Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T19:15:59.195Z Has data issue: false hasContentIssue false

7 - Infant Visual Attention

from Part II - Perceptual Development

Published online by Cambridge University Press:  26 September 2020

Jeffrey J. Lockman
Affiliation:
Tulane University, Louisiana
Catherine S. Tamis-LeMonda
Affiliation:
New York University
Get access

Summary

From the moment infants open their eyes, they are confronted with a continuous stream of objects, people, sounds, and events that comprise their world. Some are adaptive to attend to and others are not (Gibson, 2000; Werchan & Amso, 2017). They will rely heavily on these observations to build the internal representations that will shape their future behavior. In this chapter, we review the development of infant visual attention, and the role this development plays in the remarkable achievements of infancy.

Type
Chapter
Information
The Cambridge Handbook of Infant Development
Brain, Behavior, and Cultural Context
, pp. 186 - 213
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, S. M., Field, T., Scafidi, F., & Prodromidis, M. (1995). Newborns of depressed mothers. Infant Mental Health Journal, 16(3), 233239.Google Scholar
Aktar, E., Mandell, D. J., de Vente, W., Majdandžić, M., Raijmakers, M. E., & Bögels, S. M. (2016). Infants’ temperament and mothers’, and fathers’ depression predict infants’ attention to objects paired with emotional faces. Journal of Abnormal Child Psychology, 44(5), 975990.CrossRefGoogle ScholarPubMed
Amso, D., Fitzgerald, M., Davidow, J., Gilhooly, T., & Tottenham, N. (2010). Visual exploration strategies and the development of infants’ facial emotion discrimination. Frontiers in Psychology, 1, 180.CrossRefGoogle ScholarPubMed
Amso, D., Haas, S., & Markant, J. (2014). An eye-tracking investigation of developmental change in bottom-up attention orienting to faces in cluttered natural scenes. PLoS One, 9(1), e85701.CrossRefGoogle ScholarPubMed
Amso, D., & Johnson, S. P. (2006). Learning by selection: Visual search and object perception in young infants. Developmental Psychology, 42, 12361245. doi: 10.1037/0012-1649.42.6.1236Google Scholar
Amso, D., & Lynn, A. (2017). Distinctive mechanisms of adversity and socioeconomic inequality in child development: A review and recommendations for evidence-based policy. Policy Insights from the Behavioral and Brain Sciences, 4(2), 139146.Google Scholar
Amso, D., & Scerif, G. (2015). The attentive brain: Insights from developmental cognitive neuroscience. Nature Reviews Neuroscience, 16(10), 606.Google Scholar
Aslin, R. N. (2007). What’s in a look? Developmental Science, 10(1), 4853. doi: 10.1111/j.1467-7687.2007.00563.xGoogle Scholar
Aslin, R. N. (2012). Infant eyes: A window on cognitive development. Infancy, 17(1), 126140. doi: 10.1111/j.1532-7078.2011.00097.xGoogle Scholar
Atkinson, J., Braddick, O., & Moar, K. (1977). Development of contrast sensitivity over the first 3 months of life in the human infant. Vision Research, 17(9), 10371044.Google Scholar
Baillargeon, R. (1987). Object permanence in 3½- and 4½-month-old infants. Developmental Psychology, 23(5), 655664. doi: 10.1037/0012-1649.23.5.655CrossRefGoogle Scholar
Baillargeon, R. (2002). The acquisition of physical knowledge in infancy: A summary in eight lessons. In Goswami, U. (Ed.), The Blackwell handbook of childhood cognitive development (Vol. 1, pp. 4683). Malden, MA: Blackwell.Google Scholar
Bertenthal, B., & von Hofsten, C. (1998). Eye, head and trunk control: The foundation for manual development. Neuroscience & Biobehavioral Reviews, 22(4), 515520.Google Scholar
Bornstein, M. H., Mash, C., Arterberry, M. E., & Manian, N. (2012). Object perception in 5-month-old infants of clinically depressed and nondepressed mothers. Infant Behavior and Development, 35(1), 150157.CrossRefGoogle ScholarPubMed
Braddick, O. J., Wattam-Bell, J., & Atkinson, J. (1986). Orientation-specific cortical responses develop in early infancy. Nature, 320(6063), 617619.Google Scholar
Bradley, R., & Corwyn, R. (2002). Socioeconomic status and child development. Annual Review of Psychology, 53, 371399. doi: 10.1146/annurev.psych.53.100901.135233CrossRefGoogle ScholarPubMed
Breznitz, Z., & Friedman, S. L. (1988). Toddlers’ concentration: Does maternal depression make a difference? Journal of Child Psychology and Psychiatry, 29(3), 267279.Google Scholar
Bronson, G. W. (1990). Changes in infants’ visual scanning across the 2- to 14-week age period. Journal of Experimental Child Psychology, 49, 101125.Google Scholar
Bulf, H., & Valenza, E. (2013). Object-based visual attention in 8-month-old infants: Evidence from an eye-tracking study. Developmental Psychology, 49(10), 19091918. doi: 10.1037/a0031310CrossRefGoogle ScholarPubMed
Bushnell, I. W. R. (2001). Mother’s face recognition in newborn infants: Learning and memory. Infant and Child Development, 10(1–2), 6774. doi: 10.1002/icd.248Google Scholar
Canfield, R. L., & Haith, M. M. (1991). Young infants’ visual expectations for symmetric and asymmetric stimulus sequences. Developmental Psychology, 27, 198208.Google Scholar
Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 14841525.CrossRefGoogle ScholarPubMed
Casey, B. J., & Richards, J. E. (1988). Sustained visual attention in young infants measured with an adapted version of the visual preference paradigm. Child Development, 59(6), 15141521.CrossRefGoogle ScholarPubMed
Clearfield, M. W., & Jedd, K. E. (2012). The effects of socio-economic status on infant attention. Infant and Child Development, 22(1), 5367. doi: 10.1002/icd.1770CrossRefGoogle Scholar
Cohen, L. B., & Cashon, C. H. (2003). Infant perception and cognition. In Lerner, R. M., Easterbrooks, M. A., & Mistry, J. (Eds.), Handbook of psychology: Developmental psychology (Vol. 6, pp. 6589). Hoboken, NJ: John Wiley & Sons.Google Scholar
Colombo, J. (2001). The development of visual attention in infancy. Annual Review of Psychology, 52(1), 337367. doi: 10.1146/annurev.psych.52.1.337Google Scholar
Colombo, J., & Cheatham, C. L. (2006). The emergence and basis of endogenous attention in infancy and early childhood. Advances in Child Development and Behavior, 34, 283.Google Scholar
Colombo, J., Mitchell, D. W., Coldren, J. T., & Freeseman, L. J. (1991). Individual differences in infant visual attention: Are short lookers faster processors or feature processors? Child Development, 62(6), 12471257. doi: 10.1111/j.1467–8624.1991.tb01603.xGoogle Scholar
Courage, M. L., Reynolds, G. D., & Richards, J. E. (2006). Infants’ attention to patterned stimuli: Developmental change from 3 to 12 months of age. Child Development, 77(3), 680695.Google Scholar
Courchesne, E., Ganz, L., & Norcia, A. M. (1981). Event-related brain potentials to human faces in infants. Child Development, 52(3), 804811.Google Scholar
Csibra, G., & Volein, A. (2008). Infants can infer the presence of hidden objects from referential gaze information. British Journal of Developmental Psychology, 26, 111.Google Scholar
Dannemiller, J. L. (2005). Motion popout in selective visual orienting at 4.5 but not at 2 months in human infants. Infancy, 8(3), 201216.CrossRefGoogle Scholar
de Boer, T., Scott, L. S., & Nelson, C. A. (2007). Methods for acquiring and analyzing infant event-related potentials. In de Haan, M. (Ed.), Infant EEG and event-related potentials (pp. 537). New York, NY: Psychology Press.Google Scholar
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Reviews of Neuroscience, 18, 193222. doi: 10.1016/j.cub.2014.02.049CrossRefGoogle ScholarPubMed
DiPietro, J. A., Bornstein, M. H., Hahn, C. S., Costigan, K., & Achy-Brou, A. (2007). Fetal heart rate and variability: Stability and prediction to developmental outcomes in early childhood. Child Development, 78(6), 17881798.Google Scholar
Ellis, A. E., Xiao, N. G., Lee, K., & Oakes, L. M. (2017). Scanning of own- versus other-race faces in infants from racially diverse or homogenous communities. Developmental Psychobiology, 59(5), 613627. doi: 10.1002/dev.21527Google Scholar
Elsabbagh, M., Volein, A., Holmboe, K., Tucker, L., Csibra, G., Baron-Cohen, S., … Johnson, M. H. (2009). Visual orienting in the early broader autism phenotype: Disengagement and facilitation. Journal of Child Psychology and Psychiatry, 50(5), 637642.CrossRefGoogle ScholarPubMed
Emberson, L. L., & Amso, D. (2012). Learning to sample: Eye tracking and fMRI indices of changes in object perception. Journal of Cognitive Neuroscience, 24, 20302042. doi: 10.1162/jocn_a_00259Google Scholar
Fair, J., Flom, R., Jones, J., & Martin, J. (2012). Perceptual learning: 12-month-olds’ discrimination of monkey faces. Child Development, 83(6), 19962006.Google Scholar
Fantz, R. L. (1956). A method for studying early visual development. Perceptual and Motor Skills, 6, 1315. doi: 10.2466/pms.1956.6.g.13Google Scholar
Fantz, R. L. (1963). Pattern vision in newborn infants. Science, 140(3564), 296297. doi: 10.1126/science.140.3564.296Google Scholar
Farroni, T., Massaccesi, S., Pividori, D., & Johnson, M. H. (2004). Gaze following in newborns. Infancy, 5, 3960.Google Scholar
Field, T., Healy, B., & LeBlanc, W. G. (1989). Sharing and synchrony of behavior states and heart rate in nondepressed versus depressed mother–infant interactions. Infant Behavior and Development, 12(3), 357376.Google Scholar
Franchak, J. M., & Adolph, K. E. (2010). Visually guided navigation: Head-mounted eye-tracking of natural locomotion in children and adults. Vision Research, 50(24), 27662774. doi: 10.1016/j.visres.2010.09.024Google Scholar
Frank, M. C., Amso, D., & Johnson, S. P. (2014). Visual search and attention to faces during early infancy. Journal of Experimental Child Psychology, 118(1), 1326. doi: 10.1016/j.jecp.2013.08.012CrossRefGoogle ScholarPubMed
Frank, M. C., Vul, E., & Johnson, S. P. (2009). Development of infants’ attention to faces during the first year. Cognition, 110, 160170.Google Scholar
Frick, J. E., & Richards, J. E. (2001). Individual differences in infants’ recognition of briefly presented visual stimuli. Infancy, 2(3), 331352. doi: 10.1207/S15327078IN0203_3Google Scholar
Gaither, S. E., Pauker, K., & Johnson, S. P. (2012). Biracial and monoracial infant own-race face perception: An eye-tracking study. Developmental Science, 15(6), 775782.Google Scholar
Gibson, E. (2000). Perceptual learning in development: Some basic concepts. Ecological Psychology, 12(4), 295302. doi: 10.1207/S15326969ECO1204_04CrossRefGoogle Scholar
Gilbert, C. D., & Sigman, M. (2007). Brain states: Top-down influences in sensory processing. Neuron, 54(5), 677696.Google Scholar
Grunau, R. E., Weinberg, J., & Whitfield, M. F. (2004). Neonatal procedural pain and preterm infant cortisol response to novelty at 8 months. Pediatrics, 114(1), e77-e84.Google Scholar
Grunau, R. E., Whitfield, M. F., & Fay, T. B. (2004). Psychosocial and academic characteristics of extremely low birth weight (≤ 800 g) adolescents who are free of major impairment compared with term-born control subjects. Pediatrics, 114(6), e725-e732.CrossRefGoogle ScholarPubMed
Haith, M. M. (1980). Rules that babies look by: The organization of newborn visual activity. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experiences of young American children. Baltimore, MD: Paul H. Brookes.Google Scholar
Hoehl, S., Reid, V. M., Mooney, J., & Striano, T. (2008). What are you looking at? Infants’ neural processing of an adult’s object-directed eye gaze. Developmental Science, 11, 1016.Google Scholar
Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & van de Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and measures. Oxford: Oxford University Press.Google Scholar
Hood, B. M. (1995). Visual selective attention in the human infant: A neuroscientific approach. In Rovee-Collier, C. & Lipsitt, L. (Eds.), Advances in infancy research (Vol. 9, pp. 163216). Norwood, NJ: Ablex.Google Scholar
Hood, B. M., Willen, J. D., & Driver, J. (1998). Adult’s eyes trigger shifts of visual attention in human infants. Psychological Science, 9(2), 131134. doi: 10.1111/1467–9280.00024Google Scholar
Hurley, K. B., & Oakes, L. M. (2015). Experience and distribution of attention: Pet exposure and infants’ scanning of animal images. Journal of Cognition and Development, 16(1), 1130. doi: 10.1080/15248372.2013.833922Google Scholar
Hutchinson, E. A., de Luca, C. R., Doyle, L. W., Roberts, G., & Anderson, P. J. (2013). School-age outcomes of extremely preterm or extremely low birth weight children. Pediatrics, 131(4), e1053e1061. doi: 10.1542/peds.2012–2311CrossRefGoogle ScholarPubMed
Hwang, K., Velanova, K., & Luna, B. (2010). Strengthening of top-down frontal cognitive control networks underlying the development of inhibitory control: A functional magnetic resonance imaging effective connectivity study. Journal of Neuroscience, 30(46), 1553515545. doi: 10.1523/JNEUROSCI.2825-10.2010CrossRefGoogle ScholarPubMed
Jankowski, J. J., Rose, S. A., & Feldman, J. F. (2001). Modifying the distribution of attention in infants. Child Development, 72(2), 339351. doi: 10.1111/1467–8624.00282Google Scholar
Johnson, M. H. (1990). Cortical maturation and the development of visual attention in early infancy. Journal of Cognitive Neuroscience, 2, 8195. doi: 10.1162/jocn.1990.2.2.81Google Scholar
Johnson, M. H. (1995). The inhibition of automatic saccades in early infancy. Developmental Psychobiology, 28, 281291. doi: 10.1002/dev.420280504CrossRefGoogle ScholarPubMed
Johnson, M. H., Posner, M. I., & Rothbart, M. K. (1991). Components of visual orienting in early infancy: Contingency learning, anticipatory looking, and disengaging. Journal of Cognitive Neuroscience, 3, 335344. doi: 10.1162/jocn.1991.3.4.335Google Scholar
Johnson, S. P., Amso, D., & Slemmer, J. A. (2003). Development of object concepts in infancy: Evidence for early learning in an eye-tracking paradigm. Proceedings of the National Academy of Sciences, 100(18), 1056810573. doi: 10.1073/pnas.1630655100Google Scholar
Johnson, S. P., Slemmer, J. A., & Amso, D. (2004). Where infants look determines how they see: Eye movements and object perception performance in 3-month-olds. Infancy, 6, 185201.Google Scholar
Jones, W., & Klin, A. (2013). Attention to eyes is present but in decline in 2–6-month-old infants later diagnosed with autism. Nature, 504(7480), 427.Google Scholar
Jöbsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198, 12641267.Google Scholar
Káldy, Z., & Leslie, A. M. (2003). Identification of objects in 9-month-old infants: integrating “what” and “where” information. Developmental Science, 6, 360373.Google Scholar
Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4(4), 138147.Google Scholar
Konrad, K., Neufang, S., Thiel, C. M., Specht, K., Hanisch, C., Fan, J., … Fink, G. R. (2005). Development of attentional networks: An fMRI study with children and adults. NeuroImage, 28(2), 429439.Google Scholar
Kramer, M. S., Goulet, L., Lydon, J., Seguin, L., McNamara, H., Dassa, C., … Koren, G. (2001). Socio-economic disparities in preterm birth: Casual pathways and mechanisms. Pediatric and Perinatal Epidemiology, 15(Suppl. 2), 104123.Google Scholar
Kretch, K. S., Franchak, J. M., & Adolph, K. E. (2014). Crawling and walking infants see the world differently. Child Development, 85(4), 15031518. doi: 10.1111/cdev.12206Google Scholar
Kuhlmeier, V., Wynn, K., & Bloom, P. (2003). Attribution of dispositional states by 12-month-olds. Psychological Science, 14(5), 402408. doi: 10.1111/1467–9280.01454Google Scholar
Lancaster, C. A., Gold, K. J., Flynn, H. A., Yoo, H., Marcus, S. M., & Davis, M. M. (2010 ). Risk factors for depressive symptoms during pregnancy: A systematic review. American Journal of Obstetrics and Gynecology, 202, 514. doi: 10.1016/j.ajog.2009.09.007Google Scholar
Lawson, K. R., & Ruff, H. A. (2004). Early focused attention predicts outcome for children born prematurely. Journal of Developmental & Behavioral Pediatrics, 25(6), 399406.Google Scholar
Leppänen, J. M., Cataldo, J. K., Bosquet Enlow, M., & Nelson, C. A. (2018). Early development of attention to threat-related facial expressions. PLoS One, 13(5), e0197424. doi: 10.1371/journal.pone.0197424Google Scholar
Lewis, M., & Brooks-Gunn, J. (1981). Visual attention at three months as a predictor of cognitive functioning at two years of age. Intelligence, 5(2), 131140.CrossRefGoogle Scholar
Lloyd-Fox, S., Blasi, A., & Elwell, C.E. (2010). Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy. Neuroscience & Biobehavioral Reviews, 34(3), 269284.Google Scholar
Markant, J., Ackerman, L. K., Nussenbaum, K., & Amso, D. (2016). Selective attention neutralizes the adverse effects of low socioeconomic status on memory in 9-month-old infants. Developmental Cognitive Neuroscience, 18, 2633.Google Scholar
Markant, J., & Amso, D. (2013). Selective memories: Infants’ encoding is enhanced in selection via suppression. Developmental Science, 16, 926940.CrossRefGoogle ScholarPubMed
Johnson, M. H. (2014). Leveling the playing field: Attention mitigates the effect of IQ on memory. Cognition, 131(2), 195204.Google Scholar
Johnson, M. H. (2016). The development of selective attention orienting is an agent of change in learning and memory efficacy. Infancy, 21(2), 154176.Google Scholar
Markant, J., Oakes, L. M., & Amso, D. (2016). Visual selective attention biases contribute to the other-race effect among 9-month-old infants. Developmental Psychobiology, 58(3), 355365.Google Scholar
Markant, J., Worden, M. S., & Amso, D. (2015). Not all attention orienting is created equal: Recognition memory is enhanced when attention orienting involves distractor suppression. Neurobiology of Learning and Memory, 120, 2840. doi: 10.1016/j.nlm.2015.02.006Google Scholar
McLoyd, V. C. (1998). Socioeconomic disadvantage and child development. American Psychologist, 53(2), 185204. doi: 10.1037/0003-066X.53.2.185Google Scholar
Mundy, P. (2003). Annotation: The neural basis of social impairments in autism – the role of the dorsal medial-frontal cortex and anterior cingulate system. Journal of Child Psychology and Psychiatry, 44(6), 793809.Google Scholar
Mundy, P., Block, J., Delgado, C., Pomares, Y., van Hecke, A. V., & Parlade, M. V. (2007). Individual differences and the development of joint attention in infancy. Child Development, 78(3), 938954.Google Scholar
Mundy, P., & Newell, L. (2007). Attention, joint attention, and social cognition. Current Directions in Psychological Science, 16(5), 269274.CrossRefGoogle ScholarPubMed
Oakes, L. M., Kannass, K. N., & Shaddy, D. J. (2002). Developmental changes in endogenous control of attention: The role of target familiarity on infants’ distraction latency. Child Development, 73(6), 16441655. doi: 10.1111/1467–8624.00496CrossRefGoogle ScholarPubMed
Pascalis, O., de Haan, M., & Nelson, C.A. (2002). Is face processing species-specific during the first year of life? Science, 296, 13211323.Google Scholar
Posner, M. I. (Ed.). (2004). Cognitive neuroscience of attention. New York, NY: Guilford Press.Google Scholar
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542. doi: 10.1146/annurev.ne.13.030190.000325CrossRefGoogle ScholarPubMed
Posner, M. I., Rafal, R. D., & Choate, L.S. (1985). Inhibition of return: Neural basis and function. Cognitive Neuropsychology, 2, 211228.Google Scholar
Reid, V. M., Dunn, K., Young, R. J., Amu, J., Donovan, T., & Reissland, N. (2017). The human fetus preferentially engages with face-like visual stimuli. Current Biology, 27(12), 18251828.Google Scholar
Reid, V. M., Striano, T., Kaufman, J., & Johnson, M. H. (2004). Eye-gaze cueing facilitates neural processing of objects in 4-month-old infants. NeuroReport, 15, 25532555.Google Scholar
Reynolds, G. D., Guy, M. W., & Zhang, D. (2011). Neural correlates of individual differences in infant visual attention and recognition memory. Infancy, 16(4), 368391. doi: 10.1111/j.1532-7078.2010.00060.xGoogle Scholar
Reynolds, G. D., & Richards, J. E. (2005). Familiarization, attention, and recognition memory in infancy: An event-related potential and cortical source localization study. Developmental Psychology, 41(4), 598.Google Scholar
Richards, J. E. (2000). Localizing the development of covert attention in infants with scalp event-related potentials. Developmental Psychology, 36(1), 91108. doi: 10.1037/0012-1649.36.1.91Google Scholar
Richards, J. E. (2003). Attention affects the recognition of briefly presented visual stimuli in infants: An ERP study. Developmental Science, 6(3), 312328. doi: 10.1111/1467–7687.00287Google Scholar
Richards, J. E., & Casey, B. J. (1992). Development of sustained visual attention in the human infant. In Campbell, B. A. & Hayne, H. (Eds.), Attention and information processing in infants and adults: perspectives from human and animal research (pp. 3060). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Rosander, K. (2007). Visual tracking and its relationship to cortical development. Progress in Brain Research, 164, 105122. doi: 10.1016/S0079-6123(07)64006-0Google Scholar
Rose, S. A., Feldman, J. F., & Jankowski, J. J. (2001). Attention and recognition memory in the 1st year of life: A longitudinal study of preterm and full-term infants. Developmental Psychology, 37(1), 135.Google Scholar
Rose, S. A., Feldman, J. F., (2012). Implications of infant cognition for executive functions at age 11. Psychological Science, 23(11), 1345–55.Google Scholar
Ross-Sheehy, S., Oakes, L. M., & Luck, S. J. (2003). The development of visual short-term memory capacity in infants. Child Development, 74, 18071822.CrossRefGoogle ScholarPubMed
Ruff, H. A., Lawson, K. R., Parrinello, R., & Weissberg, R. (1990). Long-term stability of individual differences in sustained attention in the early years. Child Development, 61(1), 6075.Google Scholar
Salapatek, P., & Kessen, W. (1966). Visual scanning of triangles by the human newborn. Journal of Experimental Child Psychology, 3, 155167.CrossRefGoogle ScholarPubMed
Schlesinger, M., & Amso, D. (2013). Image free-viewing as intrinsically motivated exploration: Estimating the learnability of center-of-gaze image samples in infants and adults. Frontiers in Psychology. doi: 10.3389/fpsyg.2013.00802Google Scholar
Schoenfeld, M. A., Hopf, J. M., Merkel, C., Heinze, H. J., & Hillyard, S. A. (2014). Object-based attention involves the sequential activation of feature-specific cortical modules. Nature Neuroscience, 17 (4), 619624.Google Scholar
Scott, L. S., & Monesson, A. (2010). Experience-dependent neural specialization during infancy. Neuropsychologia, 48(6), 18571861.Google Scholar
Senju, A., Csibra, G., & Johnson, M. (2008). Understanding the referential nature of looking: Infants’ preference for object-directed gaze. Cognition, 108, 303319.Google Scholar
Sigman, M., Cohen, S. E., & Beckwith, L. (1997). Why does infant attention predict adolescent intelligence? Infant Behavior and Development, 20(2), 133140.Google Scholar
Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition for biological motion in the newborn baby. Proceedings of the National Academy of Sciences, 105(2), 809813. doi: 10.1073/pnas.0707021105Google Scholar
Simion, F., Valenza, E., Umiltà, C., & Barba, B. D. (1995). Inhibition of return in newborns is temporo-nasal asymmetrical. Infant Behavior and Development, 18(2), 189194.Google Scholar
Sommerville, J. A., Woodward, A. L., & Needham, A. (2005). Action experience alters 3-month-old infants’ perception of others’ actions. Cognition, 96(1), B1B11. doi: 10.1016/j.cognition.2004.07.004Google Scholar
Spelke, E. S., Katz, G., Purcell, S. E., Ehrlich, S. M., & Breinlinger, K. (1994). Early knowledge of object motion: Continuity and inertia. Cognition, 51(2), 131176. doi: 10.1016/0010-0277(94)90013-2Google Scholar
Striano, T., Chen, X., Cleveland, A., & Bradshaw, S. (2006). Joint attention social cues influence infant learning. European Journal of Developmental Psychology, 3, 289299.Google Scholar
Sugita, Y. (2008). Face perception in monkeys reared with no exposure to faces. Proceedings of the National Academy of Sciences, 105(1), 394398.Google Scholar
Tacke, N. F., Bailey, L. S., & Clearfield, M. W. (2015). Socio-economic status (SES) affects infants’ selective exploration. Infant and Child Development, 24(6), 571586. doi: 10.1002/icd.1900Google Scholar
Tummeltshammer, K., & Amso, D. (2017). Top-down contextual knowledge guides visual attention in infancy. Developmental Science, 21(4), 19. doi: 10.1111/desc.12599Google Scholar
Valenza, E., Simion, F., & Umiltà, C. (1994). Inhibition of return in newborn infants. Infant Behavior and Development, 17(3), 293302.CrossRefGoogle Scholar
Vogel, M., Monesson, A., & Scott, L.S. (2012). Building biases in infancy: The influence of race on face and voice emotion matching. Developmental Science, 15(3), 359372.Google Scholar
von Hofsten, C., & Rosander, K. (1997). Development of smooth pursuit tracking in young infants. Vision Research, 37(13), 17991810.Google Scholar
Weissman, M. M., Leckman, J. F., Merikangas, K. R., Gammon, G. D., & Prusoff, B. A. (1984). Depression and anxiety disorders in parents and children: Results from the Yale Family Study. Archives of General Psychiatry, 41(9), 845852.Google Scholar
Wellman, H. M., Phillips, A. T., Dunphy-Lelii, S., & LaLonde, N. (2004). Infant social attention predicts preschool social cognition. Developmental Science, 7(3), 283288.Google Scholar
Werchan, D. M., & Amso, D. (2017). A novel ecological account of prefrontal cortex functional development. Psychological Review, 124(6), 720739. doi: 10.1037/rev0000078Google Scholar
Wheeler, A., Anzures, G., Quinn, P. C., Pascalis, O., Omrin, D. S., & Lee, K. (2011). Caucasian infants scan own- and other-race faces differently. PloS One, 6(4), e18621.Google Scholar
Young, G. S., Merin, N., Rogers, S. J., & Ozonoff, S. (2009). Gaze behavior and affect at 6 months: Predicting clinical outcomes and language development in typically developing infants and infants at risk for autism. Developmental Science, 12(5), 798814Google Scholar
Yu, C., & Smith, L. B. (2016). The social origins of sustained attention in one-year-old human infants. Current Biology, 26(9), 12351240. doi: 10.1016/j.cub.2016.03.026Google Scholar
Zweigenbaum, L., Bryson, S., Rogers, T., Roberts, W., Brian, J., & Szatmari, P. (2005). Behavioral manifestations of autism in the first year of life. International Journal of Developmental Neuroscience, 23(2–3), 143152.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×