59(2), 10581064.Google Scholar
Basten, U., Hilger, K., & Fiebach, C. J. (2015). Where smart brains are different: A quantitative meta-analysis of functional and structural brain imaging studies on intelligence. Intelligence, 51(1), 1027.Google Scholar
Bates, T. E., Strangward, M., Keelan, J., Davey, G. P., Munro, P. M. G. G., & Clark, J. B. 1996. Inhibition of N-acetylaspartate production: Implications for 1H MRS studies in vivo. Neuroreport, 7(8), 13971400.CrossRefGoogle ScholarPubMed
Blakely, R. D., & Coyle, J. T. (1988). The neurobiology of N-acetylasparty. International Review of Neurobiology, 30, 39100.Google Scholar
Brooks, W. M., Friedman, S. D., & Gasparovic, C. (2001). Magnetic resonance spectroscopy in traumatic brain injury. Journal of Head Trauma Rehabilitation, 16(2), 149164.Google Scholar
Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A. Flint, J., Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14, 365376.CrossRefGoogle ScholarPubMed
Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and FMRI studies. Journal of Cognitive Neuroscience, 12(1), 147.Google Scholar
Callaway, E. (1973). Correlations between averaged evoked potentials and measures of intelligence: An overview. Archives of General Psychiatry, 29(4), 553558.CrossRefGoogle ScholarPubMed
Charlton, R. A., McIntyre, D. J. O. O., Howe, F. A., Morris, R. G., & Markus, H. S. (2007). The relationship between white matter brain metabolites and cognition in normal aging: The GENIE study. Brain Research, 1 164, 108116.Google Scholar
D’Adamo, A. F., & Yatsu, F. M. (1966). Acetate metabolism in the nervous system. N-acetyl-l-aspartic acid and the biosynthesis of brain lipids. Journal of Neurochemistry, 13(10), 961965.Google Scholar
Dubois, J., & Adolphs, R. (2016). Building a science of individual differences from FMRI. Trends in Cognitive Sciences, 20(6), 425443.Google Scholar
Ellis, F. R. (1969). Some effects of PCO2 and PH on nerve tissue. British Journal of Pharmacology, 35(1), 197201.Google Scholar
Ertl, J. P., & Schafer, E. W. P. (1969). Brain response correlates of psychometric intelligence. Nature, 223, 421422.Google Scholar
Ferguson, K. J., MacLullich, A. M. J., Marshall, I., Deary, I. J., Starr, J. M., Seckl, J. R., & Wardlaw, J. M. (2002). Magnetic resonance spectroscopy and cognitive function in healthy elderly men. Brain, 125(Pt. 12), 27432749.CrossRefGoogle ScholarPubMed
Flynn, J. R. (1987). Massive IQ gains in 14 nations: What IQ tests really measure. Psychological Bulletin, 101(2), 171191.CrossRefGoogle Scholar
Friedman, S. D., Brooks, W. M., Jung, R. E., Blaine, B. L. L., Hart, L., & Yeo, R. A. (1998). Proton MR spectroscopic findings correspond to neuropsychological function in traumatic brain injury. American Journal of Neuroradiology, 19(10), 18791885.Google ScholarPubMed
Gadian, D. G. (1995). NMR and its applications to living systems. Oxford University Press.Google Scholar
Giménez, M., Junqué, C., Narberhaus, A., Caldú, X., Segarra, D., Vendrell, P., … Mercader, J. M. (2004). Medial temporal MR spectroscopy is related to memory performance in normal adolescent subjects. Neuroreport, 15(4), 703707.Google Scholar
Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., … Van Essen, D. C. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 536, 171178.Google Scholar
Graff-Radford, J., & Kantarci, K. (2013). Magnetic resonance spectroscopy in Alzheimer’s disease. Neuropsychiatric Disease and Treatment, 9, 687–696.Google Scholar
Grazioplene, R. G., Rachael, G., Ryman, S. G., Gray, J. R., Rustichini, A., Jung, R. E., & DeYoung, C. G. (2015). Subcortical intelligence: Caudate volume predicts IQ in healthy adults. Human Brain Mapping, 36(4), 14071416.Google Scholar
Gur, R. C., Turetsky, B. I., Matsui, M., Yan, M., Bilker, W., Hughett, P., & Gur, R. E. (1999). Sex differences in brain gray and white matter in healthy young adults: Correlations with cognitive performance. Journal of Neuroscience, 19(10), 40654072.CrossRefGoogle ScholarPubMed
Haász, J., Westlye, E. T., Fjær, S., Espeseth, T., Lundervold, A., & Lundervold, A. J. (2013). General fluid-type intelligence is related to indices of white matter structure in middle-aged and old adults. NeuroImage, 83, 372383.Google Scholar
Harvey, I., Persaud, R., Ron, M. A., Baker, G., & Murray, R. M. (1994). Volumetric MRI measurements in bipolars compared with schizophrenics and healthy controls. Psychological Medicine, 24(3), 689699.Google Scholar
Hashimoto, T., Tayama, M., Miyazaki, M., Yoneda, Y., Yoshimoto, T., Harada, M., … Kuroda, Y. (1995). Reduced N-acetylaspartate in the brain observed on in vivo proton magnetic resonance spectroscopy in patients with mental retardation. Pediatric Neurology, 13(3), 205208.Google Scholar
Jensen, A. R. (1982). Reaction time and psychometric g. In Eysenck, H. J. (ed.), A model for intelligence (pp. 93132). Berlin: Springer-Verlag.Google Scholar
Jung, R. E., Brooks, W. M., Yeo, R. A., Chiulli, S. J., Weers, D. C., & Sibbitt, W. L. Jr (1999). Biochemical markers of intelligence: A proton MR spectroscopy study of normal human brain. Proceedings of the Royal Society B-Biological Sciences, 266(1426), 13751379.Google Scholar
Jung, R. E., Gasparovic, C., Robert, R. S., Chavez, S., Caprihan, A., Barrow, R., & Yeo, R. A. (2009). Imaging intelligence with proton magnetic resonance spectroscopy. Intelligence, 37(2), 192198.CrossRefGoogle ScholarPubMed
Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30(2):135154.Google Scholar
Jung, R. E., Haier, R. J., Yeo, R. A., Rowland, L. M., Petropoulos, H., Levine, A. S., … Brooks, W. M. (2005). Sex differences in N-acetylaspartate correlates of general intelligence: An H-1-MRS study of normal human brain. Neuroimage, 26(3), 965972.CrossRefGoogle Scholar
Jung, R. E., Yeo, R. A., Sibbitt, W. L. Jr., Ford, C. C., Hart, B. L., & Brooks, W. M. (2001). Gerstmann syndrome in systemic lupus erythematosus: Neuropsychological, neuroimaging and dpectroscopic findings. Neurocase, 7(6), 515521.Google Scholar
Kocevar, G., Suprano, I., Stamile, C., Hannoun, S., Fourneret, P., Revol, O., … Sappey-Marinier, D. (2019). Brain structural connectivity correlates with fluid intelligence in children: A DTI graph analysis. Intelligence, 72, 6775.CrossRefGoogle Scholar
Kumar, V., Sharma, U., & Jagannathan, N. R. (2012). In vivo magnetic resonance spectroscopy of cancer. Biomedical Spectroscopy and Imaging, 1(1), 89100.Google Scholar
Lehmann, J. E. (1937). The effect of changes in PH on the action of mammalian A nerve fibres. American Journal of Physiology, 118(3), 600612.Google Scholar
Lezak, M. D., Howieson, D. B., & Loring, D. W. (2004). Neuropsychological assessment, 4th ed. New York: Oxford University Press.Google Scholar
López-Villegas, D., Lenkinski, R. E., & Frank, I. (1997). Biochemical changes in the frontal lobe of HIV-infected individuals detected by magnetic resonance spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 94(18), 98549859.Google Scholar
Martin, P. R., Gibbs, S. J., Nimmerrichter, A. A., Riddle, W. R., Welch, L. W., & Willcott, M. R. (1995). Brain proton magnetic resonance spectroscopy studies in recently abstinent alcoholics. Alcoholism: Clinical and Experimental Research, 19(4), 10781082.Google Scholar
Moffett, J. R., Ross, B. D., Arun, P., Madhavarao, C. N., & Namboodiri, Aryan. (2007). N-Acetylaspartate in the CNS: From neurodiagnostics to neurobiology. Progress in Neurobiology, 81(2), 89131.CrossRefGoogle ScholarPubMed
Navas-Sánchez, F. J., Alemán-Gómez, Y., Sánchez-Gonzalez, J., Guzmán-De-Villoria, J. A., Franco, C., Robles, O., … Desco, M. (2014). White matter microstructure correlates of mathematical giftedness and intelligence quotient. Human Brain Mapping, 35(6), 26192631.Google Scholar
Nikolaidis, A., Baniqued, P. L., Kranz, M. B., Scavuzzo, C. J., Barbey, A. K., Kramer, A. F., & Larsen, R. J. (2017). Multivariate associations of fluid intelligence and NAA. Cerebral Cortex, 27(4), 26072616.Google ScholarPubMed
Nordengen, K., Heuser, C., Rinholm, J. E., Matalon, R., & Gundersen, V. (2015). Localisation of N-acetylaspartate in oligodendrocytes/myelin. Brain Structure and Function, 220(2), 899917.Google Scholar
Nusbaum, F., Hannoun, S., Kocevar, G., Stamile, C., Fourneret, P., Revol, O., & Sappey-Marinier, D. (2017). Hemispheric differences in white matter microstructure between two profiles of children with high intelligence quotient vs. controls: A tract-based spatial statistics study. Frontiers in Neuroscience, 11, 173. doi: 10.3389/fnins.2017.00173.eCollection2017.CrossRefGoogle ScholarPubMed
Parrish, R. G., Kurland, R. J., Janese, W. W., & Bakay, L. (1974). Proton relaxation rates of water in brain and brain tumors. Science, 183(4123), 438439.Google Scholar
Patel, T., & Talcott, J. B. (2014). Moderate relationships between NAA and cognitive ability in healthy adults: Implications for cognitive spectroscopy. Frontiers in Human Neuroscience, 8, 39. doi: 10.3389/fnhum.2014.00039.eCollection2014.Google Scholar
Paul, E. J., Larsen, R. J., Nikolaidis, A., Ward, N., Hillman, C. H., Cohen, N. J., … Barbey, A. K. (2016). Dissociable brain biomarkers of fluid intelligence. NeuroImage, 137, 201211.Google Scholar
Pfleiderer, B., Ohrmann, P., Suslow, T., Wolgast, M., Gerlach, A. L., Heindel, W., & Michael, N. (2004). N-Acetylaspartate levels of left frontal cortex are associated with verbal intelligence in women but not in men: A proton magnetic resonance spectroscopy study. Neuroscience, 123(4), 10531058.Google Scholar
Pietschnig, J., Penke, L., Wicherts, J. M., Zeiler, M., & Voracek, M. (2015). Meta-analysis of associations between human brain volume and intelligence differences: How strong are they and what do they mean? Neuroscience and Biobehavioral Reviews, 57, 411432.CrossRefGoogle ScholarPubMed
Posner, M. I., & Raichle, M. E. (1998). The neuroimaging of human brain function. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 763764.Google Scholar
Rae, C., Scott, R. B., Thompson, C. H., Kemp, G. J., Dumughn, I., Styles, P., … Radda, G. K. (1996). Is PH a biochemical marker of IQ? Proceedings of the Royal Society B: Biological Sciences, 263(1373), 10611064.Google Scholar
Rajanayagam, V., Balthazor, M., Shapiro, E. G., Krivit, W., Lockman, L., & Stillman, A. E. (1997). Proton MR spectroscopy and neuropsychological testing in adrenoleukodystrophy. American Journal of Neuroradiology, 18(10), 19091914.Google Scholar
Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L., & Denckla, M. B. (1996). Brain development, gender and IQ in children. A volumetric imaging study. Brain, 119(Pt 5), 17631774. doi: 10.1093/brain/119.5.1763.Google Scholar
Ross, A. J., & Sachdev, P. S. (2004). Magnetic resonance spectroscopy in cognitive research. Brain Research Reviews, 44(2–3), 83102.CrossRefGoogle ScholarPubMed
Schuff, N., Ezekiel, F., Gamst, A. C., Amend, D. L., Capizzano, A. A., Maudsley, A. A., & Weiner, M. W. (2001). Region and tissue differences of metabolites in normally aged brain using multislice 1H magnetic resonance spectroscopic imaging. Magnetic Resonance in Medicine, 45(5), 899907.Google Scholar
Sibbitt, W. L. Jr., Sibbitt, R. R., & Brooks, W. M. (1999). Neuroimaging in neuropsychiatric systemic lupus erythematosus. Arthritis & Rheumatism, 42(10), 20262038.Google Scholar
Soher, B. J., van Zijl, P. C., Duyn, J. H., & Barker, P. B. (1996). Quantitative proton MR spectroscopic imaging of the human brain. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine, 35(3), 356363.Google Scholar
Taylor, D. L., Davies, S. E. C., Obrenovitch, T. P., Doheny, M. H., Patsalos, P. N., Clark, J. B., & Symon, L. (2002). Investigation into the role of N-acetylaspartate in cerebral osmoregulation. Journal of Neurochemistry, 65(1), 275281.Google Scholar
Tedeschi, G., Bertolino, A., Righini, A., Campbell, G., Raman, R., Duyn, J. H., … Di Chiro, G. (1995). Brain regional distribution pattern of metabolite signal intensities in young adults by proton magnetic resonance spectroscopic imaging. Neurology, 45(7), 13841391.CrossRefGoogle ScholarPubMed
Vilasboas, T., Herbet, G., & Duffau, H. (2017). Challenging the myth of right nondominant hemisphere: Lessons from corticosubcortical stimulation mapping in awake surgery and surgical implications. World Neurosurgery, 103, 449456.Google Scholar
Wickett, J. C., Vernon, P. A., & Lee, D. H. (1994). In vivo brain size, head perimeter, and intelligence in a sample of healthy adult females. Personality and Individual Differences, 16(6), 831838.Google Scholar
Willerman, L., Schultz, R., Rutledge, J. N., & Bigler, E. D. (1991). In vivo brain size and intelligence. Intelligence, 15(2), 223228.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×